UQ Workshop and UncertainSCI software

Jake Bergquist^{1,3} Dana Brooks⁴ Chantel Charlebois^{1,3} Zexin Liu^{2,3} Rob MacLeod^{1,3} Akil Narayan^{2,3} Sumientra Rampersad⁴ Lindsay Rupp^{1,3} Jess Tate³ Dan White ³

> ¹Department of Biomedical Engineering University of Utah

> > ²Department of Mathematics University of Utah

³Scientific Computing and Imaging (SCI) Institute, University of Utah

> ⁴Electrical and Computer Engineering, Northeastern University

June 25, 2021 FIMH 2021 Supported by NIH U24-EB029012

Workshop team

Software: https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta Github discussion: https://github.com/SCIInstitute/UncertainSCI/discussions/82 Discord discussion: https://discord.com/invite/MGEVK6K5

Workshop goals

This workshop has two parts that explore two complementary themes.

Modeling parametric uncertainty

- UQ goals and desiderata
- Parametric uncertainty
- Polynomial Chaos

UQ in practice with UncertainSCI

- UncertainSCI software
- Cardiac bioelectricity use cases and applications
- Neuromodulation examples

Workshop agenda

Workshop overview, all times MT:

9:00 - 9:30 9:30 - 10:00 10:00 - 10:30	Overview and UQ introduction Mathematics of polynomial Chaos UncertainSCI software	Akil Narayan Akil Narayan Jess Tate, Jake Bergquist
10:30 - 11:00	Break	
11:00 - 11:30 11:30 - 12:00 12:00 - 12:30	Cardiac bioelectricity use case Neuromodulation use case Breakout sessions	Jess Tate Sumientra Rampersad

Simulation models

Computational simulations are subject to parametric uncertainties,

- conductivities
- heart location, geometry
- and also model uncertainties,
 - model misspecification
 - simplified mathematical equations
 - computational/discretization error

Parametric uncertainty can typically be modeled and interpreted meaningfully.

Model uncertainty: problem-specific and more nebulous

Uncertainty in models

Parametric uncertainty requires modeling

- probability densities for scalars
- parameterized geometry

Output quantities of interest Q depend on parameterized uncertainty.

Uncertainty quantification

With a model of stochasticity, there can be several goals for UQ:

- Forward propagation of uncertainty
 - statistics of quantities of interest
 - sensitivity analysis
 - parameter screening or reduction
- Parameter estimation (typically with data)
 - inverse/inference problem built on forward simulations
 - identification of experimentally unobservable quantities
- Design and performance optimization
 - outer-loop optimization on design variables
 - computation of designs that are robust to uncertainty

There are 3 ingredients required to set up any of these UQ problems:

- $\bullet\,$ Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

There are 3 ingredients required to set up any of these UQ problems:

- \bullet Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

What is uncertain in my model? How can I parameterize this uncertainty?

- Finite-dimensional parameters (bidomain conductivities)
- Stochastic fields (conductivity fields)
- Geometric uncertainty (cohort shape variability)

These can all be meaningfully modeled as a *finite-dimensional* parameter $P \in \mathbb{R}^d$.

Underparameterization (small d) can yield a poor model of uncertainty.

Overparameterization (large d) makes it difficult to explore uncertainty.

Cf. use cases later today!

There are 3 ingredients required to set up any of these UQ problems:

- $\bullet\,$ Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

What kinds of values are reasonable for $P = (P_1, \ldots, P_d)$ to take?

Are some parameters coupled? Is P_j independent of P_k ?

A quantifiable way to describe these considerations is through probabilistic modeling: Let $w : \mathbb{R}^d \to [0, \infty)$ be a probability density function for P. This in particular defines the range of values that P can take (the support of w).

A common assumption is that all parameters are independent. In this case,

$$w(p) = w_1(p_1) \cdots w_d(p_d), \qquad p \in \mathbb{R}^d.$$

This results in substantial simplification of algorithms.

There are 3 ingredients required to set up any of these UQ problems:

- Identification of parameters ${\cal P}$
- Probabilistic modeling (specifying a distribution) for ${\cal P}$
- Definition of an output quantity of interest

For each fixed parameter value a forward simulation yields an output quantity of interest:

$$P \xrightarrow{\text{Forward simulation}} u(P) \xrightarrow{\text{Restriction, averaging, etc}} Q(u(P))$$

For exmaple, u(P) can be the output of a(n expensive!) PDE forward model for bioelectric propagation.

Q represents a summarized output (e.g., localized epicardial potential)

In forward UQ analysis, we seek to understand the map $P \mapsto Q(u(P))$.

Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.

 $Q(P) \approx Q_N(P)$

 Q_N is a trained computational emulator that is efficient and ideally accurate.

Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.

 $Q(P) \approx Q_N(P)$

 Q_N is a trained computational emulator that is efficient and ideally accurate.

There are two (frequently) overlapping strategies:

• linear methods: simple, direct, well-understood accuracy

$$Q_N(P) = \sum_{j=1}^N \hat{q}_j \phi_j(P),$$

where ϕ_i are prescribed functions.

- Stochastic finite element methods
- some Polynomial chaos (PC) methods
- nonlinear methods: more expressive, but also more "finicky" and opaque
 - other Polynomial chaos methods
 - Gaussian processes
 - Neural networks

In UncertainSCI we use linear PC emulators.

Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q_N :

- Median, quantiles, confidence intervals
- Statistics (mean, variance, etc.)
- Partial variances: let T denote a subset of $\{1, \ldots, d\}$
 - Global variance: $\operatorname{var}_T(Q_N) = \operatorname{var}(\mathbb{E}[Q_N(P) \mid P_T])$ Measures the variance due to "genuine" interactions among variables in subset P_T .
 - ► Total variance: var^{tot}_T(Q_N) = ∑_{U⊂T} var_U(Q_N) Measures the variance due to variable subset P_T.

Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q_N :

- Median, quantiles, confidence intervals
- Statistics (mean, variance, etc.)
- Partial variances: let T denote a subset of $\{1, \ldots, d\}$
 - Global variance: $\operatorname{var}_T(Q_N) = \operatorname{var}(\mathbb{E}[Q_N(P) \mid P_T])$ Measures the variance due to "genuine" interactions among variables in subset P_T .
 - ▶ Total variance: $\operatorname{var}_{T}^{\operatorname{tot}}(Q_N) = \sum_{U \subset T} \operatorname{var}_{U}(Q_N)$ Measures the variance due to variable subset P_T .
- Sensitivities
 - ▶ Global sensitivities: $S_T = \frac{\operatorname{var}_T(Q_N)}{\operatorname{var}(Q_N)} \leq 1$ Measures the relative importance of "genuine" interactions in variable subset P_T .
 - ▶ Total sensitivities: $S_T^{\text{tot}} = \frac{\operatorname{var}_T^{\text{tot}}(Q_N)}{\operatorname{var}(Q_N)} \leq 1$ Measures the relative importance of variable subset P_T .

Note: these are approximations since $Q_N \approx Q$.

Summary

To model forward uncertainty with emulators, we require

- ullet identification of a $d\mbox{-dimensional random parameter}\ P$
- ullet modeling of likely values of P through a density w
- definition of a forward simulation output, a quantity of interest Q(P)

UncertainSCI

The software package we have built and use: UncertainSCI

- open-source Python software
- forward UQ analysis
- polynomial Chaos-based

https://www.sci.utah.edu/sci-software/simulation/uncertainsci.html
(http://bit.ly/uncertainsci)

UncertainSCI capabilities

FIMH UQ Workshop

Take 5

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^d$ is a random variable with probability density w
- $\bullet \ Q(P)$ is a quantity of interest from a forward simulation
- $Q_N(P)$ is an emulator

PC approaches construct the emulator

$$Q(P) \approx Q_N(P) \coloneqq \sum_{j=1}^N \hat{q}_j \phi_j(P),$$

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^d$ is a random variable with probability density w
- Q(P) is a quantity of interest from a forward simulation
- $Q_N(P)$ is an emulator

PC approaches construct the emulator

$$Q(P) \approx Q_N(P) \coloneqq \sum_{j=1}^N \hat{q}_j \phi_j(P),$$

The functions ϕ_j are multivariate polynomials spanning a particular space.

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^d$ is a random variable with probability density w
- Q(P) is a quantity of interest from a forward simulation
- $Q_N(P)$ is an emulator

PC approaches construct the emulator

$$Q(P) \approx Q_N(P) \coloneqq \sum_{j=1}^N \hat{q}_j \phi_j(P),$$

The functions ϕ_j are multivariate polynomials spanning a particular space.

The coefficients \hat{q}_j are learned by training:

- \bullet Intrusive methods: Compute \hat{q}_j by "opening up", and possibly manipulating, the forward solver Q
- Non-intrusive methods: Compute \hat{q}_j using black-box data $\{(p_m, Q(p_m)\}_{m=1}^M$

We will focus on the non-intrusive case.

Least squares

Non-intrusive PC construction with least squares: Enforce

$$Q(p_m) \approx Q_N(p_m) \longrightarrow Q(p_m) \approx \sum_{j=1}^N \hat{q}_j \phi_j(p_m),$$

In particular, we do this with least squares:

$$\min_{\hat{q}_j} \sum_{m=1}^M \left(Q(p_m) - Q_N(p_m) \right)^2.$$

This is a polynomial fitting problem, though not necessarily a standard one.

 $M \ge N$ is necessary to ensure a least squares solution.

- How are the multivariate polynomials ϕ_j chosen?
- How are the samples p_m chosen?

Polynomial spaces

The multivariate polynomials ϕ_j are a basis for a dimension-N polynomial subspace.

The choice of polynomial space identifies Q_N 's capacity, complexity, and expressivity.

Large N increases model capacity, but makes training more expensive For independent parameters, the polynomial basis functions take the form¹,

$$\phi_j(p) = \prod_{q=1}^d p_q^{\lambda_j^{(q)}}, \qquad \lambda_j = \left(\lambda_j^{(1)}, \lambda_j^{(2)}, \dots, \lambda_j^{(d)}\right) \in \mathbb{N}_0^d, \qquad \Lambda = \{\lambda_j\}_{j=1}^N.$$

We denote the polynomial space defined by Λ as $V(\Lambda)$.

¹For numerical stability we actually use orthonormal polynomials, not monomials.

Polynomial spaces

The multivariate polynomials ϕ_j are a basis for a dimension-N polynomial subspace.

The choice of polynomial space identifies Q_N 's capacity, complexity, and expressivity.

Large N increases model capacity, but makes training more expensive

For independent parameters, the polynomial basis functions take the form¹,

$$\phi_j(p) = \prod_{q=1}^d p_q^{\lambda_j^{(q)}}, \qquad \lambda_j = \left(\lambda_j^{(1)}, \lambda_j^{(2)}, \dots, \lambda_j^{(d)}\right) \in \mathbb{N}_0^d, \qquad \Lambda = \left\{\lambda_j\right\}_{j=1}^N.$$

We denote the polynomial space defined by Λ as $V(\Lambda)$.

Polynomial index sets Λ are identified by

- an order parameter k (similar to polynomial degree)
 - Large k allows elements λ of Λ to be "large" in magnitude
 - \blacktriangleright Large k can make N large due to interaction terms
- a prescription of how much parameters can interact
 - More interaction allows mixed terms $p_1^{\lambda^{(1)}} p_2^{\lambda^{(2)}}$ for "large" λ
 - More interaction terms: more model capacity, more training needed

UncertainSCI Team (Northeastern U. & U. Utah)

¹For numerical stability we actually use orthonormal polynomials, not monomials.

Polynomial spaces, cont.

Some d = 2 examples of order-k interactions between p_1 and p_2 :

• "Hyperbolic cross" spaces Λ_{HC} : suppression of interactions

$$\phi_j(p) = p_1^{\lambda_j^{(1)}} p_2^{\lambda_j^{(2)}}, \qquad \qquad \log\left(\lambda_j^{(1)} \lambda_j^{(2)}\right) \leqslant \log(k+1)$$

• "Total degree" spaces Λ_{TD} : quite a few interactions

$$\phi_j(p) = p_1^{\lambda_j^{(1)}} p_2^{\lambda_j^{(2)}}, \qquad \qquad \lambda_j^{(1)} + \lambda_j^{(2)} \leqslant k.$$

• "Tensor product" spaces Λ_{TP} : lots of interactions

$$\phi_j(p) = p_1^{\lambda_j^{(1)}} p_2^{\lambda_j^{(2)}}, \qquad \qquad \lambda_j^{(1)} \leqslant k \text{ and } \lambda_j^{(2)} \leqslant k.$$

Polynomial spaces, cont.

Interactions can substantially increase model capacity \rightarrow curse of dimensionality.

(k = 2)	Λ_{TP}	Λ_{TD}	$\Lambda_{\rm HC}$
d = 1	3	3	3
d = 2	9	6	3
d = 5	243	21	4
d = 8	6,561	45	9
d = 15	14,348,907	136	16

Index set sizes N for increasing dimension:

Balancing richness of interactions with computational feasibility is a bit of an art.

Polynomial spaces, cont.

Interactions can substantially increase model capacity \rightarrow curse of dimensionality.

(k = 2)	Λ_{TP}	$\Lambda_{\rm TD}$	$\Lambda_{\rm HC}$	(k = 7)	Λ_{TP}	$\Lambda_{\rm TD}$	$\Lambda_{\rm HC}$
d = 1	3	3	3	d = 1	8	8	8
d = 2	9	6	3	d = 2	64	36	18
d = 5	243	21	4	d = 5	32,768	792	91
d = 8	6,561	45	9	d = 8	16,777,216	6435	245
d = 15	14,348,907	136	16	d = 15	35,184,372,088,832	170,544	1071

Index set sizes N for increasing dimension:

Balancing richness of interactions with computational feasibility is a bit of an art.

What does UncertainSCI do?

Once polynomial space / index set is chosen:

$$Q(P) \approx Q_N(P) \coloneqq \sum_{j=1}^N \hat{q}_j \phi_j(P) \in V(\Lambda),$$

UncertainSCI computes coefficients \widehat{q}_j by

- solving a weighted least squares problem
- $\bullet\,$ using data from a weighted D-optimal design that is optimized by induced measure sampling

What does UncertainSCI do?

Once polynomial space / index set is chosen:

$$Q(P) \approx Q_N(P) \coloneqq \sum_{j=1}^N \hat{q}_j \phi_j(P) \in V(\Lambda),$$

UncertainSCI computes coefficients \widehat{q}_j by

- solving a weighted least squares problem
- using data from a weighted *D*-optimal design that is optimized by induced measure sampling

Construct Q_N by solving

$$\min_{Q_N \in V(\Lambda)} \sum_{m=1}^M \left(Q(p_m) - Q_N(p_m) \right)^2.$$

How are samples p_m chosen? Ideally we want sampling to

- work in high dimensions with $M \sim N$
- not require independent parameters P

A simple idea is to use random ("Monte Carlo") sampling from the density w of P:

$$p_m \stackrel{\text{iid}}{\sim} w$$

How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with $M \sim N$ is optimal.

Near-optimal approximation can be achieved:

Theorem

Fix the distribution of P and Λ . There is a constant $C = C(\Lambda, w)$ such that if $M = C \ K \ N \log N$ samples are taken for any K > 1, then

$$\mathbb{E}_{P,p_m} \left[Q_N - Q \right]^2 \lesssim \epsilon_{\Lambda}(Q) + M^{-K/2}, \quad \epsilon_{\Lambda}(Q) \coloneqq \inf_{R \in V(\Lambda)} \mathbb{E}_P \left[R(P) - Q(P) \right]^2.$$

The quantity $\epsilon_{\Lambda}(Q)$ is the best possible emulator from the polynomial space defined by Λ .

How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with $M \sim N$ is optimal.

Near-optimal approximation can be achieved:

Theorem

Fix the distribution of P and Λ . There is a constant $C = C(\Lambda, w)$ such that if $M = C \ K \ N \log N$ samples are taken for any K > 1, then

$$\mathbb{E}_{P,p_m} \left[Q_N - Q \right]^2 \lesssim \epsilon_{\Lambda}(Q) + M^{-K/2}, \quad \epsilon_{\Lambda}(Q) \coloneqq \inf_{R \in V(\Lambda)} \mathbb{E}_P \left[R(P) - Q(P) \right]^2.$$

The quantity $\epsilon_{\Lambda}(Q)$ is the best possible emulator from the polynomial space defined by Λ . The problem: $C(\Lambda, w)$ can be huge, and it's easy to construct such an example:

The induced measure

The problem can be rectified by using weighted least squares + importance sampling: Fixing (w, Λ) , the *induced measure* for this pair corresponds to a density ρ given by,

$$\rho(p) \coloneqq w(p) \sup_{R \in V(\Lambda) \setminus \{0\}} \frac{R^2(p)}{N \mathbb{E}_P R^2(P)}$$

The density ρ depends on w and Λ .

The induced measure

The problem can be rectified by using weighted least squares + importance sampling: Fixing (w, Λ) , the *induced measure* for this pair corresponds to a density ρ given by,

$$\rho(p) \coloneqq w(p) \sup_{R \in V(\Lambda) \setminus \{0\}} \frac{R^2(p)}{N \mathbb{E}_P R^2(P)}$$

The density ρ depends on w and Λ .

We now perform weighted least squares: Sample

$$p_m \stackrel{\text{iid}}{\sim} \rho_s$$

and compute

$$\min_{Q_N \in V(\Lambda)} \sum_{m=1}^M \frac{w(p_m)}{\rho(p_m)} \left(Q(p_m) - Q_N(p_m)\right)^2.$$

Weighted least squares

Theorem

There is an <u>absolute</u> constant $c \sim 1$ such that, for any distribution of P and Λ if $M = (cK)N \log N$ samples from ρ are taken for any K > 1, then

$$\mathbb{E}_{P,p_m} \left[Q_N - Q \right]^2 \lesssim \epsilon_{\Lambda}(Q) + M^{-K/2}, \quad \epsilon_{\Lambda}(Q) \coloneqq \inf_{R \in V(\Lambda)} \mathbb{E}_P \left[R(P) - Q(P) \right]^2.$$

Weighted least squares

Theorem

There is an <u>absolute</u> constant $c \sim 1$ such that, for any distribution of P and Λ if $M = (cK)N \log N$ samples from ρ are taken for any K > 1, then

$$\mathbb{E}_{P,p_m} \left[Q_N - Q \right]^2 \lesssim \epsilon_{\Lambda}(Q) + M^{-K/2}, \quad \epsilon_{\Lambda}(Q) \coloneqq \inf_{R \in V(\Lambda)} \mathbb{E}_P \left[R(P) - Q(P) \right]^2.$$

This fixes the problem for essentially any (w, Λ) :

Induced measure sampling

The induced measure ρ can be substantially different from w.

UncertainSCI Team (Northeastern U. & U. Utah)

FIMH UQ Workshop

Optimizing sampling design

To enhance stability: optimize a least squares design using a type of D-optimal design.

The samples we generate (approximately) solve the optimization problem,

$$\arg\max_{p_1,\dots,p_M} \det\left(\tilde{\boldsymbol{V}}^T \tilde{\boldsymbol{V}}\right), \qquad \qquad (\tilde{\boldsymbol{V}})_{m,j} = \frac{\phi_j(p_m)}{\sum_{\ell=1}^N \phi_\ell^2(p_m)}$$

We solve this problem using candidate points from induced measure (ρ) sampling. \implies random ensemble $\{p_m\}_{m=1}^M$, but not iid samples.

Sample designs

Beta (2,2) density

In summary

UnceratainSCI performs forward UQ analysis,

- using PC emulators built by linear methods
- by non-intrusively sampling a provided forward model
- by sampling according to the induced distribution and a (weighted) D-optimal design
- through an emulator built by least squares

Moving forward

UncertainSCI: a novel Python framework for non-intrusive emulator-based forward UQ.

- ullet non-tensorial densities w
- $\bullet\,$ adaptive selection of index sets $\Lambda\,$
- positive multidimensional stochastic quadrature
- inverse problems, inference, design, and optimization

https://www.sci.utah.edu/cibc-software/uncertainsci.html