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Chapter 11 

Numerical Algorithms 
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Numerical Algorithms 
 

In textbook do: 
 
• Matrix multiplication 
 
• Solving a system of linear equations 
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Matrices — A Review 
An n x m matrix 
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Matrix Addition 
 

Involves adding corresponding elements of each matrix to 
form the result matrix. 
 
Given the elements of A as ai,j and the elements of B as 
bi,j, each element of C is computed as 
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Matrix Multiplication 
 
 

Multiplication of two matrices, A and B, produces the matrix C 
whose elements, ci,j (0 <= i < n, 0 <= j < m), are computed as 
follows: 

where A is an n x l matrix and B is an l x m matrix. 
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Matrix multiplication, C = A x B 



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 

@ 2004 Pearson Education Inc. All rights reserved. 

 

7 

Matrix-Vector Multiplication 
c = A x b 

 
Matrix-vector multiplication follows directly from the definition of 
matrix-matrix multiplication by making B an n x1 matrix (vector). 
Result an n x 1 matrix (vector). 
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Relationship of Matrices to Linear 
Equations 

 
A system of linear equations can be written in matrix form: 
     
    Ax = b 
 
Matrix A holds the a constants 
 
x is a vector of the unknowns 
 
b is a vector of the b constants. 
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Implementing Matrix Multiplication 
Sequential Code 

 
Assume throughout that the matrices are square (n x n matrices). 
The sequential code to compute A x B could simply be 
 
 for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) { 
   c[i][j] = 0; 
   for (k = 0; k < n; k++) 
    c[i][j] = c[i][j] + a[i][k] * b[k][j]; 
 } 
This algorithm requires n3 multiplications and n3 additions, 
leading to a sequential time complexity of O(n3).  
Very easy to parallelize. 
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Parallel Code 
 

With n processors (and n x n matrices), can obtain: 
 
• Time complexity of O(n2) with n processors 
  Each instance of inner loop independent and can be done    
  by a separate processor 
 
• Time complexity of O(n) with n2 processors 
  One element of A and B assigned to each processor. 
  Cost optimal since O(n3) = n x O(n2) = n2 x O(n)]. 
 
• Time complexity of O(log n) with n3 processors 
  By parallelizing the inner loop. Not cost-optimal since 
  O(n3)¹n3xO(log n)). 
 
O(log n) lower bound for parallel matrix multiplication. 
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Partitioning into Submatrices 
 
Suppose matrix divided into s2 submatrices. Each submatrix has n/ 
s x n/s elements. Using notation Ap,q as submatrix in submatrix row 
p and submatrix column q: 
 
 for (p = 0; p < s; p++) 
    for (q = 0; q < s; q++) { 
       Cp,q = 0;                                   /* clear elements of submatrix */ 
       for (r = 0; r < m; r++)                /* submatrix multiplication &*/ 
           Cp,q = Cp,q + Ap,r * Br,q;   /*add to accum. submatrix*/ 
 } 
The line 
 Cp,q = Cp,q + Ap,r * Br,q; 
 
means multiply submatrix Ap,r and Br,q using matrix multiplication 
and add to submatrix Cp,q using matrix addition. Known as block 
matrix multiplication. 
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Block Matrix Multiplication 
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Direct Implementation 
 

One processor to compute each element of C – n^2 processors 
would be needed. One row of elements of A and one column of 
elements of B needed. Some of same elements sent to more than 
one processor. Can use submatrices. 
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Performance Improvement 
 

Using tree construction n numbers can be added in log n steps 
using n processors: 

Computational time 
complexity of O(log n) 
using n3 processors. 
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Recursive Implementation 

Apply same algorithm on each submatrix recursivly. 
 
Excellent algorithm for a shared memory systems because of 
locality of operations. 
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Recursive Algorithm 
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Mesh Implementations 
 
 

 • Cannon’s algorithm 
 
 • Fox’s algorithm (not in textbook but similar complexity) 
 
 • Systolic array 
 
All involve using processor arranged a mesh and shifting 
elements of the arrays through the mesh. Accumulate the partial 
sums at each processor. 
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Mesh Implementations 
Cannon’s Algorithm 

 
Uses a mesh of processors with wraparound connections (a torus) to shift the A 
elements (or submatrices) left and the B elements (or submatrices) up. 
 
1.Initially processor Pi,j has elements ai,j and bi,j (0 <= i < n, 0 <= k < n). 
2. Elements are moved from their initial position to an “aligned” position. The 
    complete ith row of A is shifted i places left and the complete jth column of 
    B is shifted j places upward. This has the effect of placing the element ai,j+i 
    and the element bi+j,j in processor Pi,j,. These elements are a pair of those 
    required in the accumulation of ci,j. 
3.Each processor, Pi,j, multiplies its elements. 
4. The ith row of A is shifted one place right, and the jth column of B is shifted 
    one place upward. This has the effect of bringing together the adjacent 
    elements of A and B, which will also be required in the accumulation. 
5. Each processor, Pi,j, multiplies the elements brought to it and adds the 
    result to the accumulating sum. 
6. Step 4 and 5 are repeated until the final result is obtained (n - 1 shifts with 
    n rows and n columns of elements). 



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 

@ 2004 Pearson Education Inc. All rights reserved. 

 

20 

Movement of A and B elements 
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Step 2 — Alignment of elements of A and B 
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Step 4 - One-place shift of elements of A and B 



C(1,2) = A(1,0) * B(0,2) + A(1,1) * B(1,2) + A(1,2) * B(2,2) 

Cannon’s Matrix Multiplication 



Initial Step to Skew Matrices in Cannon 

A(1,0) 

A(2,0) 
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A(2,2) 

A(0,0) 
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B(1,1) B(1,2) 

B(2,1) B(2,2) 

B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) 

B(0,1) 

B(0,2) B(1,0) 

B(2,0) 
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B(2,2) B(0,0) 

Initial  

After skewing 
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Shifting Steps in Cannon 

• First step 
 
 
 

• Second 
 
 
 
 

• Third 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 
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B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(2,1) 

A(1,2) B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,0) 

A(2,0) 

A(0,1) A(0,2) 

A(1,1) 

A(2,1) 

A(1,2) 

A(2,2) 

A(0,0) B(0,1) 

B(0,2) B(1,0) 

B(2,0) 

B(1,1) 

B(1,2) 

B(2,1) 

B(2,2) B(0,0) 

A(1,1) 

A(2,2) 

A(0,0) 



Cost of Cannon’s Algorithm 
  forall  i=0 to s-1              …  recall s = sqrt(p) 
         left-circular-shift row i of A by i    … cost = s*(ts + td*n2/p) 
   forall  i=0 to s-1 
         up-circular-shift column i of B by i … cost = s*(ts + tβ*n2/p) 
   for k=0 to s-1 …sequential loop 
          forall  i=0 to s-1 and j=0 to s-1 
               C(i,j) = C(i,j) + A(i,j)*B(i,j)   … cost = 2*(n/s)3 = 2*n3/p3/2 
               left-circular-shift each row of A by 1   … cost = ts + td*n2/p 
               up-circular-shift each column of B by 1     … cost = ts + td*n2/p 

° Total Time = 2*n3/p +  4* s*ts + 4*td*n2/s   
° Parallel Efficiency = 2*n3 / (p * Total Time) 
                                  = 1/( 1 + ts * 2*(s/n)3 + td* 2*(s/n) ) 
 
                                  = 1/(1 + O(sqrt(p)/n))  
 
° Grows to 1 as n/s = n/sqrt(p) = sqrt(data per processor) grows 
° Better than 1D layout, which had Efficiency = 1/(1 + O(p/n)) 
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c = A x  b  

Systolic Algorithms Kung et al. 
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Solving a System of Linear Equations 

Objective is to find values for the unknowns, x0, x1, …, xn-1, 
given values for a0,0, a0,1, …, an-1,n-1, and b0, …, bn . 
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Solving a System of Linear Equations 
 

Dense matrices 
 

Gaussian Elimination - parallel time complexity O(n2) 
 

Sparse matrices 
 

By iteration - depends upon iteration method and number of 
iterations but typically O(log n) 
 
 • Jacobi iteration 
 • Gauss-Seidel relaxation (not good for parallelization) 
 • Red-Black ordering 
 • Multigrid 
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Gaussian Elimination 
 

Convert general system of linear equations into triangular system of 
equations. Then be solved by Back Substitution. 
 
Uses characteristic of linear equations that any row can be replaced 
by that row added to another row multiplied by a constant. 
 
Starts at the first row and works toward the bottom row. At the ith row, 
each row j below the ith row is replaced by row j + (row i) (-aj,i/ ai,i). 
The constant used for row j is -aj,i/ai,i. Has the effect of making all 
the elements in the ith column below the ith row zero because 
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Gaussian elimination 
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Partial Pivoting 
 

If ai,i is zero or close to zero, we will not be able to compute the 
quantity -aj,i/ai,i. 
 
 
Procedure must be modified into so-called partial pivoting by 
swapping the ith row with the row below it that has the largest 
absolute element in the ith column of any of the rows below the ith 
row if there is one. (Reordering equations will not affect the 
system.) 
 
 
In the following, we will not consider partial pivoting. 
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Sequential Code 
 
 
Without partial pivoting: 
 
    for (i = 0; i < n-1; i++)                 /* for each row, except last */ 
          for (j = i+1; j < n; j++) {     /*step thro subsequent rows */ 
               m = a[j][i]/a[i][i];             /* Compute multiplier */ 
               for (k = i; k < n; k++)      /*last n-i-1 elements of row j*/ 
                  a[j][k] = a[j][k] - a[i][k] * m; 
               b[j] = b[j] - b[i] * m;           /* modify right side */ 
} 
 
The time complexity is O(n3). 
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Parallel Implementation 
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Analysis 
 

Communication 
n - 1 broadcasts performed sequentially. ith broadcast contains n - 
i + 1 elements. 
            Time complexity of 2( )O n

Suppose Broadcast can be done in one step. There are (n-1) 
broadcasts.  ith broadcast message contains   n-i+1 elements  
 
Hence total communication given by  

2

)
0

( 2)( 1)( ( 1) (( 1) ( 3) )
3

n

comm s d s d
i

n nt t n i t n t t
−

=

+ +
= + − + = − + −∑

( 2)( 1)log(p)(( 1) ( 3) )
3comm s d

n nt n t t+ +
= − + −

More realistically assuming broadcast is log(p) 
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Analysis 
 

Computation 
After row broadcast, each processor Pj beyond broadcast 
processor Pi will compute its multiplier, and operate upon n - j + 2 
elements of its row. Ignoring the computation of the multiplier, 
there are n - j + 2 multiplications and n - j + 2 subtractions. 
 
Time complexity of                  
 
 
 
 
Efficiency will be relatively low because all the processors before 
the processor holding row i do not participate in the computation 
again. 

2( )O n

1
2

1

( 2)( 3)2 ( 2) 3 ( )
2

n

comp
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n nt n j O n
−

=

+ +
= − + = =∑
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Pipeline implementation of Gaussian 
elimination 
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Strip Partitioning 

Poor processor allocation! Processors do not participate in 
computation after their last row is processed. 
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Cyclic-Striped Partitioning 
 

An alternative which equalizes the processor workload: 
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Analysis of Strip Case 

Serial  Case  LU decomposition costs  
 
Assume that strip approach parallelizes  
this on p cores to get a cost of   

2
32

3 2 6
n nn + +

2
31 2( )

3 2 6
n nn

p
+ +

Efficiency is then 

3 2

1
( 2)( 1)log(p)(( 1) ( 3) )

31
2 / 3 / 2 / 6

s d
n nn t t

n n n

+ +− + −
+

+ +
Or  

2

1
3log(p)(t )1

2
s dn t

n
++

Hence need  2

3log(p)(t )
2

s dn t
n

+
constant 



Relationship Between LU Decomposition and  
Gaussian Elimination 
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As the diagonal entries of L matrix are all 1’s they are not stored,  
Also LU is stored in a single matrix. 

There many different ways to decompose the matrix A. 
A common one is  U=Gaussian eliminated matrix 
         L=Multipliers used for elimination  
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Other Direct Linear Solver Algorithms 
  
Use pipelined approach and overlap communication and 
computatIon, see book by Quinn. 
 
Use block partition of large matrix so each core has only 
a block. 
 
Many other approache in use. 
 
However – large dense linear systems not often solved 
apart from Top500  list . Or if they are advantage is taken 
of special from e.g. fast multipole method. 
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Iterative Methods 
 

Time complexity of direct method at O(N^2) with N processors, is 
significant. 
 
Time complexity of iteration method depends upon: 
 
 • the type of iteration, 
 • number of iterations 
 • number of unknowns, and 
 • required accuracy 
 
but can be less than the direct method especially for a few 
unknowns i.e a sparse system of linear equations. 
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Jacobi Iteration 
 

Iteration formula - ith equation rearranged to have ith unknown on 
left side: 
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Example of a Sparse System of Linear 
Equations 

Laplace’s Equation 

Solve for f over the two-dimensional x-y space. 
 
For a computer solution, finite difference methods are appropriate 
 
Two-dimensional solution space is “discretized” into a large 
number of solution points. 
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Finite Difference Method 
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Natural Order 
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Relationship with a General System of 
Linear Equations 

Using natural ordering, ith point computed from ith equation: 

which is a linear equation with five unknowns (except those 
with boundary points). 
In general form, the ith equation becomes: 
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Gauss-Seidel Relaxation 
 
Uses some newly computed values to compute other values in 
that iteration. 
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Gauss-Seidel Iteration Formula 

where the superscript indicates the iteration. 
 
With natural ordering of unknowns, formula reduces to 

At the kth iteration, two of the four values (before the ith element) 
taken from the kth iteration and two values (after the ith element) 
taken from the (k-1)th iteration. We have: 
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Red-Black Ordering 
 

First, black points computed. Next, red points computed. Black 
points computed simultaneously, and red points computed 
simultaneously. 
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Red-Black Parallel Code 
 
 

    forall (i = 1; i < n; i++) 
          forall (j = 1; j < n; j++) 
             if ((i + j) % 2 == 0)                       /* compute red points */ 
                  f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]); 
    forall (i = 1; i < n; i++) 
         forall (j = 1; j < n; j++) 
           if ((i + j) % 2 != 0)                      /* compute black points */ 
                f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]); 
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Higher-Order Difference Methods 
 

More distant points could be used in the computation. The 
following update formula: 
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Nine-point stencil 
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Overrelaxation 
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Multigrid Method 
 

First, a coarse grid of points used. With these points, iteration 
process will start to converge quickly. 
 
At some stage, number of points increased to include points of the 
coarse grid and extra points between the points of the coarse grid. 
Initial values of extra points found by interpolation. Computation 
continues with this finer grid. 
 
Grid can be made finer and finer as computation proceeds, or 
computation can alternate between fine and coarse grids. 
 
Coarser grids take into account distant effects more quickly and 
provide a good starting point for the next finer grid. 
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Multigrid processor allocation 
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(Semi) Asynchronous Iteration 
 

As noted early, synchronizing on every iteration will cause 
significant overhead - best if one can is to synchronize after a 
number of iterations. 



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, 

@ 2004 Pearson Education Inc. All rights reserved. 

 

Conjugate Gradient Method 
• A is positive definite if for every nonzero vector x and its 

transpose xT, the product xTAx > 0 
• If A is symmetric and positive definite, then the function 
 
    
    has a unique minimizer that is solution to Ax = b 
• Conjugate gradient is an iterative method that solves Ax 

= b by minimizing q(x)  
 

cbxA xxxq TT +−= 2
1)(
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Conjugate Gradient Method 

Two inner products and one 
                  matrix vector product  
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Conjugate Gradient Convergence 

4

3

2

1

1 2 3 4
0x

1x 2x

Finds value of 
n-dimensional solution 
in at most n iterations 
 
Everything needs to be exact! 
Often less iterations will do. 
 
Does not work well for all  
problems and often needs to be  
applied to a transformed or 
preconditioned problems 
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Conjugate Gradient Method 
• Matrix-vector multiplication 
• Inner product (dot product)  
• Matrix-vector multiplication has higher time complexity 
• Replicate vectors 

– Need all-gather step after matrix-vector multiply 
– Inner product has time complexity Θ(n)  

• Block decomposition of vectors 
– Need all-gather step before matrix-vector multiply 
– Inner product has time complexity 

Θ(n/p + log p)  
• Care needed with sparse matrices 
• Method is and example of a Krylov methods 

 

 



Summary 

b – A(                    ) b – A 
Simplification [Ax, Ar]→Ar 
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Preconditioned Conjugate Gradients 

1 1 1( )T

T

T

E A E x E b
EE M
x E x

− − −=

=

=





Transform the original system into one that  
Conjugate Gradients will work on 

= positive definite matrix Where 
 
and 

* 



Congugate Gradients Continued 
• In general preconditioning may involve techniques like 
• Matrix multiplication partial LU factorisation or even multigrid 
• On the next slides  is an example of a pre-conditioned Krylov method. 
• State of the art parallel iterative solver is hypre from Lawrence 

Livermore National Laboratory 
• A multigrid method is used as a preconditioner to a conjugate gradient 

solver for Laplaces equation with a RHS ( pressure poisson equation). 
• The relaxation scheme in the multigrid solver is  a red-black Gauss 

Seidel method.  
• See  J. Schmidt, M. Berzins, J. Thornock, T. Saad, J. 

Sutherland. “Large Scale Parallel Solution of Incompressible Flow 
Problems using Uintah and hypre,” SCI Technical Report, No. 
UUSCI-2012-002, SCI Institute, University of Utah, 2012.  
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Helium Plume using Wasatch with Uintah – successful scaling with hypre 

These results involved moving the hypre data 
 structures into Uintah 

[John Schmidt 2012] 

DOE Jaguar XK6  

NSF Kraken  

Even the hypre 
team were surprised  
that we got these  
results!  

Largest case  
30B 
unknowns 



Each Mira Run is scaled wrt the Titan Run at 256 cores 
Note these times are not the same for different patch sizes.  

2.2 Trillion 
DOF  

Weak Scaling of Linear Solvers for Alstom-type  application 
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