The NIH/NIGMS
Center for Integrative Biomedical Computing

scirun defibsim
BioPSE visualizing the electrical field generated by an ICD device.
One of the exciting projects in which the SCI Institute is collaborating is the development of new tools and techniques to assist doctors optimize the placement of Implantable Cardiac Defibrillators (ICDs) prior to surgery.

The use of ICDs has greatly increased over the last few years due to their efficacy in preventing sudden cardiac death (SCD) in patients with congenital heart defects or heart disease. These devices work by continually monitoring the rhythm of the patient's heart and immediately delivering a corrective electric shock if a life-threatening tachycardia is detected. Through this innovation, thousands of lives are saved each year. Surprisingly, these devices are sometimes implanted in newborns and older children with congenital heart defects. Pediatric patients present a particular challenge to the surgeons planning an implantation due to the wide variety of shapes and sizes of torsos. It often has proven difficult for physicians to determine the ideal placement and orientation of the electrodes prior to surgery. Accurate placement of the electrodes is crucial to ensure successful defibrillation with a minimum amount of electric current and to minimize potential damage to the heart and the surrounding tissues.