UQ Workshop and UncertainSCI software

Jake Bergquist ${ }^{1,3}$ Dana Brooks ${ }^{4}$ Chantel Charlebois ${ }^{1,3}$ Zexin Liu ${ }^{2,3}$ Rob MacLeod ${ }^{1,3}$ Akil Narayan ${ }^{2,3}$ Sumientra Rampersad ${ }^{4}$ Lindsay Rupp ${ }^{1,3}$ Jess Tate ${ }^{3}$ Dan White ${ }^{3}$
${ }^{1}$ Department of Biomedical Engineering
University of Utah
${ }^{2}$ Department of Mathematics
University of Utah
${ }^{3}$ Scientific Computing and Imaging (SCI) Institute, University of Utah
${ }^{4}$ Electrical and Computer Engineering, Northeastern University

June 25, 2021
FIMH 2021
Supported by NIH U24-EB029012

Workshop team

Software: https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta
Github discussion: https://github.com/SCIInstitute/UncertainSCI/discussions/82
Discord discussion: https://discord.com/invite/MGEVK6K5

Workshop goals

This workshop has two parts that explore two complementary themes.
Modeling parametric uncertainty

- UQ goals and desiderata
- Parametric uncertainty
- Polynomial Chaos

UQ in practice with UncertainSCI

- UncertainSCI software
- Cardiac bioelectricity use cases and applications
- Neuromodulation examples

Workshop agenda

Workshop overview, all times MT:

9:00-9:30	Overview and UQ introduction	Akil Narayan
9:30-10:00	Mathematics of polynomial Chaos	Akil Narayan
10:00-10:30	UncertainSCI software	Jess Tate, Jake Bergquist
10:30-11:00	Break	
11:00-11:30	Cardiac bioelectricity use case	Jess Tate
11:30-12:00	Neuromodulation use case	Sumientra Rampersad
12:00-12:30	Breakout sessions	

Simulation models

Computational simulations are subject to parametric uncertainties,

- conductivities
- heart location, geometry
and also model uncertainties,
- model misspecification
- simplified mathematical equations
- computational/discretization error

Parametric uncertainty can typically be modeled and interpreted meaningfully.

Model uncertainty: problem-specific and more nebulous

Uncertainty in models

Parametric uncertainty requires modeling

- probability densities for scalars
- parameterized geometry

Output quantities of interest Q depend on parameterized uncertainty.

Uncertainty quantification

With a model of stochasticity, there can be several goals for UQ:

- Forward propagation of uncertainty
- statistics of quantities of interest
- sensitivity analysis
- parameter screening or reduction
- Parameter estimation (typically with data)
- inverse/inference problem built on forward simulations
- identification of experimentally unobservable quantities
- Design and performance optimization
- outer-loop optimization on design variables
- computation of designs that are robust to uncertainty

UQ setup

There are 3 ingredients required to set up any of these UQ problems:

- Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

UQ setup

There are 3 ingredients required to set up any of these UQ problems:

- Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

What is uncertain in my model? How can I parameterize this uncertainty?

- Finite-dimensional parameters (bidomain conductivities)
- Stochastic fields (conductivity fields)
- Geometric uncertainty (cohort shape variability)

These can all be meaningfully modeled as a finite-dimensional parameter $P \in \mathbb{R}^{d}$.
Underparameterization (small d) can yield a poor model of uncertainty.
Overparameterization (large d) makes it difficult to explore uncertainty.
Cf. use cases later today!

UQ setup

There are 3 ingredients required to set up any of these UQ problems:

- Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

What kinds of values are reasonable for $P=\left(P_{1}, \ldots, P_{d}\right)$ to take?
Are some parameters coupled? Is P_{j} independent of P_{k} ?
A quantifiable way to describe these considerations is through probabilistic modeling:
Let $w: \mathbb{R}^{d} \rightarrow[0, \infty)$ be a probability density function for P.
This in particular defines the range of values that P can take (the support of w).
A common assumption is that all parameters are independent. In this case,

$$
w(p)=w_{1}\left(p_{1}\right) \cdots w_{d}\left(p_{d}\right), \quad p \in \mathbb{R}^{d}
$$

This results in substantial simplification of algorithms.

UQ setup

There are 3 ingredients required to set up any of these UQ problems:

- Identification of parameters P
- Probabilistic modeling (specifying a distribution) for P
- Definition of an output quantity of interest

For each fixed parameter value a forward simulation yields an output quantity of interest:

$$
P \xrightarrow{\text { Forward simulation }} u(P) \xrightarrow{\text { Restriction, averaging, etc }} Q(u(P))
$$

For exmaple, $u(P)$ can be the output of a(n expensive!) PDE forward model for bioelectric propagation.
Q represents a summarized output (e.g., localized epicardial potential)
In forward UQ analysis, we seek to understand the map $P \mapsto Q(u(P))$.

Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.

$$
Q(P) \approx Q_{N}(P)
$$

Q_{N} is a trained computational emulator that is efficient and ideally accurate.

Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.

$$
Q(P) \approx Q_{N}(P)
$$

Q_{N} is a trained computational emulator that is efficient and ideally accurate.
There are two (frequently) overlapping strategies:

- linear methods: simple, direct, well-understood accuracy

$$
Q_{N}(P)=\sum_{j=1}^{N} \widehat{q}_{j} \phi_{j}(P)
$$

where ϕ_{j} are prescribed functions.

- Stochastic finite element methods
- some Polynomial chaos (PC) methods
- nonlinear methods: more expressive, but also more "finicky" and opaque
- other Polynomial chaos methods
- Gaussian processes
- Neural networks

In UncertainSCI we use linear PC emulators.

Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q_{N} :

- Median, quantiles, confidence intervals
- Statistics (mean, variance, etc.)
- Partial variances: let T denote a subset of $\{1, \ldots, d\}$
- Global variance: $\operatorname{var}_{T}\left(Q_{N}\right)=\operatorname{var}\left(\mathbb{E}\left[Q_{N}(P) \mid P_{T}\right]\right)$ Measures the variance due to "genuine" interactions among variables in subset P_{T}.
- Total variance: $\operatorname{var}_{T}^{\text {tot }}\left(Q_{N}\right)=\sum_{U \subset T} \operatorname{var}_{U}\left(Q_{N}\right)$ Measures the variance due to variable subset P_{T}.

Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q_{N} :

- Median, quantiles, confidence intervals
- Statistics (mean, variance, etc.)
- Partial variances: let T denote a subset of $\{1, \ldots, d\}$
- Global variance: $\operatorname{var}_{T}\left(Q_{N}\right)=\operatorname{var}\left(\mathbb{E}\left[Q_{N}(P) \mid P_{T}\right]\right)$

Measures the variance due to "genuine" interactions among variables in subset P_{T}.

- Total variance: $\operatorname{var}_{T}^{\text {tot }}\left(Q_{N}\right)=\sum_{U \subset T} \operatorname{var}_{U}\left(Q_{N}\right)$

Measures the variance due to variable subset P_{T}.

- Sensitivities
- Global sensitivities: $S_{T}=\frac{\operatorname{var}_{T}\left(Q_{N}\right)}{\operatorname{var}\left(Q_{N}\right)} \leqslant 1$

Measures the relative importance of "genuine" interactions in variable subset P_{T}.

- Total sensitivities: $S_{T}^{\text {tot }}=\frac{\operatorname{var}_{T}^{\text {tot }}\left(Q_{N}\right)}{\operatorname{var}\left(Q_{N}\right)} \leqslant 1$

Measures the relative importance of variable subset P_{T}.

Note: these are approximations since $Q_{N} \approx Q$.

Summary

To model forward uncertainty with emulators, we require

- identification of a d-dimensional random parameter P
- modeling of likely values of P through a density w
- definition of a forward simulation output, a quantity of interest $Q(P)$

UncertainSCI

The software package we have built and use: UncertainSCI

- open-source Python software
- forward UQ analysis
- polynomial Chaos-based
https://www.sci.utah.edu/sci-software/simulation/uncertainsci.html (http://bit.ly/uncertainsci)

UncertainSCI capabilities

Take 5

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^{d}$ is a random variable with probability density w
- $Q(P)$ is a quantity of interest from a forward simulation
- $Q_{N}(P)$ is an emulator

PC approaches construct the emulator

$$
Q(P) \approx Q_{N}(P):=\sum_{j=1}^{N} \hat{q}_{j} \phi_{j}(P),
$$

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^{d}$ is a random variable with probability density w
- $Q(P)$ is a quantity of interest from a forward simulation
- $Q_{N}(P)$ is an emulator

PC approaches construct the emulator

$$
Q(P) \approx Q_{N}(P):=\sum_{j=1}^{N} \widehat{q}_{j} \phi_{j}(P),
$$

The functions ϕ_{j} are multivariate polynomials spanning a particular space.

Polynomial chaos (PC)

Recall:

- $P \in \mathbb{R}^{d}$ is a random variable with probability density w
- $Q(P)$ is a quantity of interest from a forward simulation
- $Q_{N}(P)$ is an emulator

PC approaches construct the emulator

$$
Q(P) \approx Q_{N}(P):=\sum_{j=1}^{N} \widehat{q}_{j} \phi_{j}(P),
$$

The functions ϕ_{j} are multivariate polynomials spanning a particular space.
The coefficients \hat{q}_{j} are learned by training:

- Intrusive methods: Compute \hat{q}_{j} by "opening up", and possibly manipulating, the forward solver Q
- Non-intrusive methods: Compute \hat{q}_{j} using black-box data $\left\{\left(p_{m}, Q\left(p_{m}\right)\right\}_{m=1}^{M}\right.$

We will focus on the non-intrusive case.

Least squares

Non-intrusive PC construction with least squares: Enforce

$$
Q\left(p_{m}\right) \approx Q_{N}\left(p_{m}\right) \quad \longrightarrow \quad Q\left(p_{m}\right) \approx \sum_{j=1}^{N} \hat{q}_{j} \phi_{j}\left(p_{m}\right)
$$

In particular, we do this with least squares:

$$
\min _{\hat{q}_{j}} \sum_{m=1}^{M}\left(Q\left(p_{m}\right)-Q_{N}\left(p_{m}\right)\right)^{2}
$$

This is a polynomial fitting problem, though not necessarily a standard one.

$M \geqslant N$ is necessary to ensure a least squares solution.

- How are the multivariate polynomials ϕ_{j} chosen?
- How are the samples p_{m} chosen?

Polynomial spaces

The multivariate polynomials ϕ_{j} are a basis for a dimension $-N$ polynomial subspace.
The choice of polynomial space identifies Q_{N} 's capacity, complexity, and expressivity.
Large N increases model capacity, but makes training more expensive
For independent parameters, the polynomial basis functions take the form ${ }^{1}$,

$$
\phi_{j}(p)=\prod_{q=1}^{d} p_{q}^{\lambda_{j}^{(q)}}, \quad \lambda_{j}=\left(\lambda_{j}^{(1)}, \lambda_{j}^{(2)}, \ldots, \lambda_{j}^{(d)}\right) \in \mathbb{N}_{0}^{d}, \quad \Lambda=\left\{\lambda_{j}\right\}_{j=1}^{N} .
$$

We denote the polynomial space defined by Λ as $V(\Lambda)$.

[^0]
Polynomial spaces

The multivariate polynomials ϕ_{j} are a basis for a dimension $-N$ polynomial subspace.
The choice of polynomial space identifies Q_{N} 's capacity, complexity, and expressivity.
Large N increases model capacity, but makes training more expensive
For independent parameters, the polynomial basis functions take the form ${ }^{1}$,

$$
\phi_{j}(p)=\prod_{q=1}^{d} p_{q}^{\lambda_{j}^{(q)}}, \quad \lambda_{j}=\left(\lambda_{j}^{(1)}, \lambda_{j}^{(2)}, \ldots, \lambda_{j}^{(d)}\right) \in \mathbb{N}_{0}^{d}, \quad \Lambda=\left\{\lambda_{j}\right\}_{j=1}^{N} .
$$

We denote the polynomial space defined by Λ as $V(\Lambda)$.
Polynomial index sets Λ are identified by

- an order parameter k (similar to polynomial degree)
" Large k allows elements λ of Λ to be "large" in magnitude
- Large k can make N large due to interaction terms
- a prescription of how much parameters can interact
- More interaction allows mixed terms $p_{1}^{\lambda^{(1)}} p_{2}^{\lambda^{(2)}}$ for "large" λ
- More interaction terms: more model capacity, more training needed

[^1]
Polynomial spaces, cont.

Some $d=2$ examples of order- k interactions between p_{1} and p_{2} :

- "Hyperbolic cross" spaces $\Lambda_{H C}$: suppression of interactions

$$
\phi_{j}(p)=p_{1}^{\lambda_{j}^{(1)}} p_{2}^{\lambda_{j}^{(2)}}, \quad \log \left(\lambda_{j}^{(1)} \lambda_{j}^{(2)}\right) \leqslant \log (k+1)
$$

- "Total degree" spaces $\Lambda_{T D}$: quite a few interactions

$$
\phi_{j}(p)=p_{1}^{\lambda_{j}^{(1)}} p_{2}^{\lambda_{j}^{(2)}},
$$

$$
\lambda_{j}^{(1)}+\lambda_{j}^{(2)} \leqslant k .
$$

- "Tensor product" spaces $\Lambda_{T P}$: lots of interactions

$$
\phi_{j}(p)=p_{1}^{\lambda_{j}^{(1)}} p_{2}^{\lambda_{j}^{(2)}},
$$

$$
\lambda_{j}^{(1)} \leqslant k \text { and } \lambda_{j}^{(2)} \leqslant k .
$$

Polynomial spaces, cont.

Interactions can substantially increase model capacity \rightarrow curse of dimensionality.

Index set sizes N for increasing dimension:

$(\boldsymbol{k}=\mathbf{2})$	Λ_{TP}	Λ_{TD}	Λ_{HC}
$d=1$	3	3	3
$d=2$	9	6	3
$d=5$	243	21	4
$d=8$	6,561	45	9
$d=15$	$14,348,907$	136	16

Balancing richness of interactions with computational feasibility is a bit of an art.

Polynomial spaces, cont.

Interactions can substantially increase model capacity \rightarrow curse of dimensionality.

Index set sizes N for increasing dimension:

$(\boldsymbol{k}=\mathbf{2})$	Λ_{TP}	Λ_{TD}	Λ_{HC}
$d=1$	3	3	3
$d=2$	9	6	3
$d=5$	243	21	4
$d=8$	6,561	45	9
$d=15$	$14,348,907$	136	16

$(\boldsymbol{k}=\mathbf{7})$	Λ_{TP}	Λ_{TD}	Λ_{HC}
$d=1$	8	8	8
$d=2$	64	36	18
$d=5$	32,768	792	91
$d=8$	$16,777,216$	6435	245
$d=15$	$35,184,372,088,832$	170,544	1071

Balancing richness of interactions with computational feasibility is a bit of an art.

What does UncertainSCI do?

Once polynomial space / index set is chosen:

$$
Q(P) \approx Q_{N}(P):=\sum_{j=1}^{N} \widehat{q}_{j} \phi_{j}(P) \in V(\Lambda),
$$

UncertainSCI computes coefficients \widehat{q}_{j} by

- solving a weighted least squares problem
- using data from a weighted D-optimal design that is optimized by induced measure sampling

What does UncertainSCI do?

Once polynomial space / index set is chosen:

$$
Q(P) \approx Q_{N}(P):=\sum_{j=1}^{N} \hat{q}_{j} \phi_{j}(P) \in V(\Lambda)
$$

UncertainSCI computes coefficients \widehat{q}_{j} by

- solving a weighted least squares problem
- using data from a weighted D-optimal design that is optimized by induced measure sampling
Construct Q_{N} by solving

$$
\min _{Q_{N} \in V(\Lambda)} \sum_{m=1}^{M}\left(Q\left(p_{m}\right)-Q_{N}\left(p_{m}\right)\right)^{2} .
$$

How are samples p_{m} chosen? Ideally we want sampling to

- work in high dimensions with $M \sim N$
- not require independent parameters P

A simple idea is to use random ("Monte Carlo") sampling from the density w of P :

$$
p_{m} \stackrel{\mathrm{iid}}{\sim} w
$$

How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with $M \sim N$ is optimal.
Near-optimal approximation can be achieved:
Theorem
Fix the distribution of P and Λ. There is a constant $C=C(\Lambda, w)$ such that if $M=C K N \log N$ samples are taken for any $K>1$, then

$$
\mathbb{E}_{P, p_{m}}\left[Q_{N}-Q\right]^{2} \lesssim \epsilon_{\Lambda}(Q)+M^{-K / 2}, \quad \epsilon_{\Lambda}(Q):=\inf _{R \in V(\Lambda)} \mathbb{E}_{P}[R(P)-Q(P)]^{2}
$$

The quantity $\epsilon_{\Lambda}(Q)$ is the best possible emulator from the polynomial space defined by Λ.

How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with $M \sim N$ is optimal.
Near-optimal approximation can be achieved:
Theorem
Fix the distribution of P and Λ. There is a constant $C=C(\Lambda, w)$ such that if $M=C K N \log N$ samples are taken for any $K>1$, then

$$
\mathbb{E}_{P, p_{m}}\left[Q_{N}-Q\right]^{2} \lesssim \epsilon_{\Lambda}(Q)+M^{-K / 2}, \quad \epsilon_{\Lambda}(Q):=\inf _{R \in V(\Lambda)} \mathbb{E}_{P}[R(P)-Q(P)]^{2}
$$

The quantity $\epsilon_{\Lambda}(Q)$ is the best possible emulator from the polynomial space defined by Λ. The problem: $C(\Lambda, w)$ can be huge, and it's easy to construct such an example:

The induced measure

The problem can be rectified by using weighted least squares + importance sampling:
Fixing (w, Λ), the induced measure for this pair corresponds to a density ρ given by,

$$
\rho(p):=w(p) \sup _{R \in V(\Lambda) \backslash\{0\}} \frac{R^{2}(p)}{N \mathbb{E}_{P} R^{2}(P)}
$$

The density ρ depends on w and Λ.

The induced measure

The problem can be rectified by using weighted least squares + importance sampling:
Fixing (w, Λ), the induced measure for this pair corresponds to a density ρ given by,

$$
\rho(p):=w(p) \sup _{R \in V(\Lambda) \backslash\{0\}} \frac{R^{2}(p)}{N \mathbb{E}_{P} R^{2}(P)}
$$

The density ρ depends on w and Λ.
We now perform weighted least squares: Sample

$$
p_{m} \stackrel{\mathrm{iid}}{\sim} \rho,
$$

and compute

$$
\min _{Q_{N} \in V(\Lambda)} \sum_{m=1}^{M} \frac{w\left(p_{m}\right)}{\rho\left(p_{m}\right)}\left(Q\left(p_{m}\right)-Q_{N}\left(p_{m}\right)\right)^{2}
$$

Weighted least squares

Theorem

There is an absolute constant $c \sim 1$ such that, for any distribution of P and Λ if $M=(c K) N \log N$ samples from ρ are taken for any $K>1$, then

$$
\mathbb{E}_{P, p_{m}}\left[Q_{N}-Q\right]^{2} \lesssim \epsilon_{\Lambda}(Q)+M^{-K / 2}, \quad \epsilon_{\Lambda}(Q):=\inf _{R \in V(\Lambda)} \mathbb{E}_{P}[R(P)-Q(P)]^{2}
$$

Weighted least squares

Theorem

There is an absolute constant $c \sim 1$ such that, for any distribution of P and Λ if $M=(c K) N \log N$ samples from ρ are taken for any $K>1$, then

$$
\mathbb{E}_{P, p_{m}}\left[Q_{N}-Q\right]^{2} \lesssim \epsilon_{\Lambda}(Q)+M^{-K / 2}, \quad \epsilon_{\Lambda}(Q):=\inf _{R \in V(\Lambda)} \mathbb{E}_{P}[R(P)-Q(P)]^{2}
$$

This fixes the problem for essentially any (w, Λ) :

Induced measure sampling

The induced measure ρ can be substantially different from w.

Optimizing sampling design

To enhance stability: optimize a least squares design using a type of D-optimal design.

The samples we generate (approximately) solve the optimization problem,

$$
\underset{p_{1}, \ldots, p_{M}}{\arg \max } \operatorname{det}\left(\tilde{\boldsymbol{V}}^{T} \tilde{\boldsymbol{V}}\right), \quad(\tilde{\boldsymbol{V}})_{m, j}=\frac{\phi_{j}\left(p_{m}\right)}{\sum_{\ell=1}^{N} \phi_{\ell}^{2}\left(p_{m}\right)}
$$

We solve this problem using candidate points from induced measure (ρ) sampling.
\Longrightarrow random ensemble $\left\{p_{m}\right\}_{m=1}^{M}$, but not iid samples.

Sample designs

Beta $\left(\frac{1}{2}, 5\right) \times\left(5, \frac{1}{2}\right)$ density

In summary

UnceratainSCI performs forward UQ analysis,

- using PC emulators built by linear methods
- by non-intrusively sampling a provided forward model
- by sampling according to the induced distribution and a (weighted) D-optimal design
- through an emulator built by least squares

Moving forward

UncertainSCI: a novel Python framework for non-intrusive emulator-based forward UQ.

- non-tensorial densities w
- adaptive selection of index sets Λ
- positive multidimensional stochastic quadrature
- inverse problems, inference, design, and optimization

https://www.sci.utah.edu/cibc-software/uncertainsci.html

[^0]: ${ }^{1}$ For numerical stability we actually use orthonormal polynomials, not monomials.

[^1]: ${ }^{1}$ For numerical stability we actually use orthonormal polynomials, not monomials.

