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Topics for Conisderation 

• General speedup formula 
• Revisiting Amdahl’s Law 
• Gustafson-Barsis’ Law 
• Karp-Flatt metric 
• Isoefficiency metric 
• Isotime and Isomemory metrics 



Speedup Formula 
Speedup S(p) = ts  / tp  

Inherently sequential computations:  Ser(n) 
 

Potentially parallel computations: Par(n) 
 
Communication operations:  Com(n,p) 

 
 

Execution Time Components 
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Let par(n)/p be 
Example  

P increasing 

Time 



And let communications be  com(n,p) 

Processors 

Time 



par(n)/p + com(n,p) Then  

Time 

Processors 



Speedup Plot 
Speedup increases then flattens out and decreases 

Speedup 

Processors 



Efficiency, E(n,p) 

Processors 
Speedup     Efficiency 

time execution    Parallel     Processors x 

time execution    Sequential     Efficiency 

= 

  = 

Efficiency is a fraction: 
 0 ≤ E(n,p) ≤ 1 



Amdahl’s Law 

Let f = Ser(n)/(Ser(n) + Par(n));  i.e., f  is the  
fraction of the code which is inherently sequential  
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Ignore communications part of efficiency to get upper bound 



Example 1 

• 95% of a program’s execution time occurs 
inside a loop that can be executed in 
parallel. What is the maximum speedup 
we should expect from a parallel version of 
the program executing on 8 CPUs? 

1( , ) 5.9
0.05 (1 0.05) / 8

S n p ≤ ≅
+ −



Example 2 

• 20% of a program’s execution time is 
spent within inherently sequential code. 
What is the limit to the speedup 
achievable by a parallel version of the 
program? 

1 1lim 5
0.2 (1 0.2) / 0.2p p→∞

= =
+ −



Limitations of Amdahl’s Law 

• Ignores Com(n,p) - overestimates speedup 
• Assumes f serial fraction constant, so 

underestimates speedup achievable 
• Often  Ser(n) and Com(n,p) have lower 

complexity than Par(n)/p 
• As n increases, Par(n)/p dominates Ser(n) &  
   Com(n,p) 
• As n increases, speedup increases 
• As n increases, sequential fraction f 

decreases.  



Illustration of Amdahl Effect 
Treats problem size as a constant 
Shows how execution time eventually decreases as 
number of processors increases 

 

n = 100 

n = 1,000 

n = 10,000 
Speedup 

Processors 



Gustafson-Barsis’s Law 

• We often use faster computers to solve 
larger problem instances 

• In such cases the amount of algorithmic 
overhead is fixed 

• Hence allow problem size to increase with 
number of processors 
 



Gustafson-Barsis’s Law 

Let   Tp = Ser(n)+Par(n)/p = 1 unit 
Let s be the fraction of time that a parallel program  
spends executing the serial portion of the parallel code.  
   s  = Ser(n)/(Ser(n)+Par(n)/p) 
Then, 
  S(n,p) <= T1/Tp = s + p*(1-s)      (the scaled speedup) 
Thus, sequential time would be p times the parallelized portion  
of the code plus the time for the sequential portion.  Rearranging the above  
equation gives 
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Gustafson-Barsis’s Law 

• Begin with parallel execution time and estimate 
the time spent in sequential portion. 

• Predicts scaled speedup bound on speedup 
• Estimate sequential execution time to solve 

same problem (s) 
• Assumes that s remains fixed irrespective of 

how large is p - thus overestimates speedup. 
• Problem size (s + p*(1-s)) is an increasing function 

of p 
 



Example 1 

• An application running on 10 processors 
spends 3% of its time in serial code. What 
is the scaled speedup of the application? 

Execution on 1 CPU takes 10 times as long… 

…except 9 do not have to execute serial code 

10 (1 10)(0.03) 10 0.27 9.73S = + − = − =



Example 2 

• What is the maximum fraction of a 
program’s parallel execution time that can 
be spent in serial code if it is to achieve a 
scaled speedup of 7 on 8 processors? 

7 8 (1 8) 0.14s s= + − ⇒ ≈



Pop Quiz 

• A parallel program executing on 32 
processors spends 5% of its time in 
sequential code. What is the scaled 
speedup of this program? 



The Karp-Flatt Metric 

• Amdahl’s Law and Gustafson-Barsis’ Law 
ignore Com(n,p) 

• They can overestimate speedup or scaled 
speedup 

• Karp and Flatt proposed another metric 
• Their metric enables serial overhead to be 

measured 
 



Experimentally Determined Serial 
Fraction, f, Karp-Flatt Metric 

Inherently serial component 
of parallel computation  
 
Single processor execution time 
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Derivation – difficult in  
Wikipedia, and [Quinn] 
Easier  in original paper 
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Experimentally Determined Serial 
Fraction, f, Karp-Flatt Metric Derivation 
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Experimentally Determined 
Serial Fraction 

• Takes into account parallel overhead 
• Detects other sources of overhead or 

inefficiency ignored in speedup model 
– Process startup time 
– Process synchronization time 
– Imbalanced workload 
– Architectural overhead 



Example 1 

p 2 3 4 5 6 7 

1.8 2.5 3.1 3.6 4.0 4.4 

8 

4.7 S 

What is the primary reason for speedup of only 4.7 on 8 CPUs? 

f 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Since f is constant, large serial fraction is the primary reason. 



Example 2 

p 2 3 4 5 6 7 

1.9 2.6 3.2 3.7 4.1 4.5 

8 

4.7 S 

What is the primary reason for speedup of only 4.7 on 8 CPUs? 

f 0.070 0.075 0.080 0.085 0.090 0.095 0.100 

Since f is steadily increasing, overhead is the primary reason. 



Isoefficiency Metric 

• Parallel system: parallel program 
executing on a parallel computer 

• Scalability of a parallel system: measure of 
its ability to increase performance as 
number of processors increases 

• A scalable system maintains efficiency as 
processors are added 

• Isoefficiency: way to measure scalability 



Adding  numbers on a hypercube  

000 001

010 011
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110
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0000 0001

0010 0011

0100

0110

0101

0111

1000 1001
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3D Hypercube is  2 2D  
Hypercubes joined 
together 
 
 
4D hypercube is 2 3D 
hypercubes joined 
together3D  



Method A - one number on each processor  
Algorithm form partial sums at each level (dimension) of  
Hypercube  
 
- each step is one add + communicate 
 
E.g n = 16 and so 4 = log(n) steps 
 
Parallel time = const ×log(n) 
Speed up S(n) = serial time/parallel time = n/log(n) 
 
Efficiency = E = S(n)/ n   =   1 /log(n) 
 
 
Hence for n = 32    log(n) = 5  hence E = 1/5 
 
The machine is only being used at 20% efficiency. 



Example: 
 Adding n Numbers on a p processor hypercube, n > p 
 
Method B – n/p numbers summed on each proc. –  
then p partial sums in log(p) steps 
 
E.g n = 16, p = 4 and so 2 = log(4) steps are used 
 
Parallel time = const ×log2 p + n/p adds 
Speed up S(n) = serial time/parallel time = n/ (log(p)+n/p) 
 
Efficiency = E = (n/p) /  (log(n)+n/p)  = 1 / (1+p log(p)/n) 
 
Hence for p = 32 n = 32×100   S(n) = 32/ (1+5×0.001)  
 
Efficiency = E = 1/ (1+5×10−2) giving 95% efficiency 



Laplace’s equation Partitioning 
Normally allocate more than one point to each processor, because many more points 
than processors. 
Points could be partitioned into square blocks or strips: 

6.54 



Block partition 
Four edges where data points 
exchanged. 
Communication time given by 

6.55 

Strip partition 
Two edges where data points are 
exchanged.Communication time is given 
by 

Total cost = 7×( n**2/p ) tarith+ 
tcomsq   per iteration 

Total cost = 7×n×(n/p) tarith+ tcommcol  
per iteration 



RESULTS ON RAVEN CLUSTER for STRIP PARTITION 
CASE 1000 Iterations AMD Processors 
 
n = grid size ( nxn) , p = no of processors, times in seconds. 
n—p     2     4  8  16  24 
1024  94.5  53.8  33.2  22.07 x 
700  44.89  28.91  19.95  15.28  x 
350  11.33  11.86  11.27  x  x 



RESULTS ON CSWUK1 for  1000 iterations  
 
STRIP PARTITION CASE  n: grid size ( nxn) , p = no of 
processors, times in seconds. 
 
n - p  2  4  8  16 
700  166.04  85.51  44.17  23.71 
350  42.81  22.31  11.73  5.83 
175  10.44  4.18  2.58  1.95 
87  2.09  1.45  1.25  1.22 

BLOCK PARTITION CASE n: grid size is ( nxn) , p 
= no of processors, times in seconds. 
 
n -p  2  4  8  16 
700  161.04  83.06  43.20  23.41 
350  40.95  21.60  11.6  5.69 
175  10.12  4.34  2.71  2.12 
87  1.81  1.51  1.32  1.42 



Efficiency Comparison  
 STRIP  Partition. 
Speedup =                   7 n x  n  tarith 
                   ------------------------------------------------- 
                   7(nxn /p) tarith+ 4( tstart + n  tdata)   
 
Let ts = (tstart)/(tarith) and Let td = (tdata)/(tarith)   then as  
 
Efficiency = Speedup / p 
 
Efficiency =                        1 
                            ----------------------------------------- 
                           1+ 4/7 ( ts+ n td) (p/(n x n) 
 
Hence for constant efficiency (p/n constant if tstart small. If 
tstart   large  (nxn) /p   stays constant. 



10**6 100 100 100 100 100 100 100 100 100 100 100 100 
10**5 100 100 100 100 100 100 100 100 100 100   99   95 
10**4 100 100 100 100 100 100   99   98   93   77   45   17 
10**3 100 100   99   98   95   87   65   33   11     3     0     0 
10**2   89   78   61   38   17     6     2     0     0     0     0     0 
10**1     7     4     2     0     0     0     0     0     0     0     0     0 
------------------------------------------------------------------------------- 
N/Proc    2       4       8     16     32   64    128  256   512  1024 2048 4096 
 
 
Strip Partition EFFICIENCY for Ts = 1000 Td = 50, N = nxn 



Efficiency Comparison  
 Block Partition. 
Speedup =                   7 n x  n  tarith 
                   ------------------------------------------------- 
                   7(nxn /p) tarith+8( tstart + n/√p  tdata)   
 
Let ts = (tstart)/(tarith) and Let td = (tdata)/(tarith)   then as  
 
Efficiency = Speedup / p 
 
Efficiency =                        1 
                            ----------------------------------------- 
                           1+ 8/7 ( ts+ n/√p td) (p/(n x n) 
 
Hence for constant efficiency (p/(nxn)constant so load on each 
processor    (nxn)  /p   stays constant. 



10**6 100 100 100 100 100 100 100 100 100 100 100 100 
10**5 100 100 100 100 100 100 100 100 100 100 100 100 
10**4 100 100 100 100 100 100 100 100   99   98   95   88 
10**3 100 100   99   98   96   93   85   71   49   25     9     3 
10**2   81   68   51   34   19     9     4     1     0     0     0     0 
10**1     4     2     0     0     0     0     0     0     0     0     0     0 
------------------------------------------------------------------------------ 
N/Proc     2      4       8     16    32     64  128  256   512 1024 2048 4096 
 
 
Block Partition EFFICIENCY for Ts = 1000 Td = 50 



Isoefficiency Isomemory and Isotime  
• Begin with speedup formula 
• Assume efficiency remains constant 
• Determine relation between strong and 

scalability and isoefficiency (constant efficiency)  
• Define scalability function  
• Define relationship between weak scaling and 

isotime 
• Explain result regarding isoefficiency isotime 

and computational complexity  



Strong Scalability : Isoefficiency if and only if 
strong scalability 

2
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Strong Scalability  for fixed n exists p such that parallel time 
is reduced like 1/p as p increases i.e.    
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Constant Efficiency  (Isoefficiency)  means that  
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Using equation **  to simplify the bottom part of the fraction gives 
For strong scalability this is fixed  



Isoefficiency if and only if strong scalability 

Hence for each n that there is strong scalability 
the strong scalability equation implies that 
E(n,p)=constant. 
 
Similarly for each value of fixed n and 
associated p values that E(n,p) constant as 
(Ser(n)+Par(n)) also constant it follows that 
strong scalability equation holds 

2
1

( ) ( )Ser n Par nconst
const

+
=

As  Ser(n) + Par(n) is just the fixed  serial execution time 
that we are reducing by using more cores the  two  constants 
are related by 



Scalability Function 

• Suppose isoefficiency relation is n ≥ f(p) 
• Let M(n) denote memory required for 

problem of size n 
• M(f(p))/p shows how memory usage per 

processor must increase to maintain 
same efficiency 

• We call M(f(p))/p the scalability function 
 



Meaning of Scalability Function 

• To maintain efficiency when increasing p, we 
must increase n 

• Maximum problem size limited by available 
memory, which is linear in p 

• Scalability function shows how memory usage 
per processor must grow to maintain efficiency 

• Scalability function a constant means parallel 
system is perfectly scalable 



Isomemory and scalability function 

• ISOMEMORY: How fast does the problem size 
have to grow as the number of processors grows 
to maintain constant memory use per processor. 

• Let M(n) denote memory required for problem of 
size n. M(f(p))/p shows how memory usage per 
processor must increase to maintain same 
efficiency 

• In contrast Isomemory requires that we pick n so 
that M(n)/p is constant 
 



Interpreting Scalability Function 
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Isotime and weak scalability are identical 

Weak Scalability:  
for n and  p such that  n/p is 
constant and 
 
then weak scalability holds 

1( ) ( ) / ( , )Ser n Par n p com n p const+ + =

Isotime just means that n and p are chosen so that the 
computation time is the same, 
except that n/p need not be constant 
 
Weak scalability is thus a special case of Isotime 
 
 
For base case n0 

0 0 1( ) ( )Ser n Par n const+ =



Isoefficiency function fE(p) 
fE(p) is rate at which problem size should be increased wrt 
number of processors to maintain constant efficiency and 
is O(    ), k > 1 
 
Isotime function fT (p) 
fT (p) is rate at which problem size should be increased wrt 
number of processors to maintain constant execution time 
and is O(   ), k > 1 
 
Isomemory function fM(p) 
fM(p) is rate at which problem size should be increased wrt 
number of processors to maintain constant memory per 
processor O(p) 

kp

kp



Relationship between Efficiency and Execution time 
As Efficiency E = (T(n,1)/p) / ( T(n,1) / p +T0(p,n)/p) 
 
(i) If isotime function keeps (T(n,1)/p+T0(p,n)/p )constant, isotime model 

keeps constant efficiency and parallel system is scalable 
 

(ii) If parallel execution time is a function of (n/p), the isotime and 
isoefficiency functions grow linearly with processors and parallel system 
is scalable 

 
(iii) Isotime function grows linearly if and only if the algorithm has linear 

complexity 
 
(iv) If Isotime function grows linearly then isoefficiency function grows 

linearly and system is scalable. 
 
(v) if isoefficiency grows linearly and the computational complexity is linear 

then  isotime grows linearly and the system is scalable. 
 

See references [1], [2] and [3] 
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The problem is only perfectly scalable if and only it has linear 
complexity See references [1]  and [2] 
Reference [3] provides a more general discussion of Isoefficiency 

Key Result 



Linearity in weak scaling   



Weak and Strong Scaling 
For strong scaling    T(n*,p) = f(n*)/p  
for a fixed n* and some function f(.) 
 
For weak scaling T(n,p) = const where n= g(p) for some 
function  g(p). 
Hence for weak and strong scaling  f(g(p)) = p  and suppose 
f(n) =  

then p =  
and the number of processors grows much faster than n to 
achieve both weak and strong scalability. n=3 is common in 
our applications. While not perfectly scalable this is 
satisfactory and is in fact linear complexity in terms of the total 
number of unknowns nxnxn.   

qn
qn



Linearity in weak scaling  



Scaling Large Software Frameworks 
• Theoretical models are fine for understanding small 

problems and even models of large codes 
• The reality of scaling large codes is that we have to use 

a measurement based approach and time every 
component  

Strong Scaling Breakdown 



UINTAH SCALABILITY 

NSF NICS Kraken 6-core AMD based machine 

At 98k Proc 
1 16x16x16 
patch per  
Core and so  
Scalability fades 

Problem is 
essentially 
an advected 
blob, moving  
across a domain  
 

Each solid line is a  
fixed problem size  
Instance ni 

n1        n2        n3           n4         n4  



Scalability on Titan  

    

One flow with particles moving 
3-level AMR ICE 

Distributed Controller 



Weak and Strong Scalability: Problem size n on P 

processors  
Strong Scalability   ( , ) ( ,1) /T n p T n p=

Weak Scalability 
 
Constant time T(kn, kp) for larger problem kn on k more cores 

( , ) ( ,1)T np p T n=

Both weak and strong scalability  only if   ( ,1)T n nα=

( , ) log( )T n p n pα γ= +

More realistic model                 including global collectives 

Is fraction of time spent in global collectives at  0 0log( ) / ( )p nγ α 0 0n p



xxxxxxx XXXXX 





Nevertheless it is possible to get good scaling  



Fluid Structure Interaction Example: AMR MPMICE 
A PBX explosive flow  pushing a piece of its metal container 

Flow velocity and particle volume  Computational grids and particles 

Grid Variables:        Fixed number per patch, relative easy to balance    
Particle Variables:   Variable  number per patch,  hard to load balance 
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT 



Fluid Structure Interaction Example: AMR MPMICE 
A PBX explosive flow  pushing a piece of its metal container 

Flow velocity and particle volume  Computational grids and particles 

Grid Variables:        Fixed number per patch, relative easy to balance    
Particle Variables:   Variable  number per patch,  hard to load balance 
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT 



Fluid Structure Interaction Example: AMR MPMICE 
A PBX explosive flow  pushing a piece of its metal container 

Flow velocity and particle volume  Computational grids and particles 

Grid Variables:        Fixed number per patch, relative easy to balance    
Particle Variables:   Variable  number per patch,  hard to load balance 
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT 



Scalability on Titan 
CPUs  

    

One flow with particles moving 
3-level AMR MPM ICE 70% 
efficiency at 256K cores vs 
16K cores 

• Challenging scalability - combination of  
particles fluid-flow  and AMR 

• New runtime system successful 10x 
memory and 2x speed  

• Shows our ability to make complex 
problems scale well on large systems 
 

Uneven work load per patch 

Results by Qingyu Meng 2012 



Slope of line depends on hypre 
options used (log(p)) best case 
Times do not include hypre startup  

Weak Scalability for implicit calculations using hypre MG Precon CG in Uintah 
Code generated by Wasatch DSL.  

Scalability with Utah Uintah Buoyant Helium Plume Model  

Results by John Schmidt 

Jaguar xk6 

Kraken xt5 



Scaling breakdown for hypre linear solver applied 
to Helium Plume Problem 

Communications 
associated with 
330K unknowns 
per patch & core  
on Kraken’s  
Seastar network 
are problematic. 
Smaller patches 
ok 

John Schmidt 



Summary 
• Performance terms  Speedup, Efficiency 
• Model of speedup Serial component 

– Parallel component 
– Communication component 

• What prevents linear speedup? 
– Serial operations, communication operations 
– Process start-up, imbalanced workloads 
– Architectural limitations 

• Analyzing parallel performance 
– Amdahl’s Law, Gustafson-Barsis’ Law, Karp-Flatt 

metric 
– Isoefficiency Isotime and Isomemory metrics 
– Practical Scalability based on measurements and 

worrying about log(P) Global collectives 
•     

 
 

 



Part of Example Exam Questions 

Question  
 
Given a decomposition of the runtime of a  parallel program  into 
A serial part Ser(n) , a parallel part par(n,p) and a 
communications  
Part comm(n,p): 
 
(i) State Amdahls law  and explain what it neglects 

 
(ii) State Gustaffson’s law and explain how it is an improvement 

over Amdahls law 
(iii) Define what is mean by the terms  

(i) Speedup 
(ii) Inherently serial fraction, f 

(iv) Using Amdahls law derive the Karp Flatt metric  as given by 
(v) Explain why the Karp Flatt metric may be more useful than 

either of the other two approaches 
 

(vi) Explain what is meant by Iso efficiency and strong scalability 
 

(vii) Explain what is meant by weak scalability and show that a 
code with greater than linear computataional complexity 
cannot weak scale 

1 / ( , ) 1 /
1 1 /

S n p pf
p
−

=
−
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