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Workshop team

Software: https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta
Github discussion: https://github.com/SCIInstitute/UncertainSCI/discussions/82

Discord discussion: https://discord.com/invite/MGEVK6KS

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop


https://github.com/SCIInstitute/UncertainSCI/releases/tag/0.1.0-beta
https://github.com/SCIInstitute/UncertainSCI/discussions/82
https://discord.com/invite/MGEVK6K5

Workshop goals

This workshop has two parts that explore two complementary themes.

Modeling parametric uncertainty
o UQ goals and desiderata
@ Parametric uncertainty

@ Polynomial Chaos

UQ in practice with UncertainSCI
@ UncertainSCI software
o Cardiac bioelectricity use cases and applications

o Neuromodulation examples
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Workshop agenda

Workshop overview, all times MT:

9:00 —9:30 Overview and UQ introduction Akil Narayan
9:30 —10:00 Mathematics of polynomial Chaos Akil Narayan
10:00 —10:30 UncertainSCl software Jess Tate, Jake Bergquist

10:30 —11:00 Break

11:00 —11:30 Cardiac bioelectricity use case Jess Tate
11:30 —12:00 Neuromodulation use case Sumientra Rampersad
12:00 —12:30 Breakout sessions
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Simulation models

Computational simulations are subject to parametric uncertainties,
@ conductivities
o heart location, geometry
and also model uncertainties,
@ model misspecification
@ simplified mathematical equations

@ computational/discretization error

Parametric uncertainty can typically be modeled and interpreted meaningfully.

Model uncertainty: problem-specific and more nebulous
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Uncertainty in models

Parametric uncertainty requires modeling
@ probability densities for scalars

@ parameterized geometry

Forward model Stimulated region

TN

Design variables D N
Electrode montage

' Stimulation strength
Uncertainty
Brain anatomy
Sulcal width + shape PDE solver
Mesh geometry

CSF conductivity
Model and solver

Thresholding

w) ROl impact Q

Electric fields

Output quantities of interest (Q depend on parameterized uncertainty.
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Uncertainty quantification

With a model of stochasticity, there can be several goals for UQ:
@ Forward propagation of uncertainty
> statistics of quantities of interest
> sensitivity analysis
> parameter screening or reduction
@ Parameter estimation (typically with data)
*> inverse/inference problem built on forward simulations
> identification of experimentally unobservable quantities
@ Design and performance optimization

> outer-loop optimization on design variables
> computation of designs that are robust to uncertainty

Initial design Uncertainty @
variables D Brain anatomy
Current pattern Conductivities Final design

Electrode position

o Model and
Optimization Solver
loop PDE solver
Mesh geometry
Forward UQ

Update
stimulation ROl electric fields
design @

ROl impact Q = Q(0)
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:
o Identification of parameters P
@ Probabilistic modeling (specifying a distribution) for P

o Definition of an output quantity of interest
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:
o ldentification of parameters P
@ Probabilistic modeling (specifying a distribution) for P

o Definition of an output quantity of interest

What is uncertain in my model? How can | parameterize this uncertainty?
@ Finite-dimensional parameters (bidomain conductivities)
@ Stochastic fields (conductivity fields)
@ Geometric uncertainty (cohort shape variability)

These can all be meaningfully modeled as a finite-dimensional parameter P € R®.
Underparameterization (small d) can yield a poor model of uncertainty.
Overparameterization (large d) makes it difficult to explore uncertainty.

Cf. use cases later today!
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:
o Identification of parameters P
o Probabilistic modeling (specifying a distribution) for P

o Definition of an output quantity of interest

What kinds of values are reasonable for P = (P, ..., Py) to take?
Are some parameters coupled? Is P; independent of P?

A quantifiable way to describe these considerations is through probabilistic modeling:
Let w : R% — [0,0) be a probability density function for P.
This in particular defines the range of values that P can take (the support of w).

A common assumption is that all parameters are independent. In this case,

w(p) = wi(p1) - wa(pa), peR%

This results in substantial simplification of algorithms.
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UQ setup

There are 3 ingredients required to set up any of these UQ problems:
o Identification of parameters P
@ Probabilistic modeling (specifying a distribution) for P
o Definition of an output quantity of interest

For each fixed parameter value a forward simulation yields an output quantity of interest:

p forwerd simultion, p)  Restriction svergng o, Q(u(P))

For exmaple, u(P) can be the output of a(n expensive!) PDE forward model for bioelectric
propagation.

Q represents a summarized output (e.g., localized epicardial potential)

In forward UQ analysis, we seek to understand the map P — Q(u(P)).
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Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.
Q(P) = Qn(P)

Qn is a trained computational emulator that is efficient and ideally accurate.
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Surrogates and emulators

A popular technique for accelerating forward UQ analysis: emulators.
Q(P) = Qn(P)
Qn is a trained computational emulator that is efficient and ideally accurate.

There are two (frequently) overlapping strategies:

o linear methods: simple, direct, well-understood accuracy
N
Qn(P) = ) 4;6;(P),
j=1

where ¢; are prescribed functions.
> Stochastic finite element methods
> some Polynomial chaos (PC) methods
@ nonlinear methods: more expressive, but also more “finicky” and opaque

> other Polynomial chaos methods
> Gaussian processes
> Neural networks

In UncertainSCI we use linear PC emulators.
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Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q n:
o Median, quantiles, confidence intervals
o Statistics (mean, variance, etc.)

o Partial variances: let T' denote a subset of {1,...,d}

> Global variance: varp(Qn) = var (E[Qn~ (P) | Pr])
Measures the variance due to “genuine” interactions among variables in subset Pr.

H . tot
> Total variance: v‘arqf’ QN) = ZUCT vary (QN)
Measures the variance due to variable subset Pp.
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Forward UQ analysis

After an emulator is built, UQ analysis is an efficient post-processing step.

The following can be efficiently approximated componentwise for Q n:
o Median, quantiles, confidence intervals
o Statistics (mean, variance, etc.)

o Partial variances: let T' denote a subset of {1,...,d}

> Global variance: varp(Qn) = var (E[Qn~ (P) | Pr])
Measures the variance due to “genuine” interactions among variables in subset Pr.

H . tot
> Total variance: v‘arqf’ QN) = ZUCT vary (QN)
Measures the variance due to variable subset Pp.

@ Sensitivities
> Global sensitivities: ST = %&?]\]I\;) <1

Measures the relative importance of “genuine” interactions in variable subset Pr.
tot

N s gtot _ varp (QN)
Total sensitivities: S;7° = —ar@n)
Measures the relative importance of variable subset Pr.

<1

Note: these are approximations since Qn ~ Q.
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Summary

To model forward uncertainty with emulators, we require
@ identification of a d-dimensional random parameter P
o modeling of likely values of P through a density w

o definition of a forward simulation output, a quantity of interest Q(P)

Parameters py,pa;, - .., Pa

/ﬁ Probability density

Quantity of interest Q

Statis
Emulator Qn

Outer loop design/optimization
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UncertainSCI

The software package we have built and use: UncertainSCI

@ open-source Python software

o forward UQ analysis

o polynomial Chaos-based

/£ Simulation %
\

https://www.sci.utah.edu/sci-software/simulation/uncertainsci.html
(http://bit.ly/uncertainsci)
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UncertainSCI

capabilities

UncertainsCl Uncertainscl UncertainsCl Uncertainscl Monte Carlo
30 samples 45 samples. 66 samples o4 samples  1.0e+06 samples.
order 3 order 4 order order 6

Global sensitivities
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Take 5
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Polynomial chaos (PC)

Recall:
e P e R%is a random variable with probability density w
@ Q(P) is a quantity of interest from a forward simulation
o Qn(P) is an emulator

PC approaches construct the emulator

N
Q(P) ~ Qn(P) = )] §;;(P),
j=1
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Polynomial chaos (PC)

Recall:
e P e R%is a random variable with probability density w
@ Q(P) is a quantity of interest from a forward simulation
o Qn(P) is an emulator

PC approaches construct the emulator

N
Q(P) ~ Qn(P) = )] §;;(P),
j=1

The functions ¢; are multivariate polynomials spanning a particular space.
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Polynomial chaos (PC)

Recall:
e P e R%is a random variable with probability density w
@ Q(P) is a quantity of interest from a forward simulation
o Qn(P) is an emulator

PC approaches construct the emulator
N
Q(P) ~ Qn(P) =), 4;;(P),
j=1

The functions ¢; are multivariate polynomials spanning a particular space.

The coefficients g; are learned by training:

o Intrusive methods: Compute G; by “opening up”, and possibly manipulating, the
forward solver Q

o Non-intrusive methods: Compute §; using black-box data {(pm,Q(pm)}M

m=1
We will focus on the non-intrusive case.
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Least squares

Non-intrusive PC construction with least squares: Enforce

N
Qpm) ~Qn(pm) — Z 56 (pm),

In particular, we do this with least squares:
M
min Y (Q(pm) — Qn(pm))?
7 m=1 =

This is a polynomial fitting problem, though not necessarily a .
standard one.

M > N is necessary to ensure a least squares solution.
@ How are the multivariate polynomials ¢; chosen?

@ How are the samples p,, chosen?
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Polynomial spaces

The multivariate polynomials ¢; are a basis for a dimension-N polynomial subspace.
The choice of polynomial space identifies Q n's capacity, complexity, and expressivity.

Large N increases model capacity, but makes training more expensive

For independent parameters, the polynomial basis functions take the form?,
; 1 2 d d N
o) =TTre’ » =P A end, A= pg,.

We denote the polynomial space defined by A as V(A).

1For numerical stability we actually use orthonormal polynomials, not monomials.

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop



Polynomial spaces

The multivariate polynomials ¢; are a basis for a dimension-N polynomial subspace.
The choice of polynomial space identifies Q n's capacity, complexity, and expressivity.

Large N increases model capacity, but makes training more expensive

For independent parameters, the polynomial basis functions take the form?,
; 1 2 d d N
o) =TTre’ » =P A end, A= pg,.

We denote the polynomial space defined by A as V(A).

Polynomial index sets A are identified by

@ an order parameter k (similar to polynomial degree)
> Large k allows elements X\ of A to be “large” in magnitude
> Large k can make N large due to interaction terms
@ a prescription of how much parameters can interact
, . . . A1) A (2) “ "
More interaction allows mixed terms pi' " pj for “large" A
> More interaction terms: more model capacity, more training needed

1For numerical stability we actually use orthonormal polynomials, not monomials.
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Polynomial spaces, cont.

Some d = 2 examples of order-k interactions between p; and pa:

o "Hyperbolic cross” spaces Apc: suppression of interactions

A A (1) ()

oi(p) =py Py’ log (’\j )‘j ) <log(k +1)
o “Total degree” spaces A7 p: quite a few interactions
(1 (2
XN (CONNE))
oi(p) =py" P2 Aj AT <k

@ “Tensor product” spaces A7 p: lots of interactions

A @)
6i(p) =7 py A <k and AP < k.

Asc(20) Arn(20) Apn(20) Arp(20)
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Polynomial spaces, cont.

Interactions can substantially increase model capacity — curse of dimensionality.

Index set sizes N for increasing dimension:

(k=2) Arp Arp Anc
d=1 3 3 3
d=2 9 6 3
d=5 243 21 4
d=38 6,561 45 9
d=15 14,348,907 136 16

Balancing richness of interactions with computational feasibility is a bit of an art.
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Polynomial spaces, cont.

Interactions can substantially increase model capacity — curse of dimensionality.

Index set sizes N for increasing dimension:

(k=2) Arp Arp Anc (k=1) Arp Arp Anc
d=1 3 3 3 d=1 8 8 8
d=2 9 6 3 d=2 64 36 18
d=5 243 21 4 d=5 32,768 792 91
d= 6,561 45 9 d=38 16,777,216 6435 245
d=15 14,348,907 136 16 d=15 35,184,372,088,832 170,544 1071

Balancing richness of interactions with computational feasibility is a bit of an art.
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What does UncertainSCIl do?

Once polynomial space / index set is chosen:

N
Q(P) ~ QN(P): Z 0;(P) € V(A),

UncertainSCl computes coefficients g; by
@ solving a weighted least squares problem

@ using data from a weighted D-optimal design that is optimized by induced measure
sampling
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What does UncertainSCIl do?

Once polynomial space / index set is chosen:

z

Q(P) ~ Qn(P): Z ¢j(P) € V(A),

UncertainSCl computes coefficients g; by
@ solving a weighted least squares problem
@ using data from a weighted D-optimal design that is optimized by induced measure
sampling
Construct Qn by solving

M

. _ 2
@t &, () = Qlon)

How are samples p,, chosen? ldeally we want sampling to
o work in high dimensions with M ~ N
@ not require independent parameters P
A simple idea is to use random (“Monte Carlo”) sampling from the density w of P:

iid
Pm ~w
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How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with M ~ N is optimal.

Near-optimal approximation can be achieved:

Theorem
Fix the distribution of P and A. There is a constant C' = C'(A,w) such that if
M = C K Nlog N samples are taken for any K > 1, then

Epp, [Qn —Q S ea(@ + M7 (@ = inf Ep[R(P) - QP).

The quantity e (Q) is the best possible emulator from the polynomial space defined by A.
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How well does random sampling work?

Least squares: N unknowns, M data samples. Approximation with M ~ N is optimal.

Near-optimal approximation can be achieved:

Theorem
Fix the distribution of P and A. There is a constant C' = C(A,w) such that if
M = C K Nlog N samples are taken for any K > 1, then

Epp, [Qn — QI S ea(Q) + M52, ,(Q) = Rei\I}EA) B [R(P) = Q(P)I.
The quantity e (Q) is the best possible emulator from the polynomial space defined by A.
The problem: C'(A,w) can be huge, and it's easy to construct such an example:

Least squares absolute error, M = 10N Least squares relative error, fixed A, N

10° ~[1Q - Qxl
—n(Q)

Absolute error
Relative error
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The induced measure

The problem can be rectified by using weighted least squares 4+ importance sampling:

Fixing (w, A), the induced measure for this pair corresponds to a density p given by,

p(p) =w(p)  sup L@
Rev(AN{0} N EpR%(P)

The density p depends on w and A.

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop



The induced measure

The problem can be rectified by using weighted least squares 4+ importance sampling:

Fixing (w, A), the induced measure for this pair corresponds to a density p given by,

p(p) =w(p)  sup L(p;)
Rev(AN{0} N EpR%(P)

The density p depends on w and A.
We now perform weighted least squares: Sample
iid
Pm ~ p,

and compute

min f: w(pm) (Q(pm) - QN(Pm))2
Qneva) ) p(pm)
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Weighted least squares

Theorem
There is an absolute constant ¢ ~ 1 such that, for any distribution of P and A if
M = (¢cK)Nlog N samples from p are taken for any K > 1, then

Epp, [Qn —Q Sea(@+ M2 e (Q = inf Ep[R(P)-QP).
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Weighted least squares

Theorem
There is an absolute constant ¢ ~ 1 such that, for any distribution of P and A if
M = (¢cK)Nlog N samples from p are taken for any K > 1, then

Epp, [Qn —Q Sea(@+ M2 e (Q = inf Ep[R(P)-QP).

This fixes the problem for essentially any (w, A):

Relative error, “standard” sampling () Relative error, induced measure sampling (p)

Relative error
Relative error
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Induced measure sampling

The induced measure p can be substantially different from w.

w uniform on [~1, 1 w exponential on [0, 50) w Gaussian on (~00,00)

15 10° 06
N
102y 05 N
\ \
1 04 1y
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03 1y
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Optimizing sampling design

To enhance stability: optimize a least squares design using a type of D-optimal design.

The samples we generate (approximately) solve the optimization problem,

ST & ¢ (pm)
argmaxdet (V' V), Vm,j = ———5——
Ply-sPM ( ) ™ Zévzl ¢§(pm)

We solve this problem using candidate points from induced measure (p) sampling.

M

m—1, but not iid samples.

= random ensemble {p,,}

UncertainSCI Team (Northeastern U. & U. Utah) FIMH UQ Workshop



Sample designs
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In summary

UnceratainSCI performs forward UQ analysis,
@ using PC emulators built by linear methods
@ by non-intrusively sampling a provided forward model
@ by sampling according to the induced distribution and a (weighted) D-optimal design

@ through an emulator built by least squares

Index set A

Statistics
Emulator Qx
Sensitivities

\\ Parameters py,...,pa
Probability density w

Forward model

prQ(p)
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Moving forward

UncertainSCl: a novel Python framework for non-intrusive emulator-based forward UQ.

@ non-tensorial densities w
o adaptive selection of index sets A
@ positive multidimensional stochastic quadrature

@ inverse problems, inference, design, and optimization

https://www.sci.utah.edu/cibc-software/uncertainsci.html
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