
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

1

Chapter 11

Numerical Algorithms

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

2

Numerical Algorithms

In textbook do:

• Matrix multiplication

• Solving a system of linear equations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

3

Matrices — A Review
An n x m matrix

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

4

Matrix Addition

Involves adding corresponding elements of each matrix to
form the result matrix.

Given the elements of A as ai,j and the elements of B as
bi,j, each element of C is computed as

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

5

Matrix Multiplication

Multiplication of two matrices, A and B, produces the matrix C
whose elements, ci,j (0 <= i < n, 0 <= j < m), are computed as
follows:

where A is an n x l matrix and B is an l x m matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

6

Matrix multiplication, C = A x B

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

7

Matrix-Vector Multiplication
c = A x b

Matrix-vector multiplication follows directly from the definition of
matrix-matrix multiplication by making B an n x1 matrix (vector).
Result an n x 1 matrix (vector).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

8

Relationship of Matrices to Linear
Equations

A system of linear equations can be written in matrix form:

 Ax = b

Matrix A holds the a constants

x is a vector of the unknowns

b is a vector of the b constants.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

9

Implementing Matrix Multiplication
Sequential Code

Assume throughout that the matrices are square (n x n matrices).
The sequential code to compute A x B could simply be

 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++) {
 c[i][j] = 0;
 for (k = 0; k < n; k++)
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
 }
This algorithm requires n3 multiplications and n3 additions,
leading to a sequential time complexity of O(n3).
Very easy to parallelize.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

10

Parallel Code

With n processors (and n x n matrices), can obtain:

• Time complexity of O(n2) with n processors
 Each instance of inner loop independent and can be done
 by a separate processor

• Time complexity of O(n) with n2 processors
 One element of A and B assigned to each processor.
 Cost optimal since O(n3) = n x O(n2) = n2 x O(n)].

• Time complexity of O(log n) with n3 processors
 By parallelizing the inner loop. Not cost-optimal since
 O(n3)¹n3xO(log n)).

O(log n) lower bound for parallel matrix multiplication.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

11

Partitioning into Submatrices

Suppose matrix divided into s2 submatrices. Each submatrix has n/
s x n/s elements. Using notation Ap,q as submatrix in submatrix row
p and submatrix column q:

 for (p = 0; p < s; p++)
 for (q = 0; q < s; q++) {
 Cp,q = 0; /* clear elements of submatrix */
 for (r = 0; r < m; r++) /* submatrix multiplication &*/
 Cp,q = Cp,q + Ap,r * Br,q; /*add to accum. submatrix*/
 }
The line
 Cp,q = Cp,q + Ap,r * Br,q;

means multiply submatrix Ap,r and Br,q using matrix multiplication
and add to submatrix Cp,q using matrix addition. Known as block
matrix multiplication.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

12

Block Matrix Multiplication

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

13

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

14

Direct Implementation

One processor to compute each element of C – n^2 processors
would be needed. One row of elements of A and one column of
elements of B needed. Some of same elements sent to more than
one processor. Can use submatrices.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

15

Performance Improvement

Using tree construction n numbers can be added in log n steps
using n processors:

Computational time
complexity of O(log n)
using n3 processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

16

Recursive Implementation

Apply same algorithm on each submatrix recursivly.

Excellent algorithm for a shared memory systems because of
locality of operations.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

17

Recursive Algorithm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

18

Mesh Implementations

 • Cannon’s algorithm

 • Fox’s algorithm (not in textbook but similar complexity)

 • Systolic array

All involve using processor arranged a mesh and shifting
elements of the arrays through the mesh. Accumulate the partial
sums at each processor.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

19

Mesh Implementations
Cannon’s Algorithm

Uses a mesh of processors with wraparound connections (a torus) to shift the A
elements (or submatrices) left and the B elements (or submatrices) up.

1.Initially processor Pi,j has elements ai,j and bi,j (0 <= i < n, 0 <= k < n).
2. Elements are moved from their initial position to an “aligned” position. The
 complete ith row of A is shifted i places left and the complete jth column of
 B is shifted j places upward. This has the effect of placing the element ai,j+i
 and the element bi+j,j in processor Pi,j,. These elements are a pair of those
 required in the accumulation of ci,j.
3.Each processor, Pi,j, multiplies its elements.
4. The ith row of A is shifted one place right, and the jth column of B is shifted
 one place upward. This has the effect of bringing together the adjacent
 elements of A and B, which will also be required in the accumulation.
5. Each processor, Pi,j, multiplies the elements brought to it and adds the
 result to the accumulating sum.
6. Step 4 and 5 are repeated until the final result is obtained (n - 1 shifts with
 n rows and n columns of elements).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

20

Movement of A and B elements

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

21

Step 2 — Alignment of elements of A and B

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

22

Step 4 - One-place shift of elements of A and B

C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2)

Cannon’s Matrix Multiplication

Initial Step to Skew Matrices in Cannon

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1) B(0,2)

B(1,0)

B(2,0)

B(1,1) B(1,2)

B(2,1) B(2,2)

B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

Initial

After skewing

25

Shifting Steps in Cannon

• First step

• Second

• Third

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0)

B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(2,1)

A(1,2) B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,0)

A(2,0)

A(0,1) A(0,2)

A(1,1)

A(2,1)

A(1,2)

A(2,2)

A(0,0) B(0,1)

B(0,2) B(1,0)

B(2,0)

B(1,1)

B(1,2)

B(2,1)

B(2,2) B(0,0)

A(1,1)

A(2,2)

A(0,0)

Cost of Cannon’s Algorithm
 forall i=0 to s-1 … recall s = sqrt(p)
 left-circular-shift row i of A by i … cost = s*(ts + td*n2/p)
 forall i=0 to s-1
 up-circular-shift column i of B by i … cost = s*(ts + tβ*n2/p)
 for k=0 to s-1 …sequential loop
 forall i=0 to s-1 and j=0 to s-1
 C(i,j) = C(i,j) + A(i,j)*B(i,j) … cost = 2*(n/s)3 = 2*n3/p3/2
 left-circular-shift each row of A by 1 … cost = ts + td*n2/p
 up-circular-shift each column of B by 1 … cost = ts + td*n2/p

° Total Time = 2*n3/p + 4* s*ts + 4*td*n2/s
° Parallel Efficiency = 2*n3 / (p * Total Time)
 = 1/(1 + ts * 2*(s/n)3 + td* 2*(s/n))

 = 1/(1 + O(sqrt(p)/n))

° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows
° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n))

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

27

c = A x b

Systolic Algorithms Kung et al.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

28

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

29

Solving a System of Linear Equations

Objective is to find values for the unknowns, x0, x1, …, xn-1,
given values for a0,0, a0,1, …, an-1,n-1, and b0, …, bn .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

30

Solving a System of Linear Equations

Dense matrices

Gaussian Elimination - parallel time complexity O(n2)

Sparse matrices

By iteration - depends upon iteration method and number of
iterations but typically O(log n)

 • Jacobi iteration
 • Gauss-Seidel relaxation (not good for parallelization)
 • Red-Black ordering
 • Multigrid

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

31

Gaussian Elimination

Convert general system of linear equations into triangular system of
equations. Then be solved by Back Substitution.

Uses characteristic of linear equations that any row can be replaced
by that row added to another row multiplied by a constant.

Starts at the first row and works toward the bottom row. At the ith row,
each row j below the ith row is replaced by row j + (row i) (-aj,i/ ai,i).
The constant used for row j is -aj,i/ai,i. Has the effect of making all
the elements in the ith column below the ith row zero because

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

32

Gaussian elimination

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

33

Partial Pivoting

If ai,i is zero or close to zero, we will not be able to compute the
quantity -aj,i/ai,i.

Procedure must be modified into so-called partial pivoting by
swapping the ith row with the row below it that has the largest
absolute element in the ith column of any of the rows below the ith
row if there is one. (Reordering equations will not affect the
system.)

In the following, we will not consider partial pivoting.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

34

Sequential Code

Without partial pivoting:

 for (i = 0; i < n-1; i++) /* for each row, except last */
 for (j = i+1; j < n; j++) { /*step thro subsequent rows */
 m = a[j][i]/a[i][i]; /* Compute multiplier */
 for (k = i; k < n; k++) /*last n-i-1 elements of row j*/
 a[j][k] = a[j][k] - a[i][k] * m;
 b[j] = b[j] - b[i] * m; /* modify right side */
}

The time complexity is O(n3).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

35

Parallel Implementation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

36

Analysis

Communication
n - 1 broadcasts performed sequentially. ith broadcast contains n -
i + 1 elements.
 Time complexity of 2()O n

Suppose Broadcast can be done in one step. There are (n-1)
broadcasts. ith broadcast message contains n-i+1 elements

Hence total communication given by

2

)
0

(2)(1)((1) ((1) (3))
3

n

comm s d s d
i

n nt t n i t n t t
−

=

+ +
= + − + = − + −∑

(2)(1)log(p)((1) (3))
3comm s d

n nt n t t+ +
= − + −

More realistically assuming broadcast is log(p)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

37

Analysis

Computation
After row broadcast, each processor Pj beyond broadcast
processor Pi will compute its multiplier, and operate upon n - j + 2
elements of its row. Ignoring the computation of the multiplier,
there are n - j + 2 multiplications and n - j + 2 subtractions.

Time complexity of

Efficiency will be relatively low because all the processors before
the processor holding row i do not participate in the computation
again.

2()O n

1
2

1

(2)(3)2 (2) 3 ()
2

n

comp
j

n nt n j O n
−

=

+ +
= − + = =∑

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

38

Pipeline implementation of Gaussian
elimination

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

39

Strip Partitioning

Poor processor allocation! Processors do not participate in
computation after their last row is processed.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

40

Cyclic-Striped Partitioning

An alternative which equalizes the processor workload:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

41

Analysis of Strip Case

Serial Case LU decomposition costs

Assume that strip approach parallelizes
this on p cores to get a cost of

2
32

3 2 6
n nn + +

2
31 2()

3 2 6
n nn

p
+ +

Efficiency is then

3 2

1
(2)(1)log(p)((1) (3))

31
2 / 3 / 2 / 6

s d
n nn t t

n n n

+ +− + −
+

+ +
Or

2

1
3log(p)(t)1

2
s dn t

n
++

Hence need 2

3log(p)(t)
2

s dn t
n

+
constant

Relationship Between LU Decomposition and
Gaussian Elimination





















































=

−−−−−−

)(

)(
1

)(
11

)3(
3

)3(
33

)2(
2

)2(
23

)2(
22

)1(
1

)1(
13

)1(
12

)1(
11

4,3,2,1,

3,12,11,1

2,31,3

1,2

0000
000

00
0

1
1

0
001
0001
00001

n
nn

n
nn

n
nn

n

n

n

nnnn

nnn

a
aa

aa
aaa
aaaa

mmmm
mmm

mm
m

A




















As the diagonal entries of L matrix are all 1’s they are not stored,
Also LU is stored in a single matrix.

There many different ways to decompose the matrix A.
A common one is U=Gaussian eliminated matrix
 L=Multipliers used for elimination

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

43

Other Direct Linear Solver Algorithms

Use pipelined approach and overlap communication and
computatIon, see book by Quinn.

Use block partition of large matrix so each core has only
a block.

Many other approache in use.

However – large dense linear systems not often solved
apart from Top500 list . Or if they are advantage is taken
of special from e.g. fast multipole method.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

44

Iterative Methods

Time complexity of direct method at O(N^2) with N processors, is
significant.

Time complexity of iteration method depends upon:

 • the type of iteration,
 • number of iterations
 • number of unknowns, and
 • required accuracy

but can be less than the direct method especially for a few
unknowns i.e a sparse system of linear equations.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

45

Jacobi Iteration

Iteration formula - ith equation rearranged to have ith unknown on
left side:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

46

Example of a Sparse System of Linear
Equations

Laplace’s Equation

Solve for f over the two-dimensional x-y space.

For a computer solution, finite difference methods are appropriate

Two-dimensional solution space is “discretized” into a large
number of solution points.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

47

Finite Difference Method

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

48

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

49

Natural Order

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

50

Relationship with a General System of
Linear Equations

Using natural ordering, ith point computed from ith equation:

which is a linear equation with five unknowns (except those
with boundary points).
In general form, the ith equation becomes:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

51

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

52

Gauss-Seidel Relaxation

Uses some newly computed values to compute other values in
that iteration.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

53

Gauss-Seidel Iteration Formula

where the superscript indicates the iteration.

With natural ordering of unknowns, formula reduces to

At the kth iteration, two of the four values (before the ith element)
taken from the kth iteration and two values (after the ith element)
taken from the (k-1)th iteration. We have:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

54

Red-Black Ordering

First, black points computed. Next, red points computed. Black
points computed simultaneously, and red points computed
simultaneously.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

55

Red-Black Parallel Code

 forall (i = 1; i < n; i++)
 forall (j = 1; j < n; j++)
 if ((i + j) % 2 == 0) /* compute red points */
 f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]);
 forall (i = 1; i < n; i++)
 forall (j = 1; j < n; j++)
 if ((i + j) % 2 != 0) /* compute black points */
 f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

56

Higher-Order Difference Methods

More distant points could be used in the computation. The
following update formula:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

57

Nine-point stencil

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

58

Overrelaxation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

59

Multigrid Method

First, a coarse grid of points used. With these points, iteration
process will start to converge quickly.

At some stage, number of points increased to include points of the
coarse grid and extra points between the points of the coarse grid.
Initial values of extra points found by interpolation. Computation
continues with this finer grid.

Grid can be made finer and finer as computation proceeds, or
computation can alternate between fine and coarse grids.

Coarser grids take into account distant effects more quickly and
provide a good starting point for the next finer grid.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

60

Multigrid processor allocation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

61

(Semi) Asynchronous Iteration

As noted early, synchronizing on every iteration will cause
significant overhead - best if one can is to synchronize after a
number of iterations.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Conjugate Gradient Method
• A is positive definite if for every nonzero vector x and its

transpose xT, the product xTAx > 0
• If A is symmetric and positive definite, then the function

 has a unique minimizer that is solution to Ax = b
• Conjugate gradient is an iterative method that solves Ax

= b by minimizing q(x)

cbxA xxxq TT +−= 2
1)(

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Conjugate Gradient Method

Two inner products and one
 matrix vector product

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Conjugate Gradient Convergence

4

3

2

1

1 2 3 4
0x

1x 2x

Finds value of
n-dimensional solution
in at most n iterations

Everything needs to be exact!
Often less iterations will do.

Does not work well for all
problems and often needs to be
applied to a transformed or
preconditioned problems

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Conjugate Gradient Method
• Matrix-vector multiplication
• Inner product (dot product)
• Matrix-vector multiplication has higher time complexity
• Replicate vectors

– Need all-gather step after matrix-vector multiply
– Inner product has time complexity Θ(n)

• Block decomposition of vectors
– Need all-gather step before matrix-vector multiply
– Inner product has time complexity

Θ(n/p + log p)
• Care needed with sparse matrices
• Method is and example of a Krylov methods

Summary

b – A() b – A
Simplification [Ax, Ar]→Ar

)0()0()0()1(

)0()0(

)0()0(
)0(

)0()0(

rxx
Arr
rr

Axbr

T

T

α

α

+=

=

−=

)1()1()1()2(

)1()1(

)1()1(
)1(

)0()0()0()1(

rxx
Arr
rr

Arrr

T

T

α

α

α

+=

=

−=

)2()2()2()3(

)2()2(

)2()2(
)2(

)1()1()1()2(

rxx
Arr
rr

Arrr

T

T

α

α

α

+=

=

−=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

67

Preconditioned Conjugate Gradients

1 1 1()T

T

T

E A E x E b
EE M
x E x

− − −=

=

=





Transform the original system into one that
Conjugate Gradients will work on

= positive definite matrix Where

and

*

Congugate Gradients Continued
• In general preconditioning may involve techniques like
• Matrix multiplication partial LU factorisation or even multigrid
• On the next slides is an example of a pre-conditioned Krylov method.
• State of the art parallel iterative solver is hypre from Lawrence

Livermore National Laboratory
• A multigrid method is used as a preconditioner to a conjugate gradient

solver for Laplaces equation with a RHS (pressure poisson equation).
• The relaxation scheme in the multigrid solver is a red-black Gauss

Seidel method.
• See J. Schmidt, M. Berzins, J. Thornock, T. Saad, J.

Sutherland. “Large Scale Parallel Solution of Incompressible Flow
Problems using Uintah and hypre,” SCI Technical Report, No.
UUSCI-2012-002, SCI Institute, University of Utah, 2012.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

68

Helium Plume using Wasatch with Uintah – successful scaling with hypre

These results involved moving the hypre data
 structures into Uintah

[John Schmidt 2012]

DOE Jaguar XK6

NSF Kraken

Even the hypre
team were surprised
that we got these
results!

Largest case
30B
unknowns

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scaling of Linear Solvers for Alstom-type application

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Cannon’s Matrix Multiplication
	Initial Step to Skew Matrices in Cannon
	Shifting Steps in Cannon
	Cost of Cannon’s Algorithm
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Relationship Between LU Decomposition and Gaussian Elimination
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Conjugate Gradient Method
	Conjugate Gradient Method
	Conjugate Gradient Convergence
	Conjugate Gradient Method
	Summary
	Preconditioned Conjugate Gradients
	Congugate Gradients Continued
	Slide Number 69
	Slide Number 70

