
° Matrix –Vector Multiplication  
 

° Matrix – matrix Multiplication  
 

° Slides from UCSD and USB 
 

° Directed Acyclic Graph Approach Jack Dongarra 
 

° A new approach using Strassen`s algorithm Jim 
Demmel 

COMPUTATIONAL LINEAR ALGEBRA  

How do we optimize performance ?  



° Assume just 2 levels in the hierarchy, fast and slow 
° All data initially in slow memory 

• m = number of memory elements (words) moved between fast and slow 
memory  

• tm = time per slow memory operation 
• f = number of arithmetic operations 
• tf = time per arithmetic operation << tm 
• q = f / m average number of flops per slow element access 

° Min. possible time = f* tf when all data in fast memory 
° Actual time  

 
 

° Larger q means Time closer to minimum f * tf  

 Using a Simpler Model of Memory to Optimize 
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Warm up: Matrix-vector multiplication 
{implements y = y + A*x} 
for i = 1:n 
  for j = 1:n 
   y(i) = y(i) + A(i,j)*x(j) 
 

= + * 

y(i) y(i) 

A(i,:) 

x(:) 



Warm up: Matrix-vector multiplication 
{read x(1:n) into fast memory} 
{read y(1:n) into fast memory} 
for i = 1:n 
     {read row i of A into fast memory} 
     for j = 1:n 
     y(i) = y(i) + A(i,j)*x(j) 
{write y(1:n) back to slow memory} 

• m = number of slow memory refs = 3n + n2 

• f   = number of arithmetic operations = 2n2 
• q  = f / m ~= 2 
 

• Matrix-vector multiplication limited by slow memory speed 



“Naïve” Matrix Multiply 
{implements C = C + A*B} 
for i = 1 to n 
       for j = 1 to n 
  for k = 1 to n 
             C(i,j) = C(i,j) + A(i,k) * B(k,j) 

= + * 
C(i,j) C(i,j) A(i,:) 

B(:,j) 

Algorithm has 2*n3 = O(n3) Flops and 
operates on 3*n2 words of memory 



Matrix Multiply on RS/6000  
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T = N4.7 

O(N3) performance would have constant cycles/flop 
Performance looks much closer to O(N5)  

Size 2000 took 5 days 

12000 would take 
1095 years 



“Naïve” Matrix Multiply 
{implements C = C + A*B} 
for i = 1 to n 
       for j = 1 to n 
  for k = 1 to n 
             C(i,j) = C(i,j) + A(i,k) * B(k,j) 

Sequential 
access through 
entire matrix 

Stride-N 
access to 
one row* 

Reuse  
value from a 

register 

• When cache (or TLB or memory) can’t hold entire B matrix, there will 
be a miss on every line. 

 
• When cache (or TLB or memory) can’t hold a row of A, there will be a 

miss on each access 
 

*Assumes column-major order 



Matrix Multiply on RS/6000  
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TLB miss every  
iteration 

Cache miss every  
16 iterations Page miss every 512 iterations   



Note on Matrix Storage 

° A matrix is a 2-D array of elements, but memory 
addresses are “1-D” 

° Conventions for matrix layout 
• by column, or “column major” (Fortran default) 
• by row, or “row major” (C default) 
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Standard Approach to Matrix Multiply 
{implements C = C + A*B} 
for i = 1 to n 
  {read row i of A into fast memory} 
   for j = 1 to n 
       {read C(i,j) into fast memory} 
       {read column j of B into fast memory} 
       for k = 1 to n 
           C(i,j) = C(i,j) + A(i,k) * B(k,j) 
       {write C(i,j) back to slow memory} 

= + * 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 



 Standard Approach to Matrix Multiply  
Number of slow memory refs on unblocked matrix 

multiply 
 m = n3  : read each column of B  n times 
         + n2 : read each column of A once for each i 
         + 2n2 : read and write each element of C once 
        = n3 + 3n2 
So q = f / m = 2n3 / (n3 + 3n2) 
        ~= 2 for large n  

= + * 
C(i,j) C(i,j) A(i,:) 

B(:,j) 



 

 

 I-J-K nest: 
 do i=1,N 
 do j=1,N 
      s=a(i,j) 
      do k=1,N 
  s=s+ b(i,k) *c(k,j) 
                    end 
                    a(i,j)=s 
 end 
 end 
 
 

  K-I-J nest: 
 do k=1,N 
 do i=1,N 
      s=b(i,k) 
                   do j=1,N 
                           a(i,j)= a(i,j) + s *c(k,j) 
                   end 
               end 
               end 

Large N: Estimate number of memory accesses 
2*N2 + N* N2 + N2~ N3 
High probability that b(i,1:N)remains in cache for 
each j loop + stride=N for c access 

Large N: Estimate number of memory accesses 
2*N*N2 + N2 + N2~ 2*N3 
Matrix A must be loaded and stored N 
times + stride=N for a & c accesses! 
 

Alternative forms of Matrix Matrix Multiply  



°  J-K-I nest: 
° do j=1,N 
° do k=1,N 
°       s=c(j,k) 
°       do i=1,N 
°           a(i,j) = a(i,j) + b(i,k) * s 
°       end 
° End 
° end 

Large N: Estimate number of memory accesses 
2*N2 + N* N2 + N2~ N3 
B must be loaded N-times but 
stride=1 access in inner loop! 
 



Block Structured Matrix Multiply 
Let A,B,C  be n by n  matrices  split into  
N by N matrices of b by b subblocks where block size  is    b=n / N 
   for i = 1 to N 
        for j = 1 to N 
        {read block C(i,j) into fast memory} 
        for k = 1 to N 
                   {read block A(i,k) into fast memory} 
                   {read block B(k,j) into fast memory} 
                   C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks} 
        {write block C(i,j) back to slow memory} 

= + * 
C(i,j) C(i,j) A(i,k) 

B(k,j) 



Blocked (Tiled) Matrix Multiply 
Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N 

is called the block size  
    for i = 1 to N 
        for j = 1 to N 
        {read block C(i,j) into fast memory} 
        for k = 1 to N 
                   {read block A(i,k) into fast memory} 
                   {read block B(k,j) into fast memory} 
                   C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks} 
        {write block C(i,j) back to slow memory} 

= + * 
C(i,j) C(i,j) A(i,k) 

B(k,j) 



Blocked (Tiled) Matrix Multiply 

= + * C(1,1) C(1,1) 
A(1,1) B(1,1) 

 

 



Blocked (Tiled) Matrix Multiply 

= + * C(1,1) C(1,1) 
A(1,2) B(2,1) 

 

 



Blocked (Tiled) Matrix Multiply 

= + * C(1,1) C(1,1) 
A(1,3) B(3,1) 

 

 



Blocked (Tiled) Matrix Multiply 

= + * C(1,2) C(1,2) 

A(1,1) 
B(1,2) 

 

 



Blocked (Tiled) Matrix Multiply 

= + * C(1,2) C(1,2) 

A(1,2) B(2,2) 

 

 



Blocked (Tiled) Matrix Multiply 

= + * C(1,2) C(1,2) 

A(1,3) B(3,2) 

 

 



Blocked (Tiled) Matrix Multiply 
Recall: 
   m is amount memory traffic between slow and fast memory 
   matrix has nxn elements, and NxN blocks each of size bxb 
   f is number of floating point operations, 2n3 for this problem 
   q = f / m is our measure of algorithm efficiency in the memory 

system 
So:  m =  N*n2    read each block of B  N3 times (N3 * n/N * n/N) 

         + N*n2   read each block of A  N3 times 
         + 2n2     read and write each block of C once 
        =  (2N + 2) * n2 
 
So computational intensity q = f / m = 2n3 / ((2N + 2) * n2) 
                                            ~= n / N = b  for large n 
So we can improve performance by increasing the blocksize b  
Can be much faster than matrix-vector multiply (q=2) 



Using Analysis to Understand Machines 
The blocked algorithm has computational intensity q ~= b 
° The larger the block size, the more efficient our algorithm will be 

 
° Limit:   All three blocks from A,B,C must fit in fast memory 

(cache), so we cannot make these blocks arbitrarily large  
 
 

° Assume your fast memory has size Mfast 
                  3b2 <= Mfast, so q ~= b <= sqrt(Mfast/3) 
 
 
To build a machine to run matrix multiply at the peak arithmetic speed of 

the machine, we need a fast memory of size 
 
                        Mfast >= 3b2 ~= 3q2 = 3(Tm/Tf)2 

 
 
This sizes are reasonable for L1 cache, but not for register sets 



Limits to Optimizing Matrix Multiply 
° The blocked algorithm changes the order in which values are 

accumulated into each C[i,j] by applying associativity 
° The previous analysis showed that the blocked algorithm has 

computational intensity: 
 
 

   q ~= b <= sqrt(Mfast/3) 
 

° There is a lower bound result that says we cannot do any better 
than this (using only algebraic associativity) 
 
 
 

° Theorem (Hong & Kung, 1981): Any reorganization of this 
algorithm (that uses only algebraic associativity) is limited to q = 
O(sqrt(Mfast)) 



Basic Linear Algebra Subroutines 
° Industry standard interface (evolving) 
° Vendors, others supply optimized implementations 
° History 

• BLAS1 (1970s):  
- vector operations: dot product, saxpy (y=α*x+y), etc 
- m=2*n, f=2*n, q ~1 or less 

• BLAS2 (mid 1980s) 
- matrix-vector operations: matrix vector multiply, etc 
- m=n^2, f=2*n^2, q~2, less overhead  
- somewhat faster than BLAS1 

• BLAS3 (late 1980s) 
- matrix-matrix operations: matrix matrix multiply, etc 
- m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is 

potentially much faster than BLAS2 

° Good algorithms use BLAS3 when possible (LAPACK) 
• See www.netlib.org/blas, www.netlib.org/lapack 



BLAS speeds on an IBM RS6000/590 

BLAS 3 

BLAS 2 
BLAS 1 

BLAS 3 (n-by-n matrix matrix multiply) vs 
BLAS 2 (n-by-n matrix vector multiply) vs 
BLAS 1 (saxpy of  n vectors) 

Peak speed = 266 Mflops 

Peak 



Search Over Block Sizes 

° Performance models are useful for high level 
algorithms 

• Helps in developing a blocked algorithm 
• Models have not proven very useful for block size selection 

- too complicated to be useful 
- too simple to be accurate 

– Multiple multidimensional arrays, virtual memory, etc. 

° Some systems use search 
• Atlas  
• BeBOP  

° Graph Based Approach is now used – Plasma 
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ScaLAPACK 

PBLAS 

BLACS 

MPI 

LAPACK 

ATLAS Specialized 
BLAS 

threads 

P
arallel 

Parallelism in LAPACK  / 
ScaLAPACK 

Shared Memory Distributed Memory 

Two well known open source software efforts for dense matrix problems. 

BLAS 
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LU 

(Factor a panel) 

(Backward swap) 

(Forward swap) 

(Triangular solve) 

(Matrix by Matrix multiply) Most of the work  
done here 
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DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (4 Core System) 

1D decomposition Time for each component 
DGETF2 
DLASWP(L) 
DLASWP(R) 
DTRSM 
DGEMM 

Threads – no lookahead 

Bulk Sync Phases 
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Adaptive Lookahead - Dynamic 

Event Driven Multithreading 
Out of Order Execution 

Reorganizing 
algorithms to use 

this approach 
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A 

C 

A 

B C 

T T T 

Fork-Join vs. 
Dynamic Execution 

Fork-Join – parallel BLAS 

Experiments on  
Intel’s Quad Core Clovertown  
with 2 Sockets w/ 8 Treads 
 

Time 
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A 

B C 

T T T 

Fork-Join vs. Dynamic 
Execution 

Fork-Join – parallel BLAS 

DAG-based – dynamic scheduling 

Time 

Experiments on  
Intel’s Quad Core Clovertown  
with 2 Sockets w/ 8 Treads 
 

Time  
saved 



Consider a system of linear equations 

                                 A x = b, 

where A is symmetric positive definite (SPD). This means 

                               z^TA z >=  0 for all nonzero x 

We solve this by computing the Cholesky factorization 

     A = L L^T 

and then solve by successive forward and backward 

substitution 

      Ly = b    L^T x = y. 

 

Cholesky factorization  



Cholesky factorization algorithm  

for j = 1, n 
      for k = 1, j - 1 
 for i = j, n 
       a(i,j) = a(i,j) – a(i,k)* a(j,k); 
               end  
       end  
       a(j,j) = sqrt (a(j,j)) 
       for k = j+1, n 
               a(k,j) = a(k,j)/a(j,j);  
       end  
end   
 
 
This is only one  way to arrange the loops. 
 



Cholesky factorization algorithm  

 Since A is Symmetric Positive Definite  the square roots 
are taken from positive numbers 
 No pivoting is needed 
 Only the lower triangle L is ever accessed and 
overwrites A 
Each column j is modified by a multiple of each prior   
column   
Elements of A which were non-zero become zero - fill-in 



1:1 

1:2 2:2 

1:3 2:3 3:3 

1:4 2:4 3:4 4:4 
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1 
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2 
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2 
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3 
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4 

2:
2 

2:
3 

2:
4 

3:
3 

3:
4 

3:
3 

Cholesky Factorization  
DAG-based Dependency Tracking 

Dependencies expressed by the DAG 
are enforced on a tile basis: 
fine-grained parallelization 
flexible scheduling 
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Cholesky on the IBM Cell 

Result: 
Minimum load imbalance, 
Minimum dependency stalls, 
Minimum memory stalls 
(no waiting for data). 

Pipelining: 
Between loop iterations. 

Double Buffering: 
Within BLAS, 
Between BLAS, 
Between loop iterations. 

Achieves 174 Gflop/s;  85% of peak in SP. 



How to Deal with 
Architectural and 
Algorithmic Complexity?  

• Adaptivity is the key for applications to effectively use 
available resources whose complexity is exponentially 
increasing 

• Goal:   
 Automatically bridge the gap between the application and computers that 

are rapidly changing and getting more and more complex 

 Achieving this Goal 
 Writing programs as collections of tasks with dependencies is one way 

to achieve this as it allows the specification of parallelism to be 
decoupled from the implementation 

 This approach also allows tasks to be executed when they can be  and 
not to be subject to some arbitrary ordering   

 An important side effect of this is that communication is to some extent 
overlapped with computation 

 A major challenge with this approach is that the run-time system has to 
be very efficient. 

 Examples – Plasma , Charm++, Uintah and CnC concurrent 
collections from Intel 



Summary of CA Linear Algebra 
• “Direct” Linear Algebra 

• Lower bounds on  communication for linear algebra 
problems like Ax=b, least squares, Ax = λx, SVD, etc 

• Mostly not attained by algorithms in standard libraries 
• New algorithms that attain these lower bounds 

• Being added to libraries: Sca/LAPACK, PLASMA, 
MAGMA 

• Large speed-ups possible 
• Autotuning to find optimal implementation 

• Ditto for “Iterative” Linear Algebra  
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Avoiding communication helps performance  
Algorithms have two costs (measured in time or energy): 
1. Arithmetic (FLOPS) 
2. Communication: moving data between  

– levels of a memory hierarchy (sequential case)  
– processors over a network (parallel case).  

CPU 
Cache 

DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 

CPU 
DRAM 

M 

M 

M M 

M 

Fast memory of size  M 



Lower bound for all “n3-like” linear algebra 

• Holds for 
– Matmul, BLAS, LU, QR, eig, SVD, and others 
– ense and sparse matrices (where #flops  <<  n3 ) 
– Sequential and parallel algorithms 

•  Let M = “fast” memory size (per processor) 
 

#words_moved (per processor) = Ω(#flops (per processor) / M1/2 ) 
 

#messages_sent  ≥  #words_moved / largest_message_size 
#messages_sent (per processor) = Ω(#flops (per processor) / M3/2 ) 

 
•  Parallel case: assume either load or memory balanced 
 

Lower bound F(x) =  Ω(g(x))  if 0 < c g(x) < f(x)  for  some 
c and x > x0   



Strassen’s Algorithm for 

 Matrix Multiplication 

 

 
c11 c12 

c21 c22 

a11 a12 

a21 a22 

b11 b12 

b21 b22 

= * 



d1= (a11+a22) * (b11+b22) 

d2= (a12-a22) * (b21+b22) 

d3= (a11-a21) * (b11+b12) 

d4= (a11+a12) * (b22) 

d5= (a21+a22) * (b11) 

 

 

 

d6=(a11) * (b12-b22) 

d7=(a22) *(-b11+b21) 

 

C11 = d1 + d2 –d4 + d7 

C12 = d4 + d6 

C21 = d5 + d7 

C22 = d1 - d3 –d5 + d6 

 

 

 



d1= (a11+a22) * (b11+b22) 

d2= (a12-a22) * (b21+b22) 

d3= (a11-a21) * (b11+b12) 

d4= (a11+a12) * (b22) 

d5= (a21+a22) * (b11) 

 

 

 

d6=(a11) * (b12-b22) 

d7=(a22) *(-b11+b21) 

 

C11 = d1 + d2 – d4 + d7 

C12 = d4 + d6 

C21 = d5 + d7 

C22 = d1 - d3 –d5 + d6 

 

 

 

7 multiplications 
and  18 Additions 
or Subtractions 
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Strassen’s Algorithm for Matrix Multiplication 

 

 
C11 C12 

C21 C22 

A11 A12 

A21 A22 

B11 B12 

B21 B22 

= * 

T(n) = Time to multiply two n by n matrices. 

T(n)= 7 T(n/2) + 18(n/2)2 

 

Solution: T(n)= O( n k) where k= log2(7). 



func C = StrMM (A, B, n) 
      if n=1 (or small enough),  C = A * B, else 
         {  P1 = StrMM (A12 - A22 , B21 + B22 , n/2) 
            P2 = StrMM (A11 + A22 , B11 + B22 , n/2) 
            P3 = StrMM (A11 - A21 , B11 + B12 , n/2) 
            P4 = StrMM (A11 + A12 , B22 , n/2) 
            P5 = StrMM (A11 , B12 - B22 , n/2) 
            P6 = StrMM (A22 , B21 – B11 , n/2) 
            P7 = StrMM (A21 + A22 , B11 , n/2) 
            C11 = P1+ P2 – P4 + P6,      C12 = P4+ P5 

                 C22 = P2 -  P3 + P5 – P7,     C21 = P6+ P7 }  
      return  

Recursive  Use of Strassen`s algorithm 
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Asymptotically faster  
Several times faster for large n in practice 
Cross-over depends on machine 
 
Needs more memory than standard algorithm 
Can be a little less accurate because of roundoff 
error 



Communication Lower Bounds for 
Strassen-like matmul algorithms 

• Proof: graph expansion (different from classical matmul) 
– Strassen-like: DAG must be “regular” and connected 

• Extends up to M = n2 / p2/ω 

• Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz, 
• Is the lower bound attainable? 

Classical  
O(n3) matmul: 
 
#words_moved = 
Ω (M(n/M1/2)3/P) 

Strassen’s  
O(nlg7) matmul: 

 
#words_moved = 

Ω (M(n/M1/2)lg7/P) 

Strassen-like  
O(nω) matmul: 

 
#words_moved = 

Ω (M(n/M1/2)ω/P) 
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Performance Benchmarking, Strong Scaling Plot 
Franklin (Cray XT4) n = 94080 

Speedups: 24%-184% 
(over previous Strassen-based algorithms) 

Research Highlight in CACM 
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