
Ischemia Model tutorial

SCIRun 4.6 Documentation

Center for Integrative Biomedical Computing
Scientific Computing & Imaging Institute

University of Utah

SCIRun software download:

http://software.sci.utah.edu

Center for Integrative Biomedical Computing:

http://www.sci.utah.edu/cibc

Supported by:

NIH grant P41- RR12553-07

Author(s):
Jeroen Stinstra, Darrell Swenson

Contents

1 Overview 3
1.1 Ischemia Model . 3
1.2 Software requirements . 4

1.2.1 SCIRun module compatibility . 4
1.2.2 Required Datasets . 5

2 Reading and Visualization of Image Data 6
2.1 Loading The Dataset . 6
2.2 Visualization of Dataset . 9

3 Visualization of Image Data 13
3.1 Volume Renderer and Clipping Planes . 14
3.2 Isosurfacing and Mesh Fairing . 16
3.3 Resampling and Viewing Glyphs . 20

4 Building a Tetrahedral Mesh 24
4.1 Building a Tetrahedral Mesh . 24

5 Tensors and Conductivities 27
5.1 Creation of Model Parameters . 27

6 Finite Element Modeling 34
6.1 Creating The Simulation . 34
6.2 Visualization of Simulation Results . 37

2

Chapter 1

Overview

This tutorial demonstrates several tools within SCIRun for building models out of imaging data. It
describes the pipeline starting from preprocessed images to generate a computational mesh and adapt
this mesh to meet the computational requirements. It then continues to set up a finite element bidomain
simulation, and demonstrates how results can be visualized.

1.1 Ischemia Model

This tutorial describes the generation of a quasi-static volume conductor model of an is-
chemic heart based on data from actual experiments. The goal of this modeling pipeline
is to generate experiment-specific models of the myocardium. The MR images that will
be used in this example have been derived from a dog heart that was scanned to obtain
anatomy, fiber orientation and the perfusion bed of left anterior descending artery. The
goal of the simulations is to render a model that can be used to predict extracellular cardiac
potentials as measured by electrodes onto on an isolated heart or with needles inserted into
the heart.

The background behind this research is to provide insight into the question how reduced
flow or additional load affect regional acute ischemia. By measuring many anatomic details
and electrical measurements we hope to provide insight in what is going on in the border
zones between the healthy and ischemic tissue layers. This tutorial describes one specific
aspect of that research namely the creation of a forward model of ischemia based on measured
anatomical data such as muscle fiber orientation and perfusion beds of the coronary arteries.

The electrical model that is described in this tutorial is a so called bidomain model.
In the bidomain model one assumes that all electrical sources within the heart are located
within the cell membranes of myocytes (heart cells). As the intracellular electrolytes of all
the myocytes are connected to each other by means of gap junctions (a protein that connects
the insides of two cells together), the intracellular and extracellular spaces can be assumed
as two continuous spaces that are separated at each location by a cell membrane.

During the plateau phase of the action potential all cells can be assumed to be in a
depolarized state, however the transmembrane potential (the potential difference between
the intracellular and extracellular space) is not the same for ischemic and healthy cells. The
latter effect causes so called injury currents to flow within the intracellular and extracellular
spaces. These currents can be observed at the surface of the heart as potential differences
that translate to so called ST shifts in the ECG.

CHAPTER 1. OVERVIEW 3

In order to model these currents one needs a description of the electrical properties of
both the intracellular and extracellular spaces. Both can be modeled as anisotropic volume
conductors that have the shape of the heart and where the anisotropy is caused by the fiber
structure of the myocardium (cardiac muscle tissue). The partial differential equations to
solve in both spaces are the following:

∇ · Σi∇φi = imem (1.1)

∇ · Σe∇φe = −imem (1.2)

where φi and φe are the intracellular and extracellular potentials respectively and Σi, and
Σe are the conductivity tensors of both spaces. Finally, imem is the current through the
membrane. We can define the transmembrane potential as:

φm = φi − φe (1.3)

Combining this equation with the previous set of equations results in the system to solve
being:

∇ · (Σi + Σe)∇φe = −∇ · Σi∇φm (1.4)

The latter equation describes the potential of the extracellular space, as observed in
measurements, as a function of the membrane potential φm. To solve this for a specific
heart, one needs to have a description of Σi and σe as a function of space and one needs
to have a description of how φm changes throughout the border zone. In this tutorial we
will first describe how to load the imaging data and how visualize this, subsequently this
imaging data is turned into a description of Σi, Σe, and φm, which in the final chapter then
is used to solve the extracellular potential φe.

1.2 Software requirements

1.2.1 SCIRun module compatibility

The modules demonstrated in this tutorial are available in SCIRun version 4.0 and higher
and this tutorial is not compatible with any older version of SCIRun. Also be sure to update
your SCIRun version to the latest built available from the SCI software portal, which will
include the latest bug fixes and will make sure that the capabilities demonstrated in this
tutorial are up to date.

Because this tutorial demonstrates the meshing capabilities available within SCIRun,
it is necessary to obtain a version of SCIRun that includes the meshing tools (currently
an interface to TetGen). The easiest way to obtain a SCIRun version that includes these
tools is to download a binary version of the software, which is available for both OS X and
Windows at the SCI software portal.

Unfortunately for Linux users there is no binary yet available. Hence, to run this tutorial,
one has to compile SCIRun from scratch. Download SCIRun from the SCI software portal
at http://software.sci.utah.edu and follow the instructions in the InstallationGuide to build
SCIRun from scratch. The supplied build script (build.sh) will build SCIRun with meshing
tools enabled by default.

4 Chapter 1

http://software.sci.utah.edu
http://software.sci.utah.edu

1.2.2 Required Datasets

This tutorial relies on several datasets that are part of the SCIRunData bundle. To obtain
these datasets, please go to the SCI software portal, follow the Download SCIRun link,
and instead of the SCIRun source or binary files, download one of the SCIRunData zip files.
Note the latter is available as a Windows zip file or as a Linux gzip file. Both however
contain the same datasets and only one of them has to be downloaded.

CHAPTER 1. OVERVIEW 5

http://software.sci.utah.edu

Chapter 2

Reading and Visualization of Image
Data

Scope: Finding Modules - Building Networks - Loading Data - Visualization of 3D Datasets

2.1 Loading The Dataset

We start by opening the main SCIRun window by launching SCIRun by either double
clicking on the binary icon or by launching SCIRun from the command line. A detailed
description of how to run SCIRun is given in the BasicTutorial. Once SCIRun has been
launched the main Window with the Network editor is shown. Figure 2.1 shows the main

Figure 2.1. The main SCIRun window

6 Chapter 2

Figure 2.2. Finding a module

SCIRun network editor. For this tutorial we will be selecting modules from the top menu
called Modules, this menu is used for inserting modules into the network editor. In order
to run this tutorial you need to have a SCIRun 4.x version or greater with a revision
number of 42612 or higher, the SCIRun version and revision number can be found in the
upper right corner of the SCIRun editor window.

Besides walking through the Modules menu and finding a specific module by navigating
through every submenu, a module can simply be found by typing the name of the module
into Show Module entry box located in the top menu bar. This will highlight the location
of a specific module within the Modules menu as is demonstrated in figure 2.2.

Enter “ReadField” in the upper menu bar and follow the highlighted menus in the
Modules menu and select the ReadField module form the menu. This will insert the
ReadField module in the upper left corner of the network editor. This module will now
be used to read in the first dataset.

The Dataset that is used in this example is called heart-ischemia and it can be found
in the SCIRunData bundle that can be downloaded as well from the SCI software portal
(http://software.sci.utah.edu). After downloading the SCIRunData zip file, unzip the file
inside a directory and inside you will find a sub directory with the heart-ischemia datasets.
If this dataset is not available in your copy of the SCIRunData bundle, please download the
latest version from the website to obtain a copy.

CHAPTER 2. READING AND VISUALIZATION OF IMAGE DATA 7

Figure 2.3. Select a file name and a file type

By pressing on the UI button of the ReadField module a browser window is opened
where one can enter the name of the file that needs to be loaded. The files that are used
in this example were generated by the Seg3D software and are in the .nnrd file format.
This file format is used to represent regular spaced image data, such as MRI images or
segmentations. It consists of a simple text header specifying the dimensions of the data and
its location in space, followed by binary data representing the actual data. This file format
allows for either a header be appended to the start of the file (.nrrd format) with header
and data being in one file or having a separate header file that wraps the data found in a
general binary data file (.nhdr format). More information on the .nrrd format can be found
at http://teem.sourceforge.net/nrrd/format.html.

Once the UI Window of the ReadField module opens, select the NrrdFile file type

8 Chapter 2

Figure 2.4. Network for checking contents of the file

and use the upper part of the UI to locate the dataset by browsing the directories to the
location where the SCIRunData has been saved. Open the heart-ischemia directory and
select HeartMRI.nrrd file. Then press Set at the bottom of the UI to store the file name
and type in the module. This process is illustrated in figure 2.3.

Now use the Show Module menu again and find the ReportFieldInfo. Insert this
module into the network editor. Connect the two modules by clicking on one of the yellow
port of either module with the middle mouse button. By dragging the connection (while
pressing the middle mouse button) from the port from the first module to the second module,
the two modules can be connected. Now press Execute All to execute the modules in the
network, as is illustrated in figure 2.3. After the network has been executed, one can open
the UI of the ReportFieldInfo module to inspect the type of data that has been loaded.

In this case the data is represented as a LatVolMesh, the latter mesh type is used by
SCIRun to represent regularly spaced data like CT or MRI data. Besides the type of data
inside the pipeline, the module also shows the dimensions of the grid and the location in
space derived from the original imaging data. An example of all the information displayed
is shown in figure 2.4.

2.2 Visualization of Dataset

Now we have the data loaded into SCIRun, we can actually visualize the 3D image dataset.
Because we do not need the ReportFieldInfo module for the next part of the tutorial we
can delete the module from the network. Destroy the ReportFieldInfo module by clicking
on the module with the right mouse button. This will show a menu, select Destroy from
the menu and the module will be deleted from the network editor.

To visualize the 3D dataset we convert the module into a 3D texture object, which

CHAPTER 2. READING AND VISUALIZATION OF IMAGE DATA 9

Figure 2.5. Network for checking contents of the file

will allow us to quickly browse through the dataset. Use the Show Module feature in the
menu bar to insert the following modules ConvertFieldsToTexture, ShowTextureS-
lices, CreateStandardColorMaps, ShowScene and connect the modules as depicted in
figure 2.5. Note that not the full name needs to be entered each time in the Show Module
text field: if a part of a module name is entered all the modules that match that part of the
name will show up. This can be useful to search for new modules that for instance operate
on a Field (e.g. by typing Field).

After the network of figure 2.5 has been entered in the Network Editor, open up the UI
of the ShowTextureSlices module and select to show the X, Y, and Z plane as indicated
in the figure. Now execute the network. The resulting visualization is now located in the
ViewScene module, press the VIEW button of the module to see the visualization.

When the ViewScene Window depicts a black space after it has been opened, press
Autoview in the viewer to ensure that the viewer is looking at the loaded data set. Once
Autoview has been pressed the resulting dataset should look like the image depicted in
figure 2.6. By pressing Shift and clicking with the left mouse button on the light blue
widget in the center of the viewer, the currently visible plane of the of 3D dataset can be
altered.

By clicking on the UI of GenerateStandardColorMaps module, the colormap of the
current visualization can be altered (illustrated in figure 2.7). The transparency of the colors
can be edited by clicking on the red line in the center of the colorbar. When the line is at
the top the color is opaque and when the color is at the bottom the color is transparent. Try
to make the background transparent. The slider just below that controls where the largest
gradient in color should occur by sliding it to the left a higher contrast is generated. In

10 Chapter 2

Figure 2.6. Network for checking contents of the file

the lower part of the menu one can now select from a series of predefined colormap lookup
tables to alter the appearance of the image.

CHAPTER 2. READING AND VISUALIZATION OF IMAGE DATA 11

Figure 2.7. Network for checking contents of the file

12 Chapter 2

Chapter 3

Visualization of Image Data

Scope: Volume Renderer - ViewScene Module - Resampling - Rendering Glyphs - Calculator Module

Figure 3.1. Reading in two datasets

CHAPTER 3. VISUALIZATION OF IMAGE DATA 13

Figure 3.2. Reading in two datasets

3.1 Volume Renderer and Clipping Planes

In the previous chapter one dataset was explored, however the SCIRun viewer is capable
of rendering many datasets in the same viewer, so one can explore the correlation between
the data or combine them to build a model. In the next example we will be loading two
datasets into the viewer. To do this we start with a similar network as depicted in the
previous example. However instead of viewing slices we will use the ShowTextureVolume
module to volume render multiple datasets into the viewer. This module requires the same
inputs as the ShowTextureSlices module, but now renders the full volume transparent.

Create the network shown in Figures 3.1 - 3.2 , and use the HeartMRI.nrrd and
HeartMRI-Perfusionbed.nrrd as the two datasets for the two ReadField modules.
Once the network executes the data of the two datasets is combined into one visualization
of the data. Try to alter the transparency of the colormaps to highlight the needle markers
that were inserted into the heart and the perfusion bed of one of Left Anterior Descending
Artery. An example of such a visualization is given in figure 3.1.

The datasets in this example originate from an isolated dog heart in which the Left

14 Chapter 3

Figure 3.3. Opening the configuration tray

Anterior Descending Artery was perfused with Gadolinium preparation so it shows up in an
MR scan. The heart was subsequently scanned to generate an anatomical image of the heart
HeartMRI.nrrd and a diffusion tensor image (DTI) HeartMRI-FiberOrientation.nrrd.
Using the Seg3D program the ventricular myocardium and the perfusion bed were seg-
mented out of the anatomical image (HeartMRI-Segmentation.nrrd and HeartMRI-
PerfusionBed.nrrd).

Although displaying the two datasets into one image is useful, one does not always want
to see each component of the data. To edit what is actually displayed in the image, open up
the ViewScene module and press Configure. This will add a tray below the current win-
dow, with different tabs to edit different aspects of the image. Select the Objects tab. This
tab shows the current components displayed in the view window. Pressing selection buttons
as highlighted in figure 3.3 will switch on and off the displaying of a certain component.

Also try the Clipping tab, which will allow to clip the visualization. Open up the
Clipping tab and switch on the Clipping Plane Visible button, next drag the X slider
to 1.0. Now use the D slider to slide the clipping plane along the X-axis. The clipping
widget has been configured, so that D corresponds to the full range of X that is spanned

CHAPTER 3. VISUALIZATION OF IMAGE DATA 15

Figure 3.4. Slicing the dataset

by the two images that are displayed in the viewer window. By dragging D from -1 to +1
one can slice the full rendering. An example of such a visualization is depicted in figure 3.4.
The figure on the left shows the result of one slicing plane, the result on the right shows two
slicing planes. To activate the second slicing plane, press Plane 2 and then activate this
plane by selecting the Clipping Plane Visible once more. To make it easier to generate a
thin slice, select the the Reverse Clipping Plane Normal option for the second clipping
plane as this reverse the visible part of the image. By lining up the two clipping planes one
can generate a small thin slice.

If the slice becomes too transparent, open up the UI of the ShowTextureVolume
module. One of the main options is the Global Opacity. Changing this slider the volume
rendered object can be made more or less transparent.

3.2 Isosurfacing and Mesh Fairing

In order to build a model out of the datasets we need to translate the volumes into para-
metric surfaces. One way to do this is to generate an isosurface. Modify the network by
adding the ExtractIsosurface, FairMesh and ShowField modules to the network, as
depicted in figure 3.5. The ExtractIsosurface should get its input from the module that
reads the perfusion bed field. Make sure to select the Quantity tab in the UI of the
ExtractIsosurface module as depicted in figure 3.5.

The ExtractIsosurface module extracts an isosurface out of any field. In this case
we are extracting it out of the segmented perfusion bed by selecting a value between the

16 Chapter 3

Figure 3.5. Extracting an Isosurfacet

maximum and minimum value in the field. In this case the background and the segmen-
tation have a different but constant value and hence the boundary between them will be
selected. The isosurface is extracted using the Marching Cubes method which will insert an
approximation of the isosurface for each element in the mesh.

The FairMesh module takes the output from the ExtractIsosurface module and
smoothes out the surface. Because the data is discretized the isosurface will be stair-stepped.
The FairMesh module takes the surfaces and uses information about the neighborhood
of the surface to generate a smoother looking surface. The resulting surface is a surface
that is tessalated by triangles. Because this field is no longer structured like a regular
grid, one cannot use the ShowTextureVolume to display the surface. Instead we use

CHAPTER 3. VISUALIZATION OF IMAGE DATA 17

Figure 3.6. Coupling Two ViewScene Windows

the ShowField module that is a general module for visualizing any field. The output
of this module can again be displayed into the ViewScene module, which now combines
visualizations of all three modules.

To compare the volume rendering against the smoothed surface model, the ViewScene
module has the option to display two coupled Viewer windows. Open up the Viewer win-
dow from the ViewScene module. Press the NewWindow button to generate a similar
ViewScene window with the same dimensions. Now open up the configuration tab on both
windows. By selecting different objects in both windows, the windows can be customized
to display a different aspect of the Scene. Display the Faces of the Isosurface in one window
and the volume rendering of the VolumeRendering in the other window to examine the
difference between the two visualizations, as depicted by figure 3.6.

By zooming in into the model of the surface one can see the difference between the
two renderings. Note that by default the two windows are locked together. Meaning that
rotations in one window are automatically applied to the other window. This option allows
to highlight the same spot in space in both windows without the need to actually align both
images manually. This option can however be switched off. Press the LockView button
to unlock the window. When pressing the button the LockView button changes color to
indicate that it is switched off. One can now independently orient the windows. Locking the
windows together again will not align the windows but keep the relative change between the

18 Chapter 3

Figure 3.7. Network for Visualizing the Fiber Orientation of the Data

windows. The changes are however applied to both windows. To align the windows again
select the Views menu at the top of the window and select the Other Viewer Windows
menu and select the option to get the view from the other window. This will align the view
to the view of the other window.

Locking can also be activated by pressing L on the keyboard when the window is selected.
Likewise a view from an other window can be copied by pressing ctrl 1 to copy the view
from the first window, ctrl 2 for the second window and so on. The viewer also as predefined
views along the axis that can be accessed by pressing 1 - 8 on the keyboard. Autoview also
has a keyboard shortcut and is activated by pressing 0.

CHAPTER 3. VISUALIZATION OF IMAGE DATA 19

3.3 Resampling and Viewing Glyphs

After viewing perfusion bed, the other data to explore is the fiber orientation. Fibers cannot
easily be volume rendered as the data are not scalar, but are in fact vectors. This data was
derived from the Diffusion Weighted Images by doing a decomposition of the tensor and
extracting the dominant direction from the data. This data can however still be loaded
using the ReadField module and the data will be translated into a LatVolMesh again,
however this time the data located at each node is a vector instead.

In order to visualize the vector data we use the network depicted in figure 3.7. This
network adds the following new modules to the network: ResampleRegularMesh, Map-
FieldDataOntoNodes, CalculateFieldData2, and ShowFieldGlyphs.

The ResampleRegularMesh module resamples the data. Its default settings down-
sample the data by a factor 2 in each direction. This module has been added here to ensure
that the network executes relatively fast and that the visualization is not clobber by a huge
amount of vectors. The default settings in the UI of this module should do for demonstrating
displaying vectors.

Because the Diffusion Tensor Image was recorded at a different resolution as the anatom-
ical MR image, the data in the segmentation which was derived from the anatomical scan
is not in the same grid as the vector data. We apply the MapFieldDataOntoNodes to
map the data from the segmentation onto the mesh of the Diffusion Tensor Imaging data.
The module operates by looking up the value of the data in the segmentation for node in
the mesh of the Diffusion Tensor Image. The result is a field that has the segmentation
projected onto the same grid as the vector data.

The mapped segmentation can now be used to mask out any data that is located outside
of the heart. In order to mask the data we use the general purpose calculator module,
called CalculateFieldData. There are currently three versions of this module available
called CalculateFieldData, CalculateFieldData2, and CalculateFieldData3. The
sole difference between these modules is the number of field input ports. As in this case we
want to use two fields as input we use the CalculateFieldData2 module.

The CalculateFieldData2 operates by taking data from the two input fields as two
input streams and applying the operation specified inside the UI of the module to each
pair of data from the two fields, as depicted by Figure 3.8. Hence, this module defines an
operator that works on a stream of input data. In this case specify the input function as
RESULT = DATA1 * DATA2; . In this formula DATA1 is the data from the first field
and DATA2 is the data from the second field. As the segmentation defines the outside by
a value zero and the inside as a value one, this expression masks the data and will generate
vectors of zero length outside of the heart and keeps the input vector value for the vectors
inside the heart.

The CalculateFieldData2 defines a whole range of mathematical operators that can
be applied to a fields and a range of possible input streams that range from the location
of nodes to the data values located in the field. To obtain more information on the actual
operators that are available for this calculator module press the Parser Help button in
the module. This opens a document describing the expression language that has been
integrated into SCIRun. Note that the module has build in logic to determine the output
type, even though the output type is set to Scalar it will in fact render a Vector output. The
Output Data Type in the latest version of SCIRun is thence no more than a hint of what
output type would be preferred. In most cases the user should not need to set an output

20 Chapter 3

Figure 3.8. The UI of The CalculateFieldData2 Module

type, only when for memory reasons the data should be different from a double precision
representation, this type should be set.

Finally the ShowFieldGlyphs allows for displaying the vectors in the viewer (see fig-
ure 3.9). This module is primarily used to display Vectors or Tensors that are located inside
a field. As this module takes many different inputs, one needs to execute the module be-
fore one can select displaying Vectors. The reason for this is that the module first needs
to examine the contents of the input before it can display the proper UI. To display the
vectors select the Vectors tab and enable the check button Show Vectors. Also disable
the Render glyphs below threshold setting. This will prevent SCIRun from rendering
glyphs whose size (for Vectors we look at the vector length) is below the VectorThreshold.

In this example we will render Vectors as cones by selecting the Vector Display Type
in the UI and we use RGB Conversion as the vector coloring. The latter option colors a
vector red if it is aligned along the x-axis, green if it is aligned along the y-axis and blue for
the z-axis. Depending on the orientation of the vector the red, green, and blue colors are
mixed together to indicate the orientation. Also increase the the size of the VectorScale
to render glyphs that are larger.

Also as these vectors represent the fiber direction, the actual direction they are pointing
is arbitrary as they could just as well point in the opposite direction. It is the line the

CHAPTER 3. VISUALIZATION OF IMAGE DATA 21

Figure 3.9. The UI of the ShowFieldGlyphs Module

vectors are pointing along that matters in this case. To make the vectors point in both
directions, set the option Render bidirectionally.

The final image that is rendered is displayed in figure 3.10. In this image we applied the
slicing from the previous section, to highlight the fibers in a cross section through the left
ventricle of the heart. By combing the networks examined in this tutorial one can visualize
the different aspects of the data.

22 Chapter 3

Figure 3.10. Visualizing the Fiber Orientation of the Data

CHAPTER 3. VISUALIZATION OF IMAGE DATA 23

Chapter 4

Building a Tetrahedral Mesh

Scope: Isosurface - FairMesh - ResampleMesh - InterfaceWithTetGen - Visualizing Meshes

4.1 Building a Tetrahedral Mesh

In order to build a physical model out of the imaging data, we need to generate a computa-
tional mesh. In this example we describe an easy way of generating a tetrahedral mesh using
isosurfaces. To build an elementary tetrahedral mesh, generate the network that is depicted
in figure 4.1. This network introduces two new modules called InterfaceWithTetGen and
WriteField.

The InterfaceWithTetGen module lets SCIRun communicate with TetGen for gen-
erating a tetrahedral mesh. This module takes a triangular mesh as input and performs a
constrained Delaunay Tetrahedralization and output a full volemtric mesh that consists of
tetrahedral elements. In order to for tetrahedralization to succeed the isosurface generated
by ExtractIsosurface needs to be smoothed. We use the FairMesh module for this again.

When opening the UI of the InterfaceWithTetGen module, one can select out of a
range of options to generate a mesh. The three options that are of interest in generating
a computational tetrahedral mesh for this problem are the -Y, -q, and the -a option in
the UI. The -Y option lets the user decide whether additional vertices are to be inserted
into the outer boundary. Suppressing splitting of the boundary facets often generates lower
quality elements at the boundary, and forces TetGen to do far more computations, so in
this example we switch it off. The next flag -q enforces quality of the elements, one can
specify a lower ratio for a better quality. Normally enforcing a higher quality comes at
the price of a longer computation and more elements. We keep this at its default setting.
The final flag that is of interest is the -a flag that allows the user to specify the size of the
elements. Besides element quality, element size is an important parameter for computing
electromagnetic fields. Without a volume constraint the delaunay tetrahedralization will
enforce the largest size elements it can fit within the interior of the mesh. As we do not
want that in this case, we supply a volumetric maximum. In this case a value of 5 is
reasonable value.

In this network, instruct the ReadField module to read the file HeartMRI-Segmentation.nrrd;
the ResampleRegularMesh module can keep its default settings. The reason for this
module being added to the pipeline is reduce the number of elements in the segmentation,
so that the example can be computed within a time frame of minutes in stead of hours.

24 Chapter 4

Figure 4.1. Network for building a Tetrahedral Mesh

CHAPTER 4. BUILDING A TETRAHEDRAL MESH 25

Figure 4.2. Image of the Tetrahedral Mesh

The ExtractIsosurface module should be set to the Quantity tap and we should be com-
puting only one isosurface. The InterfaceWithTetGen module options should be set as
indicated in figure 4.1. Finally, the WriteField module should contain a name of a file that
will be used to save the mesh, so we do not need to recompute for in the rest of the chapters.
Supply a filename in the UI of the module and press Set to set the name of the file that
will be written. Also open up the ShowField module and disable the Show Nodes and
Show Edges, although SCIRun can renderer these without any problems.

After pressing Execute All to execute all modules allow for a few minutes for the model
to build. As TetGen is running as an external library, we do not have a good estimate of
how long it takes to render the mesh, hence even while the progress bar in the module is
not moving progress is made and SCIRun will return within a several minutes and display
the mesh. Use the slicing planes to examine the mesh (see figure 4.2).

26 Chapter 4

Chapter 5

Tensors and Conductivities

Scope: SignedDistanceField - CalculateFieldData - Bundles - Mapping FieldData

5.1 Creation of Model Parameters

The next step in building the simulation is the creation of the model parameter spaces. In
this example the model is defined by the conductivities of the intracellular and extracellular
spaces as a function of space and the transmembrane potential as a function of space.

To generate these model spaces we start with a clean canvas, and add a ReadField
module to read the mesh that was generated in the previous chapter. The full network for
generating the model is outlined in figure 5.1 with Figures 5.2-5.4 detailing the setting of
the various UIs. Only those modules that need modifications to the default settings are
listed in the figures.

This network starts by loading the previously generated mesh, and also loads the per-
fusion bed dataset and the fiber orientation dataset. All these three datasets are loaded at
the top of the network. This data serves as material to build the heart specific models.

In the upper left corner of the network the perfusion bed dataset is loaded. The first
step is to downsample the data by a factor 2 to make the computations more interactive for
this tutorial. The next step is the extraction of the isosurface that defines the boundary of
the ischemic zone. This boundary subsequently fed into the FairMesh module to smooth
out discretization effects, leaving a relative smooth definition of the ischemic border zone.
This definition of the border zone is used for two purposes: (1) the definition of the trans-
membrane potential as a function of space and (2) the definition of the conductivity which
changes as a function of space.

In order to define a volumetric function based on a surface we compute the distance
to the surface for each node located in the mesh. As the ischemic zone is a closed volume
we can use the CalculateSignedDistanceToField module to determine the distance of
each node to the surface. In this case a positive distance is rendered for each node inside
the ischemic zone and a negative distance is rendered for each node outside of the surface.
Although the computation of the distance fields for unstructured grids is generally a slow
operation, the SCIRun code inside the module uses a parallel algorithm that should solve
this distance field with a timeframe of less than a minute. However note that when the
objects get more complex this operation can be relatively slow.

CHAPTER 5. TENSORS AND CONDUCTIVITIES 27

Figure 5.1. Full network for building extracellular, intracellular conductivity fields and the
transmembrane potential fields

28 Chapter 5

Figure 5.2. UI settings of modules

Below the CalculateSignedDistanceToField module, the distance field is inserted
into the CalculateFieldData module. The latter module evaluates a mathematical ex-
pression based on the data of the field. In this case we define a function that blurs the
transmembrane potential based on the distance to the border zone. As the distance is
signed we define the transmembrane potential inside the ischemic zone as -15 mV and the
potential outside of the ischemic zone as +15mV, with the border zone at 0 mV. In this
bidomain simulation we have altered the actual transmembrane potential to be centered
around 0mV for convenience. As the choice of a reference potential does not alter the in-
duced currents, the choice of the reference membrane potential does not matter. However
if one wanted to one can add easily an additional term to equation.

The equation displayed in figure 5.2 was chosen arbitrary to reflect a smooth transition

CHAPTER 5. TENSORS AND CONDUCTIVITIES 29

of the transmembrane potential. The function here just indicates one of many functions that
could have been chosen, as we are still in the process of actually determining what the shape
of the ischemic border zone is. The equations displayed in the figure show various of the
features of the built-in mathematical expression parser. It can parser a set of equations and
one can define an arbitrary amount of additional parameters. The grammar of the parser
requires that you separate each expression by a semi colon. Currently only expression as
supported by the parser and no functions, loops, or conditional statements are supported.

The CalculateFieldData2 module, which is based on the same mathematical expres-
sion parser, is used to generate the conductivity tensors as well. In figure 5.3 the example
functions for these conductivities are given. Note that we use two input fields here and
hence the function now is function of two spatial varying parameters. In this case we as a
special function called select which treads the first argument as a boolean expression and
based on the outcome decides to evaluate the first or the second argument. This in a sense
adds a conditional statement to the math parser.

One difference with the function for the transmembrane potential is that the data now
has to be located at the centers of the elements, as the Finite Element computations are
currently restricted to conductivities defined for an element. In order to translate the
distance field from a representation on nodes to a representation onto elements, we use
the MapFieldDataFromNodeToElem module. This module by default interpolates the
data using a linear scheme to the center of each element of the mesh.

The transformation of the fiber orientation data is a bit more complex as it is located
inside a different mesh. In order to map data from one mesh type to another mesh type, two
special modules have been designed to help with mapping data from one mesh to another
mesh, namely MapFieldDataOntoNodes and MapFieldDataOntoElems. In this case
the latter module is used. By default the mapping of data onto elements is performed by
choosing a range of sampling points inside each element and find the interpolated value for
each location. The values are subsequently consolidated by averaging them. In case the user
wanted a different integration scheme for the data, several methods are available for defining
the data in the original, a variety of sampling schemes is available and several methods are
available for combining the resulting values. In this case we use the default settings as they
should render a good enough result.

The mapped distance field and fiber orientation are then used to compute the conduc-
tivity tensor. Within the math expression parser a full range of functions is available for
defining the Tensor, in this case the first input into the Tensor function is the first eigen-
vector and the two subsequent scalars are the conductivity along this first axis, and the
next one is the conductivity across. A second eigenvector would be permitted as well by
defining two input vectors and three conductivity scalars. However for cardiac tissue only
the conductivity ratio across versus along the myocardial fiber is known. It is assumed that
across the fiber in both directions one has the same conductivity.

The last part of the network introduces a new concept called the Bundle. A bundle
is no more than a collection of Fields and other objects that are stored by name. The
advantage of bundling data is that one can store all the fields into one file. Which makes it
easier to maintain the simulation data, as well as that it saves diskspace when components
use common structures like an underlying mesh. (see figure 5.4)

To generate a bundle the InsertFieldsIntoBundle module assigns each of the input
ports to a new name in the bundle. In this case we choose the names enquoteVM, en-
quoteIC and enquoteEC for the transmembrane potential, the intracellular conductivity,

30 Chapter 5

Figure 5.3. UI settings of modules

CHAPTER 5. TENSORS AND CONDUCTIVITIES 31

Figure 5.4. UI settings of modules

and the extracellular conductivity respectively. The bundle subsequently saved on disk for
the simulation network of the next chapter.

Finally a small portion on the bottom left of the network is dedicated to displaying
the transmembrane potential. This part of the network uses the modules from previous
chapters to do generate a visualization of how the transmembrane potential looks like. Try
for instance altering the “BLUR” parameter in the calculator module to see the effect of
the blurring. An example of the output is given in figure 5.5.

32 Chapter 5

Figure 5.5. Visualization of assumed transmembrane potentials

CHAPTER 5. TENSORS AND CONDUCTIVITIES 33

Chapter 6

Finite Element Modeling

Scope: BuildFEMatrix - ExtractIsosurfaceByFunction - Bundles - SolveLinearSystem - ApplyMapping-
Matrix -GetFieldData - SetFieldData

6.1 Creating The Simulation

We start with the bundle generated in the previous chapter. This bundle contains all the
fields for running the simulation. To run the simulation build the network as depicted in
figure 6.1. Figure 6.2-6.5 display the settings required in each of the module UI menus. The
modules that are not highlighted in these figures use the default settings of these modules.

The underlying idea of the this network is to solve the following equation :

−(∇ · (Σi + Σe)∇φe) = ∇ · Σi∇φm (6.1)

in which Σi and Σe are the intracellular and extracellular conductivity tensors and φm is
the transmembrane potential and φe is the extracellular potential. In this network the
transmembrane potential φm is assumed to be the quantity that is known and the network
computes the extracellular potentials φe that are actually measured in experiments. Hence,
based on a proposed transmembrane potential, this network now computes the extracellular
potentials.

At the top of the network the bundle is split in two, one part is used to create the
right-hand-side of equation 6.1 and the other part is used to compute the left-hand-side.
As seen in equation 6.1 the left-hand-side depends on the summation of the intracellular
and extracellular tensors. The module CalculateFieldData2 is used to sum the values
of the intracellular and extracellular conductivity fields for each location. The output of
this module is subsequently fed into the BuildFEMatrix which builds the stiffness matrix
for the Poisson equation. This stiffness matrix can be viewed as the discretization of the
anisotropic Poisson equation and hence it is the numeric equivalent of the ∇ · (Σi + Σe)∇
operator.

The modules to the left of the creation of the stiffness matrix actually compute the right-
hand-side vector. This is done again by using the BuildFEMatrix module to generate the
numerical operator ∇· (Σi)∇ and multiplying this with the values from the transmembrane
potential field. As the output of the BuildFEMatrix module is matrix (blue pipe), the
data inside the field needs to be represented as a vector. This is accomplished by the

34 Chapter 6

Figure 6.1. Full network for running simulation

CHAPTER 6. FINITE ELEMENT MODELING 35

Figure 6.2. UI settings of modules

GetFieldData module that strips the data from the nodes in the field and inserts it into a
column matrix. In order to now obtain the right-hand-side vector we need to multiply the
column vector with the matrix. The latter is accomplished by the EvaluateLinAlgBinary
module.

Both the stiffness matrix and the right-hand-side vector now form a linear system that
needs to be solved to obtain the extracellular potentials. The SolveLinearSystem module
solves the linear system using in iterative solver. The details of the solver can be entered
in the UI of this module. Once the linear system is solved the solution contained in a
column vector is reinserted into the field using the SetFieldData module. An example of
a reasonable number of iterations is given in figure 6.3. Everything below this module in
the network is used for visualizing the data which is described in the next section.

36 Chapter 6

Figure 6.3. UI settings of modules

6.2 Visualization of Simulation Results

In order to study the effect of anisotropy on the extracellular potentials we look at a certain
cross section of the model. In order extract a cross section we use the ExtractIsosur-
faceByFunction module. This module lets the user specify a function and subsequently
extracts an isosurface of this function and projects the data back onto this surface. In this
case we use the function RESULT=Y; which will generate cross sections in the XZ-plane.
However displaying the data without the underlying fiber structure is of no use, therefore we
can reconstruct the fiber orientation from the tensor data sending it through the calculator
module again and extracting the first eigenvector using the eigvec1() function. The data is
subsequently moved to the elements of the mesh.

To efficiently project the data onto the same mesh as the data, we use the ApplyMap-

CHAPTER 6. FINITE ELEMENT MODELING 37

Figure 6.4. UI settings of modules

pingMatrix module, this allows to quickly copy the data from one mesh to another mesh
if the operation that generated the new mesh computed a so called mapping matrix. In this
case the ExtractIsosurfaceByFunction did compute such a mapping matrix and we will
be able to project the data onto the same grid. As often in SCIRun there are many ways to
do the same thing, we could just as well have used the MapFieldDataOntoElems module
to accomplish the same.

Finally the vectors and the data are combined into one viewer. In order to render a sense
or orientation we also render a transparent shell of the mesh. The GetFieldBoundary
module extracts the outside of any mesh. In this case it renders the outer surface of the
model. The ShowField module can be setup so it renders a transparent version of the mesh
boundary. Disable the display of nodes and edges and alter the Default Color as indicated
by figure 6.5. By altering the Alpha value the mesh can be made far more transparent, so
to highlight the cross section more clearly. Also increase the scale of the vectors so they
become clearly visible.

Finally the ViewScene module displays a result that show that the potentials tend to

38 Chapter 6

Figure 6.5. UI settings of modules

stretch along the fiber orientation, as can be viewed by the results indicated in figure 6.6.

CHAPTER 6. FINITE ELEMENT MODELING 39

Figure 6.6. Visualizing Results

40 Chapter 6

	Overview
	Ischemia Model
	Software requirements
	SCIRun module compatibility
	Required Datasets

	Reading and Visualization of Image Data
	Loading The Dataset
	Visualization of Dataset

	Visualization of Image Data
	Volume Renderer and Clipping Planes
	Isosurfacing and Mesh Fairing
	Resampling and Viewing Glyphs

	Building a Tetrahedral Mesh
	Building a Tetrahedral Mesh

	Tensors and Conductivities
	Creation of Model Parameters

	Finite Element Modeling
	Creating The Simulation
	Visualization of Simulation Results

