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Workshop team

Software: https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta

Github discussion: https://github.com/SCIInstitute/UncertainSCI/discussions/82

Discord discussion: https://discord.com/invite/MGEVK6K5

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop

https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta
https://github.com/SCIInstitute/UncertainSCI/discussions/82
https://discord.com/invite/MGEVK6K5


Workshop goals

This workshop has two parts that explore two complementary themes.

Modeling parametric uncertainty

UQ goals and desiderata

Parametric uncertainty

Polynomial Chaos

UQ in practice with UncertainSCI

UncertainSCI software

Cardiac bioelectricity use cases and applications

Neuromodulation examples
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Workshop agenda

Workshop overview, all times MT:

9:00 – 9:30 Overview and UQ introduction Akil Narayan
9:30 – 10:00 Mathematics of polynomial Chaos Akil Narayan
10:00 – 10:30 UncertainSCI software Jess Tate, Jake Bergquist

10:30 – 11:00 Break

11:00 – 11:30 Cardiac bioelectricity use case Jess Tate
11:30 – 12:00 Neuromodulation use case Sumientra Rampersad
12:00 – 12:30 Breakout sessions
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Simulation models

Computational simulations are subject to parametric uncertainties,

conductivities

heart location, geometry

and also model uncertainties,

model misspecification

simplified mathematical equations

computational/discretization error

Parametric uncertainty can typically be modeled and interpreted meaningfully.

Model uncertainty: problem-specific and more nebulous
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Uncertainty in models

Parametric uncertainty requires modeling

probability densities for scalars

parameterized geometry

Electric fields

Forward model Stimulated region

Uncertainty !
Brain anatomy
Sulcal width + shape
CSF conductivity

Design variables D
Electrode montage
Stimulation strength

Model and solver

PDE solver
Mesh geometry

Thresholding
ROI impact Q

Output quantities of interest Q depend on parameterized uncertainty.
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Uncertainty quantification

With a model of stochasticity, there can be several goals for UQ:
Forward propagation of uncertainty

§ statistics of quantities of interest
§ sensitivity analysis
§ parameter screening or reduction

Parameter estimation (typically with data)
§ inverse/inference problem built on forward simulations
§ identification of experimentally unobservable quantities

Design and performance optimization
§ outer-loop optimization on design variables
§ computation of designs that are robust to uncertainty

input to the forward model; and the optimization design variables D that should be determined
to maximize Q. Table 2 summarizes this notation and identifies Q, Q, and D for each of the
three target applications in this project. The difficult task in a robust optimal design problem is
to generate a design variable D that accounts for uncertainty in Q. While there are some initial
studies on related types of optimization for neuromodulation and neuroimaging applications,139

there is a pressing need for principled and general-purpose robust optimization under uncertainty
pipelines in computational neuroscience.

In this project, we incorporate uncertainty into determination of the design D by seeking to
maximize Q while minimizing uncertainty. Motivated by similar design under uncertainty strategies
in broader computational science scenarios,140–142 we formalize our optimization as

D⇤ = argmax
D

QQN(E(D, Q)) +
l

spreadQQN(E(I, Q))
, (2)

Figure 7: Basic optimization loop for robust design under
uncertainty. The design variable D (e.g., tCS current pat-
tern) is iteratively updated by maximizing an objective that
accounts for forward model uncertainty. Variables D, Q,
and Q for each target application are identified in Table 2.

where Q denotes statistical expecta-
tion with respect to the distribution of
Q, spread is a statistical measure of
the uncertainty in the distribution (for ex-
ample its standard deviation), and l is
a tunable parameter reflecting the bal-
ance between computing optimal ROI
fields Q and robustness under uncer-
tainty. The parameter l can be chosen
through regularization analyses (such as
the L-curve approach143–145) or through
Bayesian interpretations that maximize a
log-likelihood.146,147 In the optimization
we have replaced Q by the more compu-
tationally efficient PC approximation QN
from UncertainSCI.

The optimization (2) is general-purpose,
and Table 2 shows how the framework is applicable to each of our target applications in neuromod-
ulation and neuroimaging. The fNIRS modality raises an additional challenge since optimization
seeks to determine the most impactful modular array and tessellation. In order to address the
overwhelming number of configurations for optimization in this context, this project will develop
software and techniques that employ low-dimensional representations of design space so that op-
timization becomes feasible. Strategies for low-dimensional representations for shape uncertainty
from section 3.1 will be leveraged in modified form to parameterize design variables and achieve
feasible optimization design spaces.

Our optimization approach (2) aims to extremize a deterministic objective function subject to
relevant constraints (e.g., safety assumptions). These approaches are common in the literature
and in particular have been investigated by the PIs of this project.25,26,148–151 The innovation we
propose in Eq. (2) is to incorporate robust optimization taking into account uncertainty.152–155

3.3 Focus 3: Experimental design and significance

As described in section 2.4, current pipelines for statistical significance tests typically make as-
sumptions about population distributions in order to compute statistical power and/or required
sample size. These assumptions entail that the probabilistic quantity of interest that is measured

D–12
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:

Identification of parameters P

Probabilistic modeling (specifying a distribution) for P

Definition of an output quantity of interest
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:

Identification of parameters P
Probabilistic modeling (specifying a distribution) for P

Definition of an output quantity of interest

What is uncertain in my model? How can I parameterize this uncertainty?
Finite-dimensional parameters (bidomain conductivities)

Stochastic fields (conductivity fields)

Geometric uncertainty (cohort shape variability)

These can all be meaningfully modeled as a finite-dimensional parameter P P Rd.

Underparameterization (small d) can yield a poor model of uncertainty.

Overparameterization (large d) makes it difficult to explore uncertainty.

Cf. use cases later today!
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:

Identification of parameters P

Probabilistic modeling (specifying a distribution) for P
Definition of an output quantity of interest

What kinds of values are reasonable for P “ pP1, . . . , Pdq to take?

Are some parameters coupled? Is Pj independent of Pk?

A quantifiable way to describe these considerations is through probabilistic modeling:
Let w : Rd Ñ r0,8q be a probability density function for P .
This in particular defines the range of values that P can take (the support of w).

A common assumption is that all parameters are independent. In this case,

wppq “ w1pp1q ¨ ¨ ¨wdppdq, p P Rd.

This results in substantial simplification of algorithms.
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:

Identification of parameters P

Probabilistic modeling (specifying a distribution) for P

Definition of an output quantity of interest

For each fixed parameter value a forward simulation yields an output quantity of interest:

P
Forward simulation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ upP q

Restriction, averaging, etc
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ QpupP qq

For exmaple, upP q can be the output of a(n expensive!) PDE forward model for bioelectric
propagation.

Q represents a summarized output (e.g., localized epicardial potential)

In forward UQ analysis, we seek to understand the map P ÞÑ QpupP qq.
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Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.

QpP q « QN pP q

QN is a trained computational emulator that is efficient and ideally accurate.

There are two (frequently) overlapping strategies:

linear methods: simple, direct, well-understood accuracy

QN pP q “
N
ÿ

j“1

pqjφjpP q,

where φj are prescribed functions.
§ Stochastic finite element methods
§ some Polynomial chaos (PC) methods

nonlinear methods: more expressive, but also more “finicky” and opaque
§ other Polynomial chaos methods
§ Gaussian processes
§ Neural networks

In UncertainSCI we use linear PC emulators.
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Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for QN :

Median, quantiles, confidence intervals

Statistics (mean, variance, etc.)
Partial variances: let T denote a subset of t1, . . . , du

§ Global variance: varT pQN q “ var pErQN pP q | PT sq
Measures the variance due to “genuine” interactions among variables in subset PT .

§ Total variance: vartotT pQN q “
ř

UĂT varU pQN q
Measures the variance due to variable subset PT .

Sensitivities

§ Global sensitivities: ST “
varT pQN q

varpQN q
ď 1

Measures the relative importance of “genuine” interactions in variable subset PT .

§ Total sensitivities: Stot
T “

vartotT pQN q

varpQN q
ď 1

Measures the relative importance of variable subset PT .

Note: these are approximations since QN « Q.
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Summary

To model forward uncertainty with emulators, we require

identification of a d-dimensional random parameter P

modeling of likely values of P through a density w

definition of a forward simulation output, a quantity of interest QpP q

Probability density

Parameters p1, p2, . . . , pd

Quantity of interest Q

⋰
Forward UQ

analysis
Emulator QN

Statistics

Outer loop design/optimization
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UncertainSCI

The software package we have built and use: UncertainSCI

open-source Python software

forward UQ analysis

polynomial Chaos-based

https://www.sci.utah.edu/sci-software/simulation/uncertainsci.html
(http://bit.ly/uncertainsci)
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UncertainSCI capabilities

sample size. The four key parameters in a power analysis framework are the probability of a false
positive (“alpha”), the sample size, the sample effect, and the statistical power. Typically, three of
these are specified as inputs and the fourth must be determined as output. Practitioners employ
certain types of power analyses to ascertain the cost and trustworthiness of a potentially laborious
and expensive subject experiment.23 Such analyses are enabled by computational packages that
compute statistical power and/or required sample size given summary statistics and/or metrics
about the population and/or data. Power analysis using existing software packages makes simpli-
fying (frequently Gaussian) assumptions regarding population and/or data variability, resulting in a
potentially grossly inaccurate power computation if the population distribution is misspecified.

2.5 Existing software infrastructure

This project focuses on the uncertainty modeling, optimization, and statistical design portions of
neuromodulation and neuroimaging modeling pipelines. For these foci, we will leverage determin-
istic forward models and tools for uncertainty modeling that the investigators have developed in
the past.

FEM simulations: The applications that will be used to develop our framework require FEM
head models and forward simulations. Our team has developed pipelines for each of these applica-
tions in prior work. To construct subject-specific head models, we use a combination of SimNIBS,
SPM, freesurfer, TetGen and iso2mesh, of which co-PI Dr. Fang is the developer. We have mul-
tiple detailed head models available from prior work. Some of these models will be distributed
along with our UBED tool, so that scientists who do not have access to such models can still use
our tools. Simulations of brain stimulation are performed using SCIRun30 and its BrainStimulator
toolkit, which are developed by the Utah team. SCIRun is a highly efficient FEM-based package
developed for bioelectricity simulations, which has been used widely for decades.

DBS algorithms: The best VTA models involve pipelines that combine FEM electric field
modeling, using methods described above, with axonal simulations, typically in NEURON.97 Co-PI
Dorval has experience with most of these algorithms, which yield a closed surface that partitions
the VTA from non-activated tissue, and recently published a comparison of their relative efficacy.98

Figure 6: Example of Uncertain-
SCI results: tCS-induced elec-
tric field strength on brain sur-
face, with standard deviations
(cylinders) due to uncertainty in
skull and CSF conductivities.

fNIRS: The design of complex fNIRS imaging modules (without
accounting for uncertainty) can be accomplished using the open-
source MATLAB toolbox MOCA (Modular Optode Configuration
Analyzer27–29), which is developed by Co-PI Fang’s lab. With an
input of potential module shapes, optode layout, and ROI cover-
age, MOCA can analyze, compare and improve existing modular
probes and create brain-region-specific or full-head fNIRS head-
gears using optical modules. Many of the quantitative probe met-
rics computed by MOCA, such as brain sensitivity, are currently
computed using a Monte Carlo (MC) based photon transport sim-
ulator, MCX (Monte Carlo eXtreme,99 http://mcx.space), which is
also developed by Co-PI Fang. A procedure that accounts for the
uncertainty due to the use of MC methods is highly desired in real-
world fNIRS applications, but is currently unavailable.

Uncertainty quantification: There are few existing simulation
tools that support UQ for biomedical applications in a general and efficient way. The SimNIBS
modeling package contains a tool to calculate uncertainty due to tissue conductivity assumptions

D–8
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Take 5
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Polynomial chaos (PC)

Recall:

P P Rd is a random variable with probability density w

QpP q is a quantity of interest from a forward simulation

QN pP q is an emulator

PC approaches construct the emulator

QpP q « QN pP q :“
N
ÿ

j“1

pqjφjpP q,

The functions φj are multivariate polynomials spanning a particular space.

The coefficients pqj are learned by training:

Intrusive methods: Compute pqj by “opening up”, and possibly manipulating, the
forward solver Q

Non-intrusive methods: Compute pqj using black-box data tppm, QppmquMm“1

We will focus on the non-intrusive case.
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Least squares

Non-intrusive PC construction with least squares: Enforce

Qppmq « QN ppmq ÝÑ Qppmq «
N
ÿ

j“1

pqjφjppmq,

In particular, we do this with least squares:

min
pqj

M
ÿ

m“1

pQppmq ´QN ppmqq
2 .

This is a polynomial fitting problem, though not necessarily a
standard one.

M ě N is necessary to ensure a least squares solution.
x

f

How are the multivariate polynomials φj chosen?

How are the samples pm chosen?
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Polynomial spaces

The multivariate polynomials φj are a basis for a dimension-N polynomial subspace.

The choice of polynomial space identifies QN ’s capacity, complexity, and expressivity.

Large N increases model capacity, but makes training more expensive

For independent parameters, the polynomial basis functions take the form1,

φjppq “
d
ź

q“1

p
λ

pqq
j
q , λj “

´

λ
p1q
j , λ

p2q
j , . . . , λ

pdq
j

¯

P Nd0, Λ “ tλju
N
j“1 .

We denote the polynomial space defined by Λ as V pΛq.

Polynomial index sets Λ are identified by

an order parameter k (similar to polynomial degree)
§ Large k allows elements λ of Λ to be “large” in magnitude
§ Large k can make N large due to interaction terms

a prescription of how much parameters can interact
§ More interaction allows mixed terms pλ

p1q

1 pλ
p2q

2 for “large" λ
§ More interaction terms: more model capacity, more training needed

1For numerical stability we actually use orthonormal polynomials, not monomials.
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Polynomial spaces, cont.

Some d “ 2 examples of order-k interactions between p1 and p2:

“Hyperbolic cross” spaces ΛHC : suppression of interactions

φjppq “ p
λ

p1q
j

1 p
λ

p2q
j

2 , log
´

λ
p1q
j λ

p2q
j

¯

ď logpk ` 1q

“Total degree” spaces ΛTD: quite a few interactions

φjppq “ p
λ

p1q
j

1 p
λ

p2q
j

2 , λ
p1q
j ` λ

p2q
j ď k.

“Tensor product” spaces ΛTP : lots of interactions

φjppq “ p
λ

p1q
j

1 p
λ

p2q
j

2 , λ
p1q
j ď k and λp2qj ď k. 
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CONSTRUCTING LEAST-SQUARES POLYNOMIAL APPROXIMATIONS 491

λ(1)

λ
(2
)

ΛHC(20)

λ(1)

λ
(2
)

ΛTD(20)

λ(1)

λ
(2
)

ΛED(20)

λ(1)

λ
(2
)

ΛTP(20)

Fig. 2 Visual depiction of two-dimensional multi-index sets. Left-to-right: The hyperbolic cross
(HC), total degree (TD), Euclidean degree (ED), and tensor product (TP) spaces of or-
der/degree k = 20. Each multi-index set ⇤ uniquely identifies a polynomial space V (⇤) via
the relation (4.1).

performing discretizations in high-dimensional cases is quite di�cult, for example,
because there is no simple analogue of a multivariate “Gaussian” quadrature rule and
many straightforward attempts at identifying highly accurate quadrature rules result
in computationally infeasible constructions. A tensor-product construction illustrates
the di�culty: if one forms a quadrature grid using m points per dimension, then in d
dimensions this results in M = md points. For moderate values of m and, say, d & 5,
the resulting computational cost (i.e., the number of times f must be evaluated) is
too onerous for practical implementation.

The alternative popular strategy that we investigate in this paper is that of (ran-
domized) discrete least squares. One reason for the popularity of this approach is that
it is particularly simple to explain and implement. A discrete least-squares approx-
imation computes the minimizer gN of a discrete estimator of the norm kf � gNk.
A randomized version of this strategy chooses the discrete estimator for the norm
by randomly sampling points in D. We will see that by intelligently specifying a
sampling distribution for the random draw of samples, we can compute near-optimal
approximations gN with acceptable computational e↵ort.

Suppose that x1, . . . , xM are M sample points in D. We will build an approxi-
mation gN 2 V to f by minimizing the discrete `2 discrepancy between gN and f on
these points, i.e., we define gN via the optimization

gN := argmin
g2V

1

M

MX

m=1

(g(xm) � f(xm))
2
.(5.1)

In this formulation, the only information about f we require is the ensemble of data
{f(xm)}M

m=1. The di↵erence between gN defined in this way, and fN defined in (2.2),
is in the objective function under the argmin. With fN , the objective function is an
L2

w norm, i.e., an integral, whereas for gN it is a discretization of this integral. To
formulate the above as an algorithm, we rewrite it as a linear algebra problem. First
we note that gN 2 V has the form (3.3) for some coe�cients cn; we next prescribe
conditions that the vector c = (c1, . . . , cN )T satisfies. Define an M ⇥N matrix A and
a vector f 2 M with entries

(A)m,n =
1p
M

vn(xm), (f)m =
1p
M

f(xm).(5.2)

The vector c containing expansion coe�cients for gN is defined in (5.1), which is
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Polynomial spaces, cont.

Interactions can substantially increase model capacity Ñ curse of dimensionality.

Index set sizes N for increasing dimension:

pk “ 2q ΛTP ΛTD ΛHC

d “ 1 3 3 3

d “ 2 9 6 3

d “ 5 243 21 4

d “ 8 6,561 45 9

d “ 15 14,348,907 136 16

pk “ 7q ΛTP ΛTD ΛHC

d “ 1 8 8 8

d “ 2 64 36 18

d “ 5 32,768 792 91

d “ 8 16,777,216 6435 245

d “ 15 35,184,372,088,832 170,544 1071

Balancing richness of interactions with computational feasibility is a bit of an art.
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What does UncertainSCI do?
Once polynomial space / index set is chosen:

QpP q « QN pP q :“
N
ÿ

j“1

pqjφjpP q P V pΛq,

UncertainSCI computes coefficients pqj by

solving a weighted least squares problem

using data from a weighted D-optimal design that is optimized by induced measure
sampling

Construct QN by solving

min
QNPV pΛq

M
ÿ

m“1

pQppmq ´QN ppmqq
2 .

How are samples pm chosen? Ideally we want sampling to

work in high dimensions with M „ N

not require independent parameters P

A simple idea is to use random (“Monte Carlo”) sampling from the density w of P :

pm
iid
„ w

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop



What does UncertainSCI do?
Once polynomial space / index set is chosen:

QpP q « QN pP q :“
N
ÿ

j“1

pqjφjpP q P V pΛq,

UncertainSCI computes coefficients pqj by

solving a weighted least squares problem

using data from a weighted D-optimal design that is optimized by induced measure
sampling

Construct QN by solving

min
QNPV pΛq

M
ÿ

m“1

pQppmq ´QN ppmqq
2 .

How are samples pm chosen? Ideally we want sampling to

work in high dimensions with M „ N

not require independent parameters P

A simple idea is to use random (“Monte Carlo”) sampling from the density w of P :

pm
iid
„ w
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How well does random sampling work?
Least squares: N unknowns, M data samples. Approximation with M „ N is optimal.

Near-optimal approximation can be achieved:

Theorem
Fix the distribution of P and Λ. There is a constant C “ CpΛ, wq such that if
M “ C K N logN samples are taken for any K ą 1, then

EP,pm rQN ´Qs
2
À εΛpQq `M

´K{2, εΛpQq :“ inf
RPV pΛq

EP rRpP q ´QpP qs
2 .

The quantity εΛpQq is the best possible emulator from the polynomial space defined by Λ.

The problem: CpΛ, wq can be huge, and it’s easy to construct such an example:
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The induced measure

The problem can be rectified by using weighted least squares ` importance sampling:

Fixing pw,Λq, the induced measure for this pair corresponds to a density ρ given by,

ρppq :“ wppq sup
RPV pΛqzt0u

R2ppq

N EPR2pP q

The density ρ depends on w and Λ.

We now perform weighted least squares: Sample

pm
iid
„ ρ,

and compute

min
QNPV pΛq

M
ÿ

m“1

wppmq

ρppmq
pQppmq ´QN ppmqq

2 .
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Weighted least squares

Theorem
There is an absolute constant c „ 1 such that, for any distribution of P and Λ if
M “ pcKqN logN samples from ρ are taken for any K ą 1, then

EP,pm rQN ´Qs
2
À εΛpQq `M

´K{2, εΛpQq :“ inf
RPV pΛq

EP rRpP q ´QpP qs
2 .

This fixes the problem for essentially any pw,Λq:
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Induced measure sampling
The induced measure ρ can be substantially different from w. 
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Fig. 4 Plots of induced distribution probability density functions ⇢ associated to various densities
w for N = 20, where V is the space of polynomials of degree N � 1 and lower. Also shown
are the N-asymptotic limits ⇢1. Left: w(x) uniform on [�1, 1]2. Middle: w exponential on
the positive real line. Right: w Gaussian on the real line.

Notice that sampling with the Chebyshev density is straightforward. On the other
hand, consider D = Rd with w the Gaussian density as in Example 5.2. The authors
in [45] conjecture that the asymptotic density is of the form

lim
k!1

⇢(x/
p

k) = C
⇥
2 � kxk2

2

⇤d/2
,(8.1)

where C is a normalizing constant so that the limit is a probability density. Notice
that under the limit we require the input to ⇢ to be scaled by 1/

p
k. E�cient sampling

schemes with the above density can be found in [45]. These examples demonstrate that
k-asymptotic sampling strategies can be characterized, but that they are sometimes
not obvious.

The characterization of k-asymptotic univariate induced densities hinges on the
notion of equilibrium measures from weighted potential theory [49]. A similar notion
of equilibrium measures in the multivariate case can be formulated through weighted
pluripotential theory [35, 5]. The authors in [45] use this connection to formulate the
asymptotic results above and to propose a least-squares sampling strategy based on
equilibrium measures. While the strategy is only k-asymptotically optimal, it utilizes
sampling from only standard distributions for a very wide variety of densities w. This
may be advantageous in applications, such as in adaptive approximation schemes
where the polynomial space is adaptively constructed. Another application is in the
so-called data-driven approach, where w is unknown except for perhaps its support,
and moments are approximated from an available database of samples from w [48, 24].

8.1. Sampling Scheme for the Induced Distribution. A final point that merits
discussion in this section is the task of sampling from ⇢ in (7.3). While sampling from
general multivariate probability densities is computationally onerous, the formula
(7.3) is an additive mixture of tensor-product densities, and so can easily be sampled
with linear complexity in the dimension d. More discussion on this topic is provided
in [16, 42], with software implementing this sampling provided in [41].

Some induced densities are compared in two dimensions in Figure 5 for w a
Gaussian density on 2 for k = 8. Again we see that w di↵ers substantially from
each induced distribution, but in addition we see that, e.g., the Euclidean degree and
hyperbolic cross induced distributions also di↵er substantially.
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Fig. 5 Contour plots of induced distribution probability density functions ⇢ associated to the density
w(x) = exp(�kxk2

2)/⇡ for x 2 2, with V a space of degree k = 8. We show results for
the induced densities associated to total degree (TD), Euclidean degree (ED), tensor product
(TP), and hyperbolic cross (HC) spaces. Also shown is a conjectured density ⇢1 for the
large-k total-degree limiting density.

Example 8.1. We consider approximations in the space L2
w with w = exp(�kxk2

2)/
⇡d/2 for x 2 d. Our test function will itself be a Gaussian bump,

f(x) =
dY

j=1

exp

✓h
x(j)

i2

/j

◆
, x =

⇣
x(1), x(2), . . . , x(d)

⌘
.

We have intentionally chosen a test function f that is of product form so that we
can easily compute best approximations fN in high dimensions. We will test approx-
imations from the space V (⇤) with ⇤ = ⇤HC(k). We investigate three di↵erent pairs
(d, k):

(d, k) = (4, 20), (8, 10), (20, 5).

For each test, we compute the relative error metrics ⌘N defined in (3.4) using a
least-squares approximation gN built (a) from “standard” i.i.d. samples from w using
unweighted least squares, and (b) from induced distribution samples from ⇢ using
weighted least squares. The results are shown in Figure 6, illustrating that induced
distribution sampling outperforms standard sampling consistently, but the advantage
diminishes for large dimension. The reason for this diminishing advantage is that the
space V (⇤) for smaller values of k (i.e., larger values of d) has low-degree polynomials,
and in this case the induced distribution density ⇢ defined in (7.3) is close to w.
Nevertheless, one observes that the qualitative accuracy behavior of gN using weighted
least squares with the induced distribution is essentially unchanged as the dimension
d increases, which is the expected behavior given Theorems 6.1 and 7.2.
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Optimizing sampling design

To enhance stability: optimize a least squares design using a type of D-optimal design.

The samples we generate (approximately) solve the optimization problem,

arg max
p1,...,pM

det
´

rV
T
rV
¯

, p rV qm,j “
φjppmq

řN
`“1 φ

2
` ppmq

We solve this problem using candidate points from induced measure pρq sampling.

ùñ random ensemble tpmuMm“1, but not iid samples.
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Sample designs
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In summary

UnceratainSCI performs forward UQ analysis,

using PC emulators built by linear methods

by non-intrusively sampling a provided forward model

by sampling according to the induced distribution and a (weighted) D-optimal design

through an emulator built by least squares

Parameters p1, . . . , pd
Probability density w
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Fig. 2 Visual depiction of two-dimensional multi-index sets. Left-to-right: The hyperbolic cross
(HC), total degree (TD), Euclidean degree (ED), and tensor product (TP) spaces of or-
der/degree k = 20. Each multi-index set ⇤ uniquely identifies a polynomial space V (⇤) via
the relation (4.1).

performing discretizations in high-dimensional cases is quite di�cult, for example,
because there is no simple analogue of a multivariate “Gaussian” quadrature rule and
many straightforward attempts at identifying highly accurate quadrature rules result
in computationally infeasible constructions. A tensor-product construction illustrates
the di�culty: if one forms a quadrature grid using m points per dimension, then in d
dimensions this results in M = md points. For moderate values of m and, say, d & 5,
the resulting computational cost (i.e., the number of times f must be evaluated) is
too onerous for practical implementation.

The alternative popular strategy that we investigate in this paper is that of (ran-
domized) discrete least squares. One reason for the popularity of this approach is that
it is particularly simple to explain and implement. A discrete least-squares approx-
imation computes the minimizer gN of a discrete estimator of the norm kf � gNk.
A randomized version of this strategy chooses the discrete estimator for the norm
by randomly sampling points in D. We will see that by intelligently specifying a
sampling distribution for the random draw of samples, we can compute near-optimal
approximations gN with acceptable computational e↵ort.

Suppose that x1, . . . , xM are M sample points in D. We will build an approxi-
mation gN 2 V to f by minimizing the discrete `2 discrepancy between gN and f on
these points, i.e., we define gN via the optimization

gN := argmin
g2V

1

M

MX

m=1

(g(xm) � f(xm))
2
.(5.1)

In this formulation, the only information about f we require is the ensemble of data
{f(xm)}M

m=1. The di↵erence between gN defined in this way, and fN defined in (2.2),
is in the objective function under the argmin. With fN , the objective function is an
L2

w norm, i.e., an integral, whereas for gN it is a discretization of this integral. To
formulate the above as an algorithm, we rewrite it as a linear algebra problem. First
we note that gN 2 V has the form (3.3) for some coe�cients cn; we next prescribe
conditions that the vector c = (c1, . . . , cN )T satisfies. Define an M ⇥N matrix A and
a vector f 2 M with entries

(A)m,n =
1p
M

vn(xm), (f)m =
1p
M

f(xm).(5.2)

The vector c containing expansion coe�cients for gN is defined in (5.1), which is
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Index set Λ

Forward model
p↦ Q(p)

⋰
Emulator QN

Statistics

Sensitivities

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop



Moving forward

UncertainSCI: a novel Python framework for non-intrusive emulator-based forward UQ.

non-tensorial densities w

adaptive selection of index sets Λ

positive multidimensional stochastic quadrature

inverse problems, inference, design, and optimization

https://www.sci.utah.edu/cibc-software/uncertainsci.html

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop

https://www.sci.utah.edu/cibc-software/uncertainsci.html

