
Installation

Obtaining
ImageVis3D is available on the memory stick provided to you as a conference attendee.
Beyond this tutorial, however, you can download ImageVis3D from http :// www . imagevis 3 d . org / .

Windows
ImageVis3D supports Windows Vista and later. Installation on Windows follows the normal
‘Installer’ methodology: a setup program will guide you through installation on your computer.
Simply double-click the installer and follow the on-screen instructions.

Mac
ImageVis3D supports Intel-based Macs running OS X 10.6 (Snow Leopard) or later (10.7, Lion).
Please make sure your Mac is fully updated; Apple frequently bundles graphics driver updates
into system updates, and these can be important for the proper functioning of ImageVis3D.

Mac binaries of ImageVis3D are provided via the familiar “dmg” mechanism. Open up the DMG
to mount the volume. You can then copy the ImageVis3D application anywhere you’d like; to
install it, drag it to your ‘Applications’ directory.

Linux
There are a wide variety of Linux distributions with a plethora of system configurations.
Supporting all of them ‘out of the box’ is infeasible for our small development team.

Ubuntu
On Ubuntu, there is a Personal Package Archive (PPA) available for managing your
ImageVis3D installation. This system integrates with the Ubuntu package management system,
so you will receive updates just like you receive them for other system components.

Details on how to configure this are available on the PPA’s website:

 https :// launchpad . net /~ tfogal /+ archive / ppa

Other
The alternative method to installing ImageVis3D on Linux (required if you are not using Ubuntu)
is the tarball method. Simply obtain the tarball and extract it with the ‘tar’ command:

http://www.imagevis3d.org/
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
https://launchpad.net/~tfogal/+archive/ppa
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/
http://www.imagevis3d.org/

 tar zxvf ImageVis3D-2.0.1-Linux32.tar.gz

This will create an ImageVis3D-2.0.1 directory and place the binary and supporting files in that
same directory. Navigate to that directory and run ImageVis3D to start the software.

Source (Mac/Linux)

ImageVis3D Linux binaries are compiled statically on the latest stable release of a 32-bit Debian
installation. These seem to work on most Linux systems with few issues. However, if they do
not work out of the box for you, you will need to compile ImageVis3D yourself.

There isn’t really a good reason to compile ImageVis3D on Mac, but the instructions are very
similar to the Linux build process.

The only reason to compile ImageVis3D yourself on Windows is if you intend to modify it in
some way. Such use is far beyond the scope of this tutorial, but you may pull Tom aside when
he is otherwise idle if you are interested in getting involved with ImageVis3D development.

You will need a basic development environment (on many Linux distributions: the “build-
essential” package), flex, bison, and subversion. You also need Qt; the best way to acquire this
for use with ImageVis3D is to use our provided scripts, however.

First download the ImageVis3D sources:

 svn checkout https :// gforge . sci . utah . edu / svn / imagevis 3 d

There are a variety of scripts under Scripts/ which can be used to both acquire and compile Qt.
Run the one most appropriate for your platform:

 bash imagevis3d/Scripts/Linux-StaticQt.sh

This will require a network connection. After twenty or so minutes, it will have installed Qt into $
{HOME}/sw/. Now you just need to compile ImageVis3D:

 cd imagevis3d
 ${HOME}/sw/bin/qmake QMAKE_CONFIG=“release” -recursive
 make

That’s it! You can run Build/ImageVis3D to start ImageVis3D immediately, or you can copy
ImageVis3D and Tuvok/Shaders into a directory of your choosing to ‘install’ it.

https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d
https://gforge.sci.utah.edu/svn/imagevis3d

Loading and Converting Data
The primary development goal with ImageVis3D was to be able to load very large data sets. To
achieve this, ImageVis3D uses a multiresolution, level-of-detail representation of your data --
that is, it produces subsampled, low-resolution versions of your data. It packs these new
resolutions together with your native resolution data into a format known as ‘UVF’. When a
rendering option is changed and ImageVis3D wants to give you fast feedback, it will use one of
the lower resolution versions. During idle periods, ImageVis3D will render your native resolution
data.

This is very useful in that it allows you to immediately see the effect ad adjustment has on your
visualization, but has the unfortunate side effect that ImageVis3D can work only with UVF data.
As such, all data must be converted to UVF before it can be utilized. ImageVis3D includes a
large variety of built-in converters, and makes the process of adding new ones incredibly simple.
Look for the Getting Data Into ImageVis3D manual, included with the ImageVis3D binaries, if
you are interested in learning more about the details.

For now, let’s just load some data. Look in your CIBC data pack for the rigidity.uvf data set. It
should be in the software/ImageVis3D/data/ directory. To load it, you can drag and drop it into
ImageVis3D, or navigate to it using the dialog provided by the File | Load Dataset from File
menu.

Basic UI Elements
Now that we have some data loaded, ImageVis3D should look something like this:

Most interaction is controlled via the mouse. Hold the left mouse button to rotate the volume.
Hold the right mouse button to translate the volume. The mouse wheel lets you zoom in and
out, but you can use page up and page down to control the zoom level on a finer scale.

With a data set focused, hit the space bar to switch to a 2x2 view mode. Here we see the 3D
view at the top left, the sagittal plane at the top right, the axial plane at the bottom left, and the
coronal plane in the bottom right. You can left click the white lines in the middle to reorient
these windows in any way you’d like. Try hitting the ‘p’ key now to bring up white boxes which
detail the plane of interest within the 3D visualization. When you are finished with the 2x2
mode, move your mouse over the view you would like and hit the space bar again.

Rendering Options
The most used components of the UI are accessible from the “Workspace” menu. Any of the
Ctrl-Alt-# entries (i.e. from “Rendering Options” and below) are going to open what we call a
“Tool Widget”: a tiny window which contains some parameters relevant to your visualization.

The first one we’ll introduce is
the “Rendering Options” widget:

This widget controls the larger,
or global properties of the
visualization. At the top we have
the ability to rescale the data in
X, Y, and Z. This is mostly
useful when loading image
stacks, for which data typically
have very high resolution in the
XY plane but very little resolution
in the Z direction; by cranking up
the last number, you can make
your volume appear as ‘thick’ as
it does in reality. In the middle
we have the three primary
render modes: two transfer
function-based methods and an
isosurfacing renderer. We’ll
explore those in depth below.
The execution model on the right
is normally unimportant; leave it
on “Continuous” for now.
Below that we have the “Render
Settings”. “Tag Volume” tells
ImageVis3D not to interpolate,
which is useful when you are

loading a series of tags, as would be generated by a segmentation. The “Global Bounding Box”
produces a red box around your data, which is particularly useful when you are looking at a
small subset of your data, as it informs you where that feature lies relative to the overall volume.

Generally you would leave the “Sampling Rate” at 100%, but when generating an image for a
publication it can look nice to oversample a bit -- here I’m sampling the volume at about 2.3x the
Nyquist rate.
Finally, ImageVis3D allows you to insert a clip plane to provide an easier method to look inside
your data. Check “Enable” to turn it on; in your visualization, you’ll immediately see a subset of
a blue plane which details where the clip plane is:

The clip plane is controlled via the same interactions as the data set, expect that you must hold
“Control” (on Mac: command) while you do so. Thus, to rotate the clip plane you could hold
control, the left mouse button, and move the mouse.

You can apply the clip plane without actually seeing it by unchecking the “Show” checkbox.

1D Transfer Function Editor
The 1D transfer function is the default method for visualizing your data in ImageVis3D. The
method is based on ascribing colors to data values. Using the 1D transfer function editor, you
can tell ImageVis3D such things as, “I want all of the 19s in my data set to appear blue” and “I
want the range 42-108 to appear red”. By iterating over this process and inspecting the
resulting visualizations, the goal is that you can highlight the features which are interesting in
your data.

Let’s open up the 1D
transfer function editor
now. To access it, you
can either use the
workspace menu or click

the small button in
the “Rendering Options”
widget that we just
explored. When you do
you’ll see a new window
which has a gray-on-black
background with some UI
elements surrounding it:

The most important components of this window are what we call the “transfer function” --
thecheckboard-to-white pattern at the top of the dialog, which is controlled by the white line in
the middle. Try left clicking and dragging your mouse in that area to change the transfer
function. You can use the right mouse button to recreate the smooth line of the default transfer
function.

Notice that as you change the transfer function, your visualization is immediately updated as
well. If you change the white line in an area where it hugs the bottom of the window, you’ll see
that new components of your data become visible. If you move the line from the top to the
bottom, you’ll notice aspects of your data disappear. In between those two extremes, you’ll get
a gradient of transparency -- near the top will create visualizations that are hard to see through,
and near the bottom will create tenuous visualizations with considerably more depth.

Up to now, we have been changing all of our color channels
in concert. The line we have been modifying appears white
because the channels we are modifying includes the “Alpha”
channel. On the left of the dialog, however, you should note
that you can select which color channels are ‘active’

individually. By changing the channels to be independent of one another, we can add color to
our visualization. Try selecting only the “Red” channel now, by unchecking the “Green”, “Blue”,
and “Alpha” components. Now click and drag in the transfer function to create something that
looks like this:

Note that the visualization takes on a cyan hue, just as the transfer function does at the top of
the 1D transfer function editor. This is because the “Red” channel was underneath the “Alpha”
channel. By dragging it halfway down, we have changed the ‘red’ in that area from 100% to
50%. However, the ‘blue’ and ‘green’ in those regions is still up at 100%, underneath the
“Alpha”, and the combination of those two colors produces the cyan you see now.

2D Transfer Function Editor
Let’s try out the 2D transfer function editor now. Close any data you have open, and then

navigate your USB stick to find and load hand16.uvf. In the
“Rendering Options” widget, switch to using the 2D transfer
function by clicking the radio button next to the “2D Transfer

Function” render mode. Next, click the button on the
right to bring up the 2D transfer function editor. Somewhat
similarly to the the 1D editor, you’ll be presented with a
window that shows the transfer function on the right and has
some UI widgets to control more subtle parameters on the
left:

The default transfer function is simply the large white box you see in the middle, outlined by the
red lines. As a backdrop, you are looking at a histogram of our data just like in the 1D case,
except now we have the added dimension of gradient magnitude as the Y axis. This magnitude
measures the difference between neighboring voxels. The theory is that high gradient data
values will cluster around a boundary in the data. The red-outlined box is the transfer function
itself: all the data values it covers will appear in the visualization.

First let’s learn how to manipulate the widget we see there. A simple left click selects the
nearest vertex (yellow dot) and allows you to change the shape of the polygon. Right clicking
near the red line will add a new vertex, and right clicking on one of the yellow vertices will
remove it from the polygon. With just these interaction techniques, you can shape the polygon
in any way you see fit.

However, you’ll quickly find that it will be quite difficult to generate an appropriate transfer
function just by moving things around in this manner. Hold shift and then left click to move the
entire widget. Hold control (Mac: command) and move the mouse up and down to resize the
widget. Using these interaction techniques, try to create this transfer function:

Note that this highlights the skin. Let’s try changing the
color from white to something similar to skin tone.
Highlight the “Stop at 0.5” list item on the left, and then
click the “Choose Color” button. This will bring up a
color selection dialog and allow us to change the color
of this particular area in the transfer function. Choose
a color for the skin.

Now move up from this area and click the “Add Quad” button to add a new quadrilateral to our
transfer function. A new (white) quadrilateral will appear in the center. Try to move this one
around to highlight the bone before moving on, creating this visualization:

Isosurfacing
Now we’ll get to the last renderer type we have in ImageVis3D,
which renders simple isosurfaces. Let’s examine yet another data
set. Close all of the data sets you have open and then load the
head512.uvf data set from your USB stick. Next switch to the
isosurface renderer by using the radio button on the “Rendering
Options” dialog. Finally, open up the isosurface settings using the

 button to the right of the button.

You’ll be presented with a dialog that looks like this:
The most important
component is the topmost slider bar, which ranges
from 0 to 254 and is currently set at 127. Grab that
slider and drag it left and right. Note that dragging to
the left creates a surface which is external to the
model, such as skin, while dragging it to the right
depicts surfaces which are internal, such as bones.
The surface represents the connection of points of a
constant value, with the value utilized being what you
set on the slider. Alternatively, this is the level set of
the data for a given constant.

Isosurfaces allow us to very quickly see the structure
of our data. However, they do not allow us to see
inside our data; in many cases, it is useful to focus on
a region of interest while we see the context from an

external or nearby feature. The ClearView rendering mode allows us to do exactly this. The
idea is that one chooses both an internal (“Focus”) isovalue as well as an external (main)
isovalue, and the system displays the focus value through a lens which penetrates the external
surface. Click the “ClearView” button on the UI to enable ClearView. Now pull the main (top)

isovalue slider to the left to select our context isosurface -- around 24 looks pretty good. Next,
drag the “Focus” isovalue so it is a bit higher than the context one -- around 80 or so. Finally,
move your mouse into the rendering window and then hold Shift while you move the mouse
around -- note that you do not want to hold the left mouse while you do this!

Lighting

Lighting can be a ‘hit and miss’ kind of thing when applied to volume
rendering. In most instances, it can really improve the understanding
of surface curvature, but in some cases it can completely distract from
a feature of interest. Generally this occurs when there is little depth in

a rendering, or a boundary
within the volume is rough or
noisy, causing inconsistent
lighting.

The lighting dialog allows one to control these
interactions. In most cases, you will find that just
disabling lighting entirely (via the check box at the top

left) is what you are looking for. However, it can be useful to play with the other lighting
parameters in some instances as well. One ‘trick’ is to turn off the ‘Highlight Color’ by dragging
the bottom-most slider all the way to the left. This has the effect of disabling the highlights one
receives when a light hits a surface “just right”. One can also drag the light position around the
ball on the left to reorient it with respect to the data. Both of these techniques can help to
alleviate the issue of a highlight drowning out the feature you want to convey to someone else.

Lit and unlit versions of the ‘tooth’ data set.
Note that the highlight near the center of the
enamel “drowns out” the data inner surface
in that area.

Designing 1D
Transfer Functions
Designing an informative transfer function is a
mixture between an art and a science. Most
users find it difficult to do after just the

introduction to ImageVis3D you are receiving today. With continued use and experience with
different kinds of data, you will find this process becomes easier. Here we will go over some of
the ‘tricks of the trade’ that will help you get a hang of what’s going on more quickly.

Let’s start by opening up the tooth.uvf data set and then opening the 1D Transfer Function

editor. Your editor will look very similar to this:

The gray on top of the black represents the distribution of data values, but says nothing of the
range. For the design of a transfer function the range is usually unimportant, but it will be a
useful guide for our discussion of this data set, so the range of these data is from 0 to 13001.
That means that we have a square block of data split into tiny bits of space (us Computer
Scientists call those tiny bits ‘voxels’) based on the sampling rate. Think of each one of those
little bits of space as a house for a singular data value. Every one of those homes is going to
have a number that is either 0, 1300, or a number in between.

Based on this knowledge, we can say a few things about this data set. First, there are few data
values near 1300. We know this because at the right side of the histogram, we can see the
gray makes a downward slope and tapers off quickly. Thus, values between say 1200 and
1300 occur very rarely. Another point of interest is the very left of the histogram: if you look very
closely, you should be able to see a single gray spike at the leftmost column. This is the 0
column, and the fact that there is such a large spike here indicates that there are a lot of voxels
(houses) which contain the number 0. Finally, because we can see four peaks in the data -- at
0, around 300, another around 650, and another just below 1200 or so -- we can guess that
there are going to be four major ‘components’, or features of interest, within this data set.

Features of Interest

Be careful with that last assumption. It relies on intuition which is commonly, but not always,
true. MRI or CT scanners generally acquire a range of data values for a given ‘thing’ in the data
set. Even though muscle is basically of a uniform radiodensity, not every voxel which
represents muscle is going to have the value 40 (for example). Rather, we’ll see some 43s,
38s, 42s, even some 17s. In reality, a better model is to consider data values for a feature to be
normally distributed, with the mean of the distribution within the range of the type of tissue or
object being scanned.

1You can identify the range of any data set loaded in ImageVis3D by using the Dataset Explorer,
available from the Workspace menu.

Independent normal distributions. If these
were distributions for two features, the
histogram would show peaks at the same
locations as the features’ mean values.

Thus, when we see peaks in the histogram like we do for the tooth, above, we gain some
knowledge about the data. It could be the case that each peak represents a particular feature:
the smooth slope details the standard deviation of how that feature is defined. It could also be
the case that we have two features which are adjacent to the peak and both of their tails -- the
width of the falloff, or the standard deviation -- are fairly large, and the combination of those tails
translates into a great many data values.

Dependent normal distributions. If
these distributions defined two features,
the histogram in ImageVis3D would
peak between the two features.

Why does it matter how many voxels have a particular feature? It effects the kind of transfer
function we will need to highlight that feature, and even if such a transfer function is possible.
Let’s demonstrate with an example. Try changing your tooth’s transfer function to be non-zero
only in the 1200-1300 range:

and note the resulting visualization you get:

It is the top of the tooth (the enamel), but it is
broken and incomplete -- note that there is an
outlining peninsula of structure, but the very top
of the tooth is barely implied by, really, just a
series of dots which coalesce in only some
regions. A visualization such as this one is
implied by the corresponding histogram and
transfer function above. First, we can see that
the histogram tails off in this area; this implies
that there are few voxels which have these data
values. If we have a constant region of space
(defined by the red box) and we ‘turn on’ a
small subset of the voxels in that space,
statistically it is unlikely those voxels will be
adjacent. Second, we can see a peak off to the
left of the defined transfer function. It is

generally true that peaks occur because a feature has a range of data values associated with it,
and in our example here we have selected (“turned on”) only a subset of that feature.
Therefore, we should expect to see only a subset of the feature that this peak represents (the
enamel).

Try expanding that transfer function a bit to include the entire peak. Rotate the data set so you
can see it from the side as well. Aim to produce this visualization before moving on:

Designing 2D Transfer Functions
So, for example, if the voxels for bone are in the range [400, 572], and some muscle
surrounding that bone are in the range [-30,45], there will be high gradient at the interface

between the two. Within the muscle, the gradient will be low; at the interface between the bone
and muscle, the gradient will be comparatively high. These areas will therefore be separated in
Y within the 2D transfer function, allowing us to isolate the interface from the material.

Let’s examine a particular case in detail. Close any data sets you may have open, and then
open the backpack8.uvf data set from your USB stick. Open up the 2D transfer function editor,
and you should see something like this:

From this histogram we can infer a few things. The bottom left is gray and white, with no black
interspersed -- this tells us that most of the data values are concentrated here, so if we place a
polygon over this area, it will produce a visualization which depicts nearly every voxel in the
data set (try it!). Secondly, we can see two major arches: a wide one which spans the entire
data range and is higher in Y:

and a lower band that appears toward the middle and curves back down before it gets that wide:

These can be a bit hard to see. It can help if you open up the 1D transfer function editor and
align the histogram so that it is even with the 2D transfer function editor’s histogram. By doing
so we can see that the peaks in 2D space correspond to peaks in 1D space:

Note that left peak appears simply as higher contrast, whereas the right peak is more apparent
simply because it produces a ‘band’ within which no black area appears.

Structure such as what is visible here does not necessarily imply that there is a single
visualizable feature within that structure. In this case, the bottom loop contains a whole series
of objects which are apparent beneath the backpack’s exterior, but you can somewhat isolate
some of the individual objects depending on the area you utilize within that curve. Try this
transfer function for example:

Note that it mostly highlights the squeezable tube near the bottom of the bag.

Now that you have a basic idea of how to develop 2D transfer
functions, try to create the visualization on the right. We have
already found the squeeze tube; after you isolate that, try to get the
blue of the canisters and the rope. Finally, move on to isolating the
brown parts of the outer bag. When designing a transfer function,
generally we want to start from the inside of our data and work
outward.

While generating this transfer function you may notice that the
approximation ImageVis3D gives you while interacting with the
transfer function is less than stellar. Find the Progress Viewer from

the Workspace menu. Open it up and note the sliders which control resolution on the bottom of
the tool widget. You can drag the bottom slider all the way to the right to force ImageVis3D to
avoid those earlier approximations. Feedback will be slower, but in cases like this one that is
probably desirable.

If you get completely stuck, use the “Load” button at the bottom left of the 2D transfer function
widget and find the backpack8-solution.2dt file in the same directory that the data file existed in.

Creating Compelling Visualizations
At this point, you probably know everything you need to in order to enable you to understand
what features exist in your data. However, not all visualization tasks are exploratory; sometimes
we produce visualizations to convey an interesting feature to a colleague (... or program
manager). Here we’ll go over the process by which SCI Institute personnel produce some of
their visualizations.

Before you really begin: consider the process by which you acquire and process data. In
particular, try to take a quick look at your data before you apply any filtering or processing to it.
In many cases, while data filtering techniques may be useful for analysis, they do not actually
help one to generate a transfer function. So, try things both ways and be sure the input to your
visualization step is the input you really want.

After loading your data, try creating a 1D transfer function using the techniques you have
learned in this tutorial. If the 1D transfer function fails, try isolating features using the gradient
available in the 2D transfer function.

In some cases, neither of those will be enough. If, for example, the bone you want to highlight
has the values [30, 45], and there is a bunch of noise external to the region of interest which
takes on values between 20 and 40, then it is likely you will not be able to visualize the bone
without occluding it with the noise. In this case, we have hit the fundamental problem of volume
visualization: sometimes we can not segment data features based solely on data values. If this
happens with your data, you will need to consider some type of processing. Unfortunately there
are fewer general solutions if this is the case.

The first thing to try is cropping your data. Are there areas external to a region of interest? Try
to rewrite your data to crop out everything but that region. This will also benefit you by removing
data values which are not relevant, which makes it easier to generate a transfer function.

The next thing to try is to artificially quantize your data. Set all data values above a particular
threshold to 4096; all data values below a threshold to 0. ImageVis3D quantizes your data
down to 12 bits when it loads your data, and if you have special knowledge of how your data
values are distributed, you can do a better job than it can. Furthermore, having fewer data
values means that each bin in the transfer function histogram appears wider, which can make it
easier to set a transfer function which finely distinguishes between data values.

If things still aren’t working out, you’ll probably need to segment your data. Thankfully Seg3D is
another tool covered in this workshop. Learn how to perform a manual or semi-automatic
segmentation on your data, and then apply that segmentation as a mask on your original data.

Once you have an expressive transfer function, test to see if lighting helps. Toggle it on and off
and see if that improves the visualization. If turning it off generally helps, you might need to go
back and make subtle modifications to your transfer function, usually to brighten or darken
particular areas. You may want to consider trying to ‘simulate’ shadows by making some data
values black. In the 1D editor: give some data values non-zero “Alpha” settings, but 0 in red,
green, and blue channels. In the 2D editor, you can make a polygon black.

When you have something you like, save a high quality, high resolution image with the
Recorder, available from the workspace menu. Maximize ImageVis3D and your data set’s
window to get the highest resolution possible. Use floating tool widgets (instead of docking
them to the main ImageVis3D window) to allow a larger window. In the “Rendering Options”
dialog, crank up the “Sampling Rate” to 400%. Finally, select a path for the output image and
click “Single” in the Recorder to save it.

In summary,
1. Pick the right data to visualize
2. Try to generate a good visualization using a 1D transfer function
3. Switch to 2D if required
4. Preprocess your data if needed
5. If you still can’t isolate it: perform a segmentation.
6. Open up the lighting dialog and try with and without lighting.
7. Maximize both ImageVis3D and the window with the data set you care about. Make

widgets like the “Rendering Options” and “Recorder” float, instead of being docked into
ImageVis3D, so that you can get a bigger window.

8. In the “Rendering Options”, crank the sampling rate up to 400%.

