
Performance Evaluation of Codes

Performance Metrics

Aim – to understanding the algorithmic issues in obtaining
 high performance from large scale parallel computers

CS6230

Topics for Conisderation

• General speedup formula
• Revisiting Amdahl’s Law
• Gustafson-Barsis’ Law
• Karp-Flatt metric
• Isoefficiency metric
• Isotime and Isomemory metrics

Speedup Formula
Speedup S(p) = ts / tp

Inherently sequential computations: Ser(n)

Potentially parallel computations: Par(n)

Communication operations: Com(n,p)

Execution Time Components

() ()()
() () / (,)

Ser n Par nS p
Ser n Par n p Com n p

+
=

+ +

Let par(n)/p be
Example

P increasing

Time

And let communications be com(n,p)

Processors

Time

par(n)/p + com(n,p) Then

Time

Processors

Speedup Plot
Speedup increases then flattens out and decreases

Speedup

Processors

Efficiency, E(n,p)

Processors
Speedup Efficiency

time execution Parallel Processors x

time execution Sequential Efficiency

=

 =

Efficiency is a fraction:
 0 ≤ E(n,p) ≤ 1

Amdahl’s Law

Let f = Ser(n)/(Ser(n) + Par(n)); i.e., f is the
fraction of the code which is inherently sequential

() ()(,)
() () / (,)

() ()
() () /

Ser n Par nS n p
Ser n Par n p com n p

Ser n Par n
Ser n Par n p

+
≤

+ +
+

≤
+

1(,)
(1) /

S n p
f f p

≤
+ −

Ignore communications part of efficiency to get upper bound

Example 1

• 95% of a program’s execution time occurs
inside a loop that can be executed in
parallel. What is the maximum speedup
we should expect from a parallel version of
the program executing on 8 CPUs?

1(,) 5.9
0.05 (1 0.05) / 8

S n p ≤ ≅
+ −

Example 2

• 20% of a program’s execution time is
spent within inherently sequential code.
What is the limit to the speedup
achievable by a parallel version of the
program?

1 1lim 5
0.2 (1 0.2) / 0.2p p→∞

= =
+ −

Limitations of Amdahl’s Law

• Ignores Com(n,p) - overestimates speedup
• Assumes f serial fraction constant, so

underestimates speedup achievable
• Often Ser(n) and Com(n,p) have lower

complexity than Par(n)/p
• As n increases, Par(n)/p dominates Ser(n) &
 Com(n,p)
• As n increases, speedup increases
• As n increases, sequential fraction f

decreases.

Illustration of Amdahl Effect
Treats problem size as a constant
Shows how execution time eventually decreases as
number of processors increases

n = 100

n = 1,000

n = 10,000
Speedup

Processors

Gustafson-Barsis’s Law

• We often use faster computers to solve
larger problem instances

• In such cases the amount of algorithmic
overhead is fixed

• Hence allow problem size to increase with
number of processors

Gustafson-Barsis’s Law

Let Tp = Ser(n)+Par(n)/p = 1 unit
Let s be the fraction of time that a parallel program
spends executing the serial portion of the parallel code.
 s = Ser(n)/(Ser(n)+Par(n)/p)
Then,
 S(n,p) <= T1/Tp = s + p*(1-s) (the scaled speedup)
Thus, sequential time would be p times the parallelized portion
of the code plus the time for the sequential portion. Rearranging the above
equation gives

() ()(,)
() () /

Ser n Par nS n p
Ser n Par n p

+
≤

+

We assume that s may be small

(,) (1)S n p p p s≤ + −

Gustafson-Barsis’s Law

• Begin with parallel execution time and estimate
the time spent in sequential portion.

• Predicts scaled speedup bound on speedup
• Estimate sequential execution time to solve

same problem (s)
• Assumes that s remains fixed irrespective of

how large is p - thus overestimates speedup.
• Problem size (s + p*(1-s)) is an increasing function

of p

Example 1

• An application running on 10 processors
spends 3% of its time in serial code. What
is the scaled speedup of the application?

Execution on 1 CPU takes 10 times as long…

…except 9 do not have to execute serial code

10 (1 10)(0.03) 10 0.27 9.73S = + − = − =

Example 2

• What is the maximum fraction of a
program’s parallel execution time that can
be spent in serial code if it is to achieve a
scaled speedup of 7 on 8 processors?

7 8 (1 8) 0.14s s= + − ⇒ ≈

Pop Quiz

• A parallel program executing on 32
processors spends 5% of its time in
sequential code. What is the scaled
speedup of this program?

The Karp-Flatt Metric

• Amdahl’s Law and Gustafson-Barsis’ Law
ignore Com(n,p)

• They can overestimate speedup or scaled
speedup

• Karp and Flatt proposed another metric
• Their metric enables serial overhead to be

measured

Experimentally Determined Serial
Fraction, f, Karp-Flatt Metric

Inherently serial component
of parallel computation

Single processor execution time

()
() ()
Ser nf

Ser n Par n
=

+

1 / (,) 1 /
1 1 /

S n p pf
p
−

=
−

=

Derivation – difficult in
Wikipedia, and [Quinn]
Easier in original paper

From Amdahl’s Law
1(,)

(1) /
S n p

f f p
=

+ −
And so

Experimentally Determined Serial
Fraction, f, Karp-Flatt Metric Derivation

1 / (,) 1 /
1 1 /

S n p pf
p
−

=
−

From Amdahl’s Law 1(,)
(1) /

S n p
f f p

=
+ −

And so

and so

As required

Experimentally Determined
Serial Fraction

• Takes into account parallel overhead
• Detects other sources of overhead or

inefficiency ignored in speedup model
– Process startup time
– Process synchronization time
– Imbalanced workload
– Architectural overhead

Example 1

p 2 3 4 5 6 7

1.8 2.5 3.1 3.6 4.0 4.4

8

4.7 S

What is the primary reason for speedup of only 4.7 on 8 CPUs?

f 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since f is constant, large serial fraction is the primary reason.

Example 2

p 2 3 4 5 6 7

1.9 2.6 3.2 3.7 4.1 4.5

8

4.7 S

What is the primary reason for speedup of only 4.7 on 8 CPUs?

f 0.070 0.075 0.080 0.085 0.090 0.095 0.100

Since f is steadily increasing, overhead is the primary reason.

Isoefficiency Metric

• Parallel system: parallel program
executing on a parallel computer

• Scalability of a parallel system: measure of
its ability to increase performance as
number of processors increases

• A scalable system maintains efficiency as
processors are added

• Isoefficiency: way to measure scalability

Adding numbers on a hypercube

000 001

010 011

100

110

101

111

0000 0001

0010 0011

0100

0110

0101

0111

1000 1001

1010 1011

1100

1110

1101

1111

3D Hypercube is 2 2D
Hypercubes joined
together

4D hypercube is 2 3D
hypercubes joined
together3D

Method A - one number on each processor
Algorithm form partial sums at each level (dimension) of
Hypercube

- each step is one add + communicate

E.g n = 16 and so 4 = log(n) steps

Parallel time = const ×log(n)
Speed up S(n) = serial time/parallel time = n/log(n)

Efficiency = E = S(n)/ n = 1 /log(n)

Hence for n = 32 log(n) = 5 hence E = 1/5

The machine is only being used at 20% efficiency.

Example:
 Adding n Numbers on a p processor hypercube, n > p

Method B – n/p numbers summed on each proc. –
then p partial sums in log(p) steps

E.g n = 16, p = 4 and so 2 = log(4) steps are used

Parallel time = const ×log2 p + n/p adds
Speed up S(n) = serial time/parallel time = n/ (log(p)+n/p)

Efficiency = E = (n/p) / (log(n)+n/p) = 1 / (1+p log(p)/n)

Hence for p = 32 n = 32×100 S(n) = 32/ (1+5×0.001)

Efficiency = E = 1/ (1+5×10−2) giving 95% efficiency

Laplace’s equation Partitioning
Normally allocate more than one point to each processor, because many more points
than processors.
Points could be partitioned into square blocks or strips:

6.54

Block partition
Four edges where data points
exchanged.
Communication time given by

6.55

Strip partition
Two edges where data points are
exchanged.Communication time is given
by

Total cost = 7×(n**2/p) tarith+
tcomsq per iteration

Total cost = 7×n×(n/p) tarith+ tcommcol
per iteration

RESULTS ON RAVEN CLUSTER for STRIP PARTITION
CASE 1000 Iterations AMD Processors

n = grid size (nxn) , p = no of processors, times in seconds.
n—p 2 4 8 16 24
1024 94.5 53.8 33.2 22.07 x
700 44.89 28.91 19.95 15.28 x
350 11.33 11.86 11.27 x x

RESULTS ON CSWUK1 for 1000 iterations

STRIP PARTITION CASE n: grid size (nxn) , p = no of
processors, times in seconds.

n - p 2 4 8 16
700 166.04 85.51 44.17 23.71
350 42.81 22.31 11.73 5.83
175 10.44 4.18 2.58 1.95
87 2.09 1.45 1.25 1.22

BLOCK PARTITION CASE n: grid size is (nxn) , p
= no of processors, times in seconds.

n -p 2 4 8 16
700 161.04 83.06 43.20 23.41
350 40.95 21.60 11.6 5.69
175 10.12 4.34 2.71 2.12
87 1.81 1.51 1.32 1.42

Efficiency Comparison
 STRIP Partition.
Speedup = 7 n x n tarith

 7(nxn /p) tarith+ 4(tstart + n tdata)

Let ts = (tstart)/(tarith) and Let td = (tdata)/(tarith) then as

Efficiency = Speedup / p

Efficiency = 1

 1+ 4/7 (ts+ n td) (p/(n x n)

Hence for constant efficiency (p/n constant if tstart small. If
tstart large (nxn) /p stays constant.

10**6 100 100 100 100 100 100 100 100 100 100 100 100
10**5 100 100 100 100 100 100 100 100 100 100 99 95
10**4 100 100 100 100 100 100 99 98 93 77 45 17
10**3 100 100 99 98 95 87 65 33 11 3 0 0
10**2 89 78 61 38 17 6 2 0 0 0 0 0
10**1 7 4 2 0 0 0 0 0 0 0 0 0

N/Proc 2 4 8 16 32 64 128 256 512 1024 2048 4096

Strip Partition EFFICIENCY for Ts = 1000 Td = 50, N = nxn

Efficiency Comparison
 Block Partition.
Speedup = 7 n x n tarith

 7(nxn /p) tarith+8(tstart + n/√p tdata)

Let ts = (tstart)/(tarith) and Let td = (tdata)/(tarith) then as

Efficiency = Speedup / p

Efficiency = 1

 1+ 8/7 (ts+ n/√p td) (p/(n x n)

Hence for constant efficiency (p/(nxn)constant so load on each
processor (nxn) /p stays constant.

10**6 100 100 100 100 100 100 100 100 100 100 100 100
10**5 100 100 100 100 100 100 100 100 100 100 100 100
10**4 100 100 100 100 100 100 100 100 99 98 95 88
10**3 100 100 99 98 96 93 85 71 49 25 9 3
10**2 81 68 51 34 19 9 4 1 0 0 0 0
10**1 4 2 0 0 0 0 0 0 0 0 0 0
--
N/Proc 2 4 8 16 32 64 128 256 512 1024 2048 4096

Block Partition EFFICIENCY for Ts = 1000 Td = 50

Isoefficiency Isomemory and Isotime
• Begin with speedup formula
• Assume efficiency remains constant
• Determine relation between strong and

scalability and isoefficiency (constant efficiency)
• Define scalability function
• Define relationship between weak scaling and

isotime
• Explain result regarding isoefficiency isotime

and computational complexity

Strong Scalability : Isoefficiency if and only if
strong scalability

2
() ()(,)

(() () / (,))
Ser n Par nE n p const

Ser n Par n p com n p p
+

= =
+ +

Strong Scalability for fixed n exists p such that parallel time
is reduced like 1/p as p increases i.e.

1() () / (,) constSer n Par n p com n p
p

+ + =

Constant Efficiency (Isoefficiency) means that

2
1

() ()Ser n Par nconst
const

+
=

**

Using equation ** to simplify the bottom part of the fraction gives
For strong scalability this is fixed

Isoefficiency if and only if strong scalability

Hence for each n that there is strong scalability
the strong scalability equation implies that
E(n,p)=constant.

Similarly for each value of fixed n and
associated p values that E(n,p) constant as
(Ser(n)+Par(n)) also constant it follows that
strong scalability equation holds

2
1

() ()Ser n Par nconst
const

+
=

As Ser(n) + Par(n) is just the fixed serial execution time
that we are reducing by using more cores the two constants
are related by

Scalability Function

• Suppose isoefficiency relation is n ≥ f(p)
• Let M(n) denote memory required for

problem of size n
• M(f(p))/p shows how memory usage per

processor must increase to maintain
same efficiency

• We call M(f(p))/p the scalability function

Meaning of Scalability Function

• To maintain efficiency when increasing p, we
must increase n

• Maximum problem size limited by available
memory, which is linear in p

• Scalability function shows how memory usage
per processor must grow to maintain efficiency

• Scalability function a constant means parallel
system is perfectly scalable

Isomemory and scalability function

• ISOMEMORY: How fast does the problem size
have to grow as the number of processors grows
to maintain constant memory use per processor.

• Let M(n) denote memory required for problem of
size n. M(f(p))/p shows how memory usage per
processor must increase to maintain same
efficiency

• In contrast Isomemory requires that we pick n so
that M(n)/p is constant

Interpreting Scalability Function

Number of processors

M
em

or
y

ne
ed

ed
 p

er
 p

ro
ce

ss
or

 Cplogp

Cp

Clogp

C

Memory Size

Can maintain
efficiency

Cannot maintain
efficiency

Isotime and weak scalability are identical

Weak Scalability:
for n and p such that n/p is
constant and

then weak scalability holds

1() () / (,)Ser n Par n p com n p const+ + =

Isotime just means that n and p are chosen so that the
computation time is the same,
except that n/p need not be constant

Weak scalability is thus a special case of Isotime

For base case n0

0 0 1() ()Ser n Par n const+ =

Isoefficiency function fE(p)
fE(p) is rate at which problem size should be increased wrt
number of processors to maintain constant efficiency and
is O(), k > 1

Isotime function fT (p)
fT (p) is rate at which problem size should be increased wrt
number of processors to maintain constant execution time
and is O(), k > 1

Isomemory function fM(p)
fM(p) is rate at which problem size should be increased wrt
number of processors to maintain constant memory per
processor O(p)

kp

kp

Relationship between Efficiency and Execution time
As Efficiency E = (T(n,1)/p) / (T(n,1) / p +T0(p,n)/p)

(i) If isotime function keeps (T(n,1)/p+T0(p,n)/p)constant, isotime model

keeps constant efficiency and parallel system is scalable

(ii) If parallel execution time is a function of (n/p), the isotime and
isoefficiency functions grow linearly with processors and parallel system
is scalable

(iii) Isotime function grows linearly if and only if the algorithm has linear

complexity

(iv) If Isotime function grows linearly then isoefficiency function grows

linearly and system is scalable.

(v) if isoefficiency grows linearly and the computational complexity is linear

then isotime grows linearly and the system is scalable.

See references [1], [2] and [3]

REFERENCES
[1] Ignacio Martin and Fransisco Tirado.
Relationships Between Efficiency and Execution time of Full Multigrid Methods
on Parallel Computers.IEEE Trans. on Parallel and Distributed Systems Vol 8
no 6 97 562–573.

[2] Ignacio Martin, Fransisco Tirado and L.Vazquez.
Some Aspects about Scalability of Scientific Applications on Parallel
Computers Parallel Computing Vol 22 96 1169–1195.

[3] Anath Grama, Anshul Gupta, George Karypis and Vipin Kumar
Introduction to Parallel Computing (Second edition) Addison Wesley

The problem is only perfectly scalable if and only it has linear
complexity See references [1] and [2]
Reference [3] provides a more general discussion of Isoefficiency

Key Result

Linearity in weak scaling

Weak and Strong Scaling
For strong scaling T(n*,p) = f(n*)/p
for a fixed n* and some function f(.)

For weak scaling T(n,p) = const where n= g(p) for some
function g(p).
Hence for weak and strong scaling f(g(p)) = p and suppose
f(n) =

then p =
and the number of processors grows much faster than n to
achieve both weak and strong scalability. n=3 is common in
our applications. While not perfectly scalable this is
satisfactory and is in fact linear complexity in terms of the total
number of unknowns nxnxn.

qn
qn

Linearity in weak scaling

Scaling Large Software Frameworks
• Theoretical models are fine for understanding small

problems and even models of large codes
• The reality of scaling large codes is that we have to use

a measurement based approach and time every
component

Strong Scaling Breakdown

UINTAH SCALABILITY

NSF NICS Kraken 6-core AMD based machine

At 98k Proc
1 16x16x16
patch per
Core and so
Scalability fades

Problem is
essentially
an advected
blob, moving
across a domain

Each solid line is a
fixed problem size
Instance ni

n1 n2 n3 n4 n4

Scalability on Titan

One flow with particles moving
3-level AMR ICE

Distributed Controller

Weak and Strong Scalability: Problem size n on P

processors
Strong Scalability (,) (,1) /T n p T n p=

Weak Scalability

Constant time T(kn, kp) for larger problem kn on k more cores

(,) (,1)T np p T n=

Both weak and strong scalability only if (,1)T n nα=

(,) log()T n p n pα γ= +

More realistic model including global collectives

Is fraction of time spent in global collectives at 0 0log() / ()p nγ α 0 0n p

xxxxxxx XXXXX

Nevertheless it is possible to get good scaling

Fluid Structure Interaction Example: AMR MPMICE
A PBX explosive flow pushing a piece of its metal container

Flow velocity and particle volume Computational grids and particles

Grid Variables: Fixed number per patch, relative easy to balance
Particle Variables: Variable number per patch, hard to load balance
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT

Fluid Structure Interaction Example: AMR MPMICE
A PBX explosive flow pushing a piece of its metal container

Flow velocity and particle volume Computational grids and particles

Grid Variables: Fixed number per patch, relative easy to balance
Particle Variables: Variable number per patch, hard to load balance
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT

Fluid Structure Interaction Example: AMR MPMICE
A PBX explosive flow pushing a piece of its metal container

Flow velocity and particle volume Computational grids and particles

Grid Variables: Fixed number per patch, relative easy to balance
Particle Variables: Variable number per patch, hard to load balance
SEVERE DYNAMIC LOAD IMBALANCES DUE TO PARTICLE MOVEMENT

Scalability on Titan
CPUs

One flow with particles moving
3-level AMR MPM ICE 70%
efficiency at 256K cores vs
16K cores

• Challenging scalability - combination of
particles fluid-flow and AMR

• New runtime system successful 10x
memory and 2x speed

• Shows our ability to make complex
problems scale well on large systems

Uneven work load per patch

Results by Qingyu Meng 2012

Slope of line depends on hypre
options used (log(p)) best case
Times do not include hypre startup

Weak Scalability for implicit calculations using hypre MG Precon CG in Uintah
Code generated by Wasatch DSL.

Scalability with Utah Uintah Buoyant Helium Plume Model

Results by John Schmidt

Jaguar xk6

Kraken xt5

Scaling breakdown for hypre linear solver applied
to Helium Plume Problem

Communications
associated with
330K unknowns
per patch & core
on Kraken’s
Seastar network
are problematic.
Smaller patches
ok

John Schmidt

Summary
• Performance terms Speedup, Efficiency
• Model of speedup Serial component

– Parallel component
– Communication component

• What prevents linear speedup?
– Serial operations, communication operations
– Process start-up, imbalanced workloads
– Architectural limitations

• Analyzing parallel performance
– Amdahl’s Law, Gustafson-Barsis’ Law, Karp-Flatt

metric
– Isoefficiency Isotime and Isomemory metrics
– Practical Scalability based on measurements and

worrying about log(P) Global collectives
•

Part of Example Exam Questions

Question

Given a decomposition of the runtime of a parallel program into
A serial part Ser(n) , a parallel part par(n,p) and a
communications
Part comm(n,p):

(i) State Amdahls law and explain what it neglects

(ii) State Gustaffson’s law and explain how it is an improvement

over Amdahls law
(iii) Define what is mean by the terms

(i) Speedup
(ii) Inherently serial fraction, f

(iv) Using Amdahls law derive the Karp Flatt metric as given by
(v) Explain why the Karp Flatt metric may be more useful than

either of the other two approaches

(vi) Explain what is meant by Iso efficiency and strong scalability

(vii) Explain what is meant by weak scalability and show that a
code with greater than linear computataional complexity
cannot weak scale

1 / (,) 1 /
1 1 /

S n p pf
p
−

=
−

	Slide Number 1
	Topics for Conisderation
	Speedup Formula
	Let par(n)/p be
	And let communications be com(n,p)
	par(n)/p + com(n,p)
	Speedup Plot
	Efficiency, E(n,p)
	Amdahl’s Law
	Example 1
	Example 2
	Limitations of Amdahl’s Law
	Illustration of Amdahl Effect�Treats problem size as a constant�Shows how execution time eventually decreases as number of processors increases�
	Gustafson-Barsis’s Law
	Gustafson-Barsis’s Law
	Gustafson-Barsis’s Law
	Example 1
	Example 2
	Pop Quiz
	The Karp-Flatt Metric
	Experimentally Determined Serial Fraction, f, Karp-Flatt Metric
	Experimentally Determined Serial Fraction, f, Karp-Flatt Metric Derivation
	Experimentally Determined Serial Fraction
	Example 1
	Example 2
	Isoefficiency Metric
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Isoefficiency Isomemory and Isotime
	Strong Scalability : Isoefficiency if and only if strong scalability
	Isoefficiency if and only if strong scalability
	Scalability Function
	Meaning of Scalability Function
	Isomemory and scalability function
	Interpreting Scalability Function
	Isotime and weak scalability are identical
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Linearity in weak scaling
	Weak and Strong Scaling
	Linearity in weak scaling
	Scaling Large Software Frameworks
	UINTAH SCALABILITY
	Scalability on Titan
	Weak and Strong Scalability: Problem size n on P processors
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Fluid Structure Interaction Example: AMR MPMICE
	Fluid Structure Interaction Example: AMR MPMICE
	Fluid Structure Interaction Example: AMR MPMICE
	Scalability on Titan CPUs
	Slide Number 63
	Scaling breakdown for hypre linear solver applied to Helium Plume Problem
	Summary
	Slide Number 66

