
SCIRun Developer Guide

SCIRun 4.7 Documentation

Center for Integrative Biomedical Computing
Scientific Computing & Imaging Institute

University of Utah

SCIRun software download:

http://software.sci.utah.edu

Center for Integrative Biomedical Computing:

http://www.sci.utah.edu/cibc

This project was supported by grants from the National Center for Research Resources
(5P41RR012553-14) and the National Institute of General Medical Sciences

(8 P41 GM103545-14) from the National Institutes of Health.

Author(s):
SCIRun Development Team

Contents

1 SCIRun Overview 3

2 Building SCIRun from Source 4
2.1 Prerequisites . 4
2.2 Download Sources . 4

2.2.1 Source Archive . 4
2.2.2 Subversion . 4
2.2.3 Linux and OS X . 5
2.2.4 Windows . 9

3 Modules 18
3.1 Tcl Interface . 18
3.2 Communication between Tcl/Tk and C++ 18

3.2.1 GUI Interface . 18
3.2.2 Programming with the SCIRun GuiInterface 18

4 Datatypes 20

5 Import and Exporting File Formats 21

6 SCI Coding Standards 22
6.1 Required Coding Standards . 22
6.2 Recommended Coding Standards . 25
6.3 Memory Management . 27

6.3.1 Avoiding Memory Leaks . 27

7 Further Reading 28
7.1 Useful C++ References . 28

2

Chapter 1

SCIRun Overview

SCIRun is a computational workbench used for modeling, simulating and visualizing
scientific problems, which is implemented in C++ with a Tcl/Tk GUI (Graphical
User Interface). SCIRun uses a dataflow computational model. SCIRun provides al-
gorithms, math and visualization tools implemented as discrete software units referred
to as modules.

Modules are organized into packages: the default package, SCIRun, contains
general-purpose tools. SCIRun can be used on Linux, Mac OS X and Windows
platforms.

CHAPTER 1. SCIRUN OVERVIEW 3

Chapter 2

Building SCIRun from Source

2.1 Prerequisites
• Subversion

• CMake (can create XCode projects, GNU make, NMake, Visual Studio)

• C/C++ compiler

• GNU make on Linux/Unix platforms

The free IDE Visual Studio Express is available for Windows. Up-to-date prereq-
uisites are available by platform on the SCIRun documentation wiki.

2.2 Download Sources

2.2.1 Source Archive
Download the source archive from SCI software portal from the SCIRun software
page. These are updated regularly, and when a major bug fix has been applied. Only
gzipped tar archives are available at the moment, so Windows users may need to
download thirdparty tools to unpack the archive, such as Cygwin. The gzip product
page also has a list of tools that can unpack the archive on Windows.

2.2.2 Subversion
Build SCIRun from the latest sources by checking out code from the SCI Subversion
repository. We recommend reading Version Control with Subversion for those who
have never worked with Subversion before.

Usually, the procedure is to check out the code from the repository trunk URL.

svn checkout --username anonymous \

https://code.sci.utah.edu/svn/cibc/cibc/trunk SCIRun

The Installation Guide has detailed information about obtaining SCIRun.

4 Chapter 2

http://www.sci.utah.edu/SCIRunDocs/index.php/CIBC:Documentation:SCIRun
http://software.sci.utah.edu
http://www.gzip.org/
https://code.sci.utah.edu
https://code.sci.utah.edu
http://svnbook.red-bean.com/
https://code.sci.utah.edu/svn/cibc/cibc/trunk

2.2.3 Linux and OS X

Use the CMake tool ccmake to configure the SCIRun build on the command line.
Make changes to SCIRun’s default configuration after configuring in ccmake for the
first time (figure 2.3).

Figure 2.1. CMake tool ccmake on the command line.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 5

Figure 2.2. CMake tool ccmake interface.

6 Chapter 2

Figure 2.3. CMake tool ccmake interface after configuring for the first time.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 7

Figure 2.4. CMake tool ccmake interface after configuring for the second time.

8 Chapter 2

Figure 2.5. CMake tool ccmake interface while generating.

2.2.4 Windows

CMake can generate Visual Studio 2008 project files, which is the only Windows build
solution that we support. We also recommend using the cmake-gui application. We
suppport both 32 bit and 64 bit builds.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 9

Figure 2.6. CMake GUI with paths to SCIRun source and build directories.

10 Chapter 2

Figure 2.7. CMake GUI select generator for 32 bit Windows build.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 11

Figure 2.8. CMake GUI select generator for 64 bit Windows build.

12 Chapter 2

Figure 2.9. CMake GUI after configuring for the first time.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 13

Figure 2.10. CMake GUI after configuring for the second time.

14 Chapter 2

Figure 2.11. CMake GUI while generating.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 15

Figure 2.12. CMake GUI after generating.

16 Chapter 2

Figure 2.13. SCIRun Visual Studio solution.

CHAPTER 2. BUILDING SCIRUN FROM SOURCE 17

Chapter 3

Modules

3.1 Tcl Interface

3.2 Communication between Tcl/Tk and C++

3.2.1 GUI Interface

SCIRun uses Tcl/Tk as its GUI front end. However, Tcl/Tk was not designed with a
clean interface between Tcl code and C/C++. The purpose of the TCLInterface class
in Dataflow/GuiInterface is to provide an abstraction layer make the task of moving
data between the Tcl and the C++ portions of SCIRun transparent to the user.

Most of the code in the Dataflow/GuiInterface directory is used internally in
SCIRun. The only exception are the GuiVars which can be access from both the Tcl
and the C++ codes. These variables provide a transparent mechanism in C++ to set
or get the Tcl variables they represent. Each such Tcl variable is associated with a
Module and thus contains information about the module Tcl ID and a pointer to the
module.

3.2.2 Programming with the SCIRun GuiInterface

On the Tcl side, the code should access the variables as regular Tcl variables. On the
C++ side, the code needs to declare these variables inside a Module and access them
via the get() and set() functions.

GuiVar

GuiVars are variables that encapsulate the interaction between the C++ code and the
GUI code. The variable does not hold the actual value, rather it holds information
which is used to access the corresponding variable on the GUI side. From the C++
side the user may set the variable value using the set() function and retrieve the
value using the get() function. There are several specialization of the GuiVar class
for particular variable types such as GuiInt, GuiString and GuiPoint.

18 Chapter 3

In a module’s GUI Tcl code:

itcl_class foo {

...

method set_defaults {} {

global $this-min

global $this-max

set $this-min 0 # set to 0

set $this-max [set $this-min] # ’[set $this-var]’ returns its value

}

...

}

In the C++ side, i.e. in the module class:

class Demo : public Module {

...

GuiInt gui_min, gui_max; // define GUI variables

Demo(const clString& id);

void init();

};

Demo::Demo(const clString &id)

: Module(...),

gui_min("min",id, this), // initialize a variable with

gui_max("max",id,this) // its name on the Tcl side.

{

...

}

void Demo::init()

{

gui_min.set(7); // set a Tcl variable

int i = gui_max.get(); // get a value from the Tcl side

}

CHAPTER 3. MODULES 19

Chapter 4

Datatypes

There are four basic datatypes defined in SCIRun: Field, Matrix, ColorMap, String.
The Nrrd datatype is provided by the Teem package, which wraps the Teem thirdparty
project. The DICOM datatype inteface is provided by Kitware’s Insight Toolkit
(ITK).

20 Chapter 4

Chapter 5

Import and Exporting File Formats

SCIRun can read in and write out a variety of file formats through a plugin framework.

CHAPTER 5. IMPORT AND EXPORTING FILE FORMATS 21

Chapter 6

SCI Coding Standards

6.1 Required Coding Standards
• All code and comments are to be written in English.

• All files must include appropriate MIT license information, which must appear
at the top of the file. Please copy from the LICENSE file at the top of the
source tree. Please update the year to keep the license current.

• Include files in C++ always have the file name extension .h. Use uppercase and
lowercase letters in the same way as in the source code.

• Implementation files in C++ always have the file name extension .cc.

• Every include file must contain a guard that prevents multiple inclusions of the
file, for example:

#ifndef CORE_GEOMETRY_BBOX_H

#define CORE_GEOMETRY_BBOX_H 1

// Code...

#endif

• The name of the guard should be of the following form: DIR DIR FILENAME H

• Use forward declarations wherever possible as opposed to including full defini-
tions for classes, functions, and data:

// Class

class PointToMe;

// Function

22 Chapter 6

void my_function(PointToMe &p, PointToMe *ptm);

// Data

PointToMe *m;

Never include /usr/include/*.h, for example iostream.h in any header file. This
causes a huge amount of code to be recursively included an needlessly compiled.
Use forward declarations to avoid this.

• The names of variables and functions will begin with a lowercase letter and
include underscore word separators. Names of constants should be in all CAP-
ITALS, with underscore word separation:

static int CONSTANT_INT_FIVE = 5;

void my_function_name();

int my_local_variable_name = 0;

• The names of class member variables are to end with an underscore ():

class MyClass {

int myClassMember_;

};

• The names of abstract data types (that is, classes), and structs are to begin with
an uppercase letter, and each new word in the name should also be capitalized.

class MyNewClassName {

// ...

};

• All member functions which do not change an object’s state should be declared
const

• Constants are to be defined using const or an enumerated type (enum). Con-
stant variable names should be all uppercase. Never use #define to create
constants.

• Enumeration member names should be all uppercase and end with E.

enum my_enum_type {

// ENUM_CONST_E - some constant I need

ENUM_CONST_E = 0x0001,

...

};

CHAPTER 6. SCI CODING STANDARDS 23

• A class which uses new to allocate instances managed by the class must define
a destructor, a copy constructor and an assignment operator. If a class needs
to define any one of these functions, then all three need to be present.

• Classes should never assume that the input is perfect and a sensible number of
safety checks should be in place to detect faulty inputs.

• Use exception handling to trap errors (although exceptions should only be used
for trapping truly exceptional events).

• Our exception model includes two levels of exceptions. The top level of excep-
tions are defined in Core/Exceptions/Exceptions.h and are thrown when a class
specific exception is not appropriate. The bottom level of exceptions are class
specific, defined in the class that throws them, and are subclassed off of the
top level exceptions. These class specific exceptions are exceptions that can be
caught and handled from the calling function (1 level above the class). How-
ever, if the calling function chooses not to (or cannot) handle the class specific
exception, the exception will propagate to the next level at which point it can
be trapped and handled in the form of a top level exception. An example of a
class specific exception would be a StackUnderFlowException for a stack class.

• Do not use identifiers that begin with an underscore, such as myBadIdentifier.

• Do not use #define to obtain more efficient code; use inline functions instead.

• Avoid the use of numeric values (magic numbers) in code; use symbolic values
instead. This applies to numeric values that are repeated within the code but
represent the same value, for example MAX ARRAY SIZE = 1024.

• Do not compare a pointer to NULL or assign NULL to a pointer; use 0 instead as
NULL is not part of the C++ standard and is not guaranteed to be defined.

• Avoid explicit type conversions (casts). However when a cast is needed, an
explicit cast is preferred over having the compiler decide which kind of cast
to do. Use C++ casts (static cast, dynamic cast etc.) rather than C-style
casts.

• Never convert a constant to a non-constant. Use mutable if necessary, but be
aware of the thread safety problems this causes.

• Never use goto.

• Do not use malloc, realloc, or free. Use new and delete instead. Allocate
arrays on the heap using new [] and delete []:

int *myArray = 0;

myArray = new int[256];

...

delete [] myArray;

24 Chapter 6

• Do not use long. Use int for 32-bit integers and long long for 64-bit integers.

• Use C++ STL classes whenever possible instead of writing novel containers.

• Do not use C style converters such as atoi because they are not consistently
threadsafe on every platform SCIRun supports. Use the converters in SCIRun’s
Core/Util/StringUtil.h file or STL converters.

• Be aware that longs, floats, doubles, long doubles etc. may begin at arbitrary
addresses. Do not assume that built-in data types are contiguous in memory.

• Always use plain char if 8-bit ASCII is used. Otherwise, use signed char or
unsigned char.

• Do not assume that a char is signed or unsigned.

• Do not depend on underflow or overflow functioning in any special way.

6.2 Recommended Coding Standards
• Avoid using more than 80 columns per line.

• Group local includes together, then group system includes together.

• Avoid global data if possible.

• Optimize code only if you know that you have a performance problem. Think
twice before you begin.

• When developing new code, always force your compiler to compile with the
maximum warning setting, and before you check in code, fix all warnings.

• Place platform-dependent code in a special file so that it may be easily lo-
cated when porting code from one machine to another. For example, see how
platform-dependent thread and synchronization primitive code is organized in
Core/Thread.

• Encapsulate global variables and constants, enumerated types, and typedefs in
a class.

• Functions in general should not be more than 30 lines long (excluding docu-
mentation and indentation). If you find this situation, break the function into
several smaller functions.

• If a function stores a pointer to an object which is accessed via an argument,
let the argument have the type pointer. Use reference arguments in other cases.

• When overloading functions, all variations should have the same semantics
(should be used for the same purpose).

CHAPTER 6. SCI CODING STANDARDS 25

• Do not assume that you know how a function’s invocation mechanism is imple-
mented.

• Do not assume that an object is initialized in any special order in constructors.

• Use a typedef to simplify program syntax when declaring function pointers or
templated types.

• When two operators are opposites (such as == and !=), it is appropriate to
define both.

• Pass function arguments by reference or by constant references (const &) in-
stead of by value, unless using a built-in data type or a pointer.

• Minimize the number of temporary objects that are created as return values from
functions or as arguments to functions. Do not write code which is dependent
on the lifetime of a temporary object.

• Use C++ streams (i.e. std::cout, std::cerr) instead of printf. Use C++
streams (i.e. std::ostringstream) instead of sprintf. Prefer C++ IO streams
(i.e. std::ifstream, std::ofstream) to C-style file IO.

• Avoid the use of using namespace std:: (or other namespaces) in include files,
as they can spill into other files with unintended consequences.

• Try to use smart pointers (Handles) to automatically deallocate memory when
an object is not needed anymore.

• When a function is pure, i.e. it does not modify any of the class members,
annotate it as such so it can be used safely in multi-threaded code.

• When variables are being shared between threads always use a Mutex for access
control. Use a Guard whenever possible to ensure that mutexes are unlocked
when going out of scope.

• Use the STL string class and not C-style strings whenever possible.

• Assign a descriptive typename to enum declarations to create a distinctive type
whenever it makes sense to do so.

class MyClass {

...

enum my_enum_type {

...

};

void my_function(my_enum_type type);

...

};

26 Chapter 6

6.3 Memory Management

6.3.1 Avoiding Memory Leaks
Use the SCIRun reference counted LockingHandles wherever possible, which ensures
that memory will be freed when the handle goes out of scope and the reference count
is 0. The LockingHandle class is defined in Core/Containers/LockingHandle.h. For
instance, SCIRun datatypes, if passed as data through a dataflow port are wrapped
in a LockingHandle.

CHAPTER 6. SCI CODING STANDARDS 27

Chapter 7

Further Reading

7.1 Useful C++ References
• The C++ Programming Language by Bjarne Stroustrup.

• Thinking in C++ by Bruce Eckel

• Effective C++ by Scott Meyers

28 Chapter 7

http://www.research.att.com/~bs/3rd.html
http://mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.aristeia.com/books.html

	SCIRun Overview
	Building SCIRun from Source
	Prerequisites
	Download Sources
	Source Archive
	Subversion
	Linux and OS X
	Windows

	Modules
	Tcl Interface
	Communication between Tcl/Tk and C++
	GUI Interface
	Programming with the SCIRun GuiInterface

	Datatypes
	Import and Exporting File Formats
	SCI Coding Standards
	Required Coding Standards
	Recommended Coding Standards
	Memory Management
	Avoiding Memory Leaks

	Further Reading
	Useful C++ References

