Please update your Flash Player to view content.

Research Cores at the SCI Institute


Scientific Computing

Numerical simulation of real-world phenomena provides fertile ground for building interdisciplinary relationships. The SCI Institute has a long tradition of building these relationships in a win-win fashion – a win for the theoretical and algorithmic development of numerical modeling and simulation techniques and a win for the discipline-specific science of interest. High-order and adaptive methods, uncertainty quantification, complexity analysis, and parallelization are just some of the topics being investigated by SCI faculty. These areas of computing are being applied to a wide variety of engineering applications ranging from fluid mechanics and solid mechanics to bioelectricity.


Biomedical Computing

Biomedical computing combines the diagnostic and investigative aspects of biology and medical science with the power and problem-solving capabilities of modern computing. Computers are used to accelerate research learning, simulate patient behavior and visualize complex biological models.


Scientific Visualization

Scientific visualization, sometimes referred to as visual data analysis, uses the graphical representation of data as a means of gaining understanding and insight into the data. Scientific visualization research at SCI has focused on applications spanning computational fluid dynamics, medical imaging and analysis, and fire simulations. Research involves novel algorithm development to building tools and systems that assist in the comprehension of massive amounts of scientific data. In helping researchers to comprehend spatial and temporal relationships between data, interactive techniques provide better cues than noninteractive techniques; therefore, much of scientific visualization research focuses on better methods for visualization and rendering at interactive rates.


Information Visualization

Information visualization is the study of (interactive) visual representations of abstract data to reinforce human cognition. The abstract data include both numerical and non-numerical data, such as text and geographic information. However, information visualization differs from scientific visualization: "it's infovis [information visualization] when the spatial representation is chosen, and it's scivis [scientific visualization] when the spatial representation is given."


Image Analysis

SCI’s imaging work addresses fundamental questions in 2D and 3D image processing, including filtering, segmentation, surface reconstruction, and shape analysis. In low-level image processing, this effort has produce new nonparametric methods for modeling image statistics, which have resulted in better algorithms for denoising and reconstruction. Work with particle systems has led to new methods for visualizing and analyzing 3D surfaces. Our work in image processing also includes applications of advanced computing to 3D images, which has resulted in new parallel algorithms and real-time implementations on graphics processing units (GPUs). Application areas include medical image analysis, biological image processing, defense, environmental monitoring, and oil and gas.