
° Matrix –Vector Multiplication

° Matrix – matrix Multiplication

° Slides from UCSD and USB

° Directed Acyclic Graph Approach Jack Dongarra

° A new approach using Strassen`s algorithm Jim
Demmel

COMPUTATIONAL LINEAR ALGEBRA

How do we optimize performance ?

° Assume just 2 levels in the hierarchy, fast and slow
° All data initially in slow memory

• m = number of memory elements (words) moved between fast and slow
memory

• tm = time per slow memory operation
• f = number of arithmetic operations
• tf = time per arithmetic operation << tm
• q = f / m average number of flops per slow element access

° Min. possible time = f* tf when all data in fast memory
° Actual time

° Larger q means Time closer to minimum f * tf

 Using a Simpler Model of Memory to Optimize

11 m
f m f

f

tf t m t f t
t q

= ⋅ + ⋅ = ⋅ ⋅ +

Warm up: Matrix-vector multiplication
{implements y = y + A*x}
for i = 1:n
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

Warm up: Matrix-vector multiplication
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
 {read row i of A into fast memory}
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2
• q = f / m ~= 2

• Matrix-vector multiplication limited by slow memory speed

“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
 for j = 1 to n
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Algorithm has 2*n3 = O(n3) Flops and
operates on 3*n2 words of memory

Matrix Multiply on RS/6000

-1

0

1

2

3

4

5

6

0 1 2 3 4 5

log Problem Size

lo
g

cy
cl
es

/f
lo
p

T = N4.7

O(N3) performance would have constant cycles/flop
Performance looks much closer to O(N5)

Size 2000 took 5 days

12000 would take
1095 years

“Naïve” Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
 for j = 1 to n
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)

Sequential
access through
entire matrix

Stride-N
access to
one row*

Reuse
value from a

register

• When cache (or TLB or memory) can’t hold entire B matrix, there will
be a miss on every line.

• When cache (or TLB or memory) can’t hold a row of A, there will be a

miss on each access

*Assumes column-major order

Matrix Multiply on RS/6000

0

1

2

3

4

5

6

0 1 2 3 4 5

log Problem Size

lo
g

cy
cl
es

/f
lo
p

Page miss every iteration

TLB miss every
iteration

Cache miss every
16 iterations Page miss every 512 iterations

Note on Matrix Storage

° A matrix is a 2-D array of elements, but memory
addresses are “1-D”

° Conventions for matrix layout
• by column, or “column major” (Fortran default)
• by row, or “row major” (C default)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

4

8

12

16

1

5

9

13

17

2

6

10

14

18

3

7

11

15

19

Column major Row major

Standard Approach to Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
 {read C(i,j) into fast memory}
 {read column j of B into fast memory}
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 {write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

 Standard Approach to Matrix Multiply
Number of slow memory refs on unblocked matrix

multiply
 m = n3 : read each column of B n times
 + n2 : read each column of A once for each i
 + 2n2 : read and write each element of C once
 = n3 + 3n2
So q = f / m = 2n3 / (n3 + 3n2)
 ~= 2 for large n

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

 I-J-K nest:
 do i=1,N
 do j=1,N
 s=a(i,j)
 do k=1,N
 s=s+ b(i,k) *c(k,j)
 end
 a(i,j)=s
 end
 end

 K-I-J nest:
 do k=1,N
 do i=1,N
 s=b(i,k)
 do j=1,N
 a(i,j)= a(i,j) + s *c(k,j)
 end
 end
 end

Large N: Estimate number of memory accesses
2*N2 + N* N2 + N2~ N3
High probability that b(i,1:N)remains in cache for
each j loop + stride=N for c access

Large N: Estimate number of memory accesses
2*N*N2 + N2 + N2~ 2*N3
Matrix A must be loaded and stored N
times + stride=N for a & c accesses!

Alternative forms of Matrix Matrix Multiply

° J-K-I nest:
° do j=1,N
° do k=1,N
° s=c(j,k)
° do i=1,N
° a(i,j) = a(i,j) + b(i,k) * s
° end
° End
° end

Large N: Estimate number of memory accesses
2*N2 + N* N2 + N2~ N3
B must be loaded N-times but
stride=1 access in inner loop!

Block Structured Matrix Multiply
Let A,B,C be n by n matrices split into
N by N matrices of b by b subblocks where block size is b=n / N
 for i = 1 to N
 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N

is called the block size
 for i = 1 to N
 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Blocked (Tiled) Matrix Multiply

= + * C(1,1) C(1,1)
A(1,1) B(1,1)

Blocked (Tiled) Matrix Multiply

= + * C(1,1) C(1,1)
A(1,2) B(2,1)

Blocked (Tiled) Matrix Multiply

= + * C(1,1) C(1,1)
A(1,3) B(3,1)

Blocked (Tiled) Matrix Multiply

= + * C(1,2) C(1,2)

A(1,1)
B(1,2)

Blocked (Tiled) Matrix Multiply

= + * C(1,2) C(1,2)

A(1,2) B(2,2)

Blocked (Tiled) Matrix Multiply

= + * C(1,2) C(1,2)

A(1,3) B(3,2)

Blocked (Tiled) Matrix Multiply
Recall:
 m is amount memory traffic between slow and fast memory
 matrix has nxn elements, and NxN blocks each of size bxb
 f is number of floating point operations, 2n3 for this problem
 q = f / m is our measure of algorithm efficiency in the memory

system
So: m = N*n2 read each block of B N3 times (N3 * n/N * n/N)

 + N*n2 read each block of A N3 times
 + 2n2 read and write each block of C once
 = (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)
 ~= n / N = b for large n
So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

Using Analysis to Understand Machines
The blocked algorithm has computational intensity q ~= b
° The larger the block size, the more efficient our algorithm will be

° Limit: All three blocks from A,B,C must fit in fast memory

(cache), so we cannot make these blocks arbitrarily large

° Assume your fast memory has size Mfast
 3b2 <= Mfast, so q ~= b <= sqrt(Mfast/3)

To build a machine to run matrix multiply at the peak arithmetic speed of

the machine, we need a fast memory of size

 Mfast >= 3b2 ~= 3q2 = 3(Tm/Tf)2

This sizes are reasonable for L1 cache, but not for register sets

Limits to Optimizing Matrix Multiply
° The blocked algorithm changes the order in which values are

accumulated into each C[i,j] by applying associativity
° The previous analysis showed that the blocked algorithm has

computational intensity:

 q ~= b <= sqrt(Mfast/3)

° There is a lower bound result that says we cannot do any better
than this (using only algebraic associativity)

° Theorem (Hong & Kung, 1981): Any reorganization of this
algorithm (that uses only algebraic associativity) is limited to q =
O(sqrt(Mfast))

Basic Linear Algebra Subroutines
° Industry standard interface (evolving)
° Vendors, others supply optimized implementations
° History

• BLAS1 (1970s):
- vector operations: dot product, saxpy (y=α*x+y), etc
- m=2*n, f=2*n, q ~1 or less

• BLAS2 (mid 1980s)
- matrix-vector operations: matrix vector multiply, etc
- m=n^2, f=2*n^2, q~2, less overhead
- somewhat faster than BLAS1

• BLAS3 (late 1980s)
- matrix-matrix operations: matrix matrix multiply, etc
- m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is

potentially much faster than BLAS2

° Good algorithms use BLAS3 when possible (LAPACK)
• See www.netlib.org/blas, www.netlib.org/lapack

BLAS speeds on an IBM RS6000/590

BLAS 3

BLAS 2
BLAS 1

BLAS 3 (n-by-n matrix matrix multiply) vs
BLAS 2 (n-by-n matrix vector multiply) vs
BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Peak

Search Over Block Sizes

° Performance models are useful for high level
algorithms

• Helps in developing a blocked algorithm
• Models have not proven very useful for block size selection

- too complicated to be useful
- too simple to be accurate

– Multiple multidimensional arrays, virtual memory, etc.

° Some systems use search
• Atlas
• BeBOP

° Graph Based Approach is now used – Plasma

28

ScaLAPACK

PBLAS

BLACS

MPI

LAPACK

ATLAS Specialized
BLAS

threads

P
arallel

Parallelism in LAPACK /
ScaLAPACK

Shared Memory Distributed Memory

Two well known open source software efforts for dense matrix problems.

BLAS

29

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LAPACK

LAPACK

LAPACK

BLAS

BLAS

Steps in the LAPACK LU

(Factor a panel)

(Backward swap)

(Forward swap)

(Triangular solve)

(Matrix by Matrix multiply) Most of the work
done here

30

DGETF2

DLSWP

DLSWP

DTRSM

DGEMM

LU Timing Profile (4 Core System)

1D decomposition Time for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

Threads – no lookahead

Bulk Sync Phases

31

Adaptive Lookahead - Dynamic

Event Driven Multithreading
Out of Order Execution

Reorganizing
algorithms to use

this approach

32

A

C

A

B C

T T T

Fork-Join vs.
Dynamic Execution

Fork-Join – parallel BLAS

Experiments on
Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treads

Time

33

A

C

A

B C

T T T

Fork-Join vs. Dynamic
Execution

Fork-Join – parallel BLAS

DAG-based – dynamic scheduling

Time

Experiments on
Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treads

Time
saved

Consider a system of linear equations

 A x = b,

where A is symmetric positive definite (SPD). This means

 z^TA z >= 0 for all nonzero x

We solve this by computing the Cholesky factorization

 A = L L^T

and then solve by successive forward and backward

substitution

 Ly = b L^T x = y.

Cholesky factorization

Cholesky factorization algorithm

for j = 1, n
 for k = 1, j - 1
 for i = j, n
 a(i,j) = a(i,j) – a(i,k)* a(j,k);
 end
 end
 a(j,j) = sqrt (a(j,j))
 for k = j+1, n
 a(k,j) = a(k,j)/a(j,j);
 end
end

This is only one way to arrange the loops.

Cholesky factorization algorithm

 Since A is Symmetric Positive Definite the square roots
are taken from positive numbers
 No pivoting is needed
 Only the lower triangle L is ever accessed and
overwrites A
Each column j is modified by a multiple of each prior
column
Elements of A which were non-zero become zero - fill-in

1:1

1:2 2:2

1:3 2:3 3:3

1:4 2:4 3:4 4:4

1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

2:
3

2:
4

3:
3

3:
4

3:
3

Cholesky Factorization
DAG-based Dependency Tracking

Dependencies expressed by the DAG
are enforced on a tile basis:
fine-grained parallelization
flexible scheduling

38

Cholesky on the IBM Cell

Result:
Minimum load imbalance,
Minimum dependency stalls,
Minimum memory stalls
(no waiting for data).

Pipelining:
Between loop iterations.

Double Buffering:
Within BLAS,
Between BLAS,
Between loop iterations.

Achieves 174 Gflop/s; 85% of peak in SP.

How to Deal with
Architectural and
Algorithmic Complexity?

• Adaptivity is the key for applications to effectively use
available resources whose complexity is exponentially
increasing

• Goal:
 Automatically bridge the gap between the application and computers that

are rapidly changing and getting more and more complex

 Achieving this Goal
 Writing programs as collections of tasks with dependencies is one way

to achieve this as it allows the specification of parallelism to be
decoupled from the implementation

 This approach also allows tasks to be executed when they can be and
not to be subject to some arbitrary ordering

 An important side effect of this is that communication is to some extent
overlapped with computation

 A major challenge with this approach is that the run-time system has to
be very efficient.

 Examples – Plasma , Charm++, Uintah and CnC concurrent
collections from Intel

Summary of CA Linear Algebra
• “Direct” Linear Algebra

• Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = λx, SVD, etc

• Mostly not attained by algorithms in standard libraries
• New algorithms that attain these lower bounds

• Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

• Large speed-ups possible
• Autotuning to find optimal implementation

• Ditto for “Iterative” Linear Algebra

41

Avoiding communication helps performance
Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

– levels of a memory hierarchy (sequential case)
– processors over a network (parallel case).

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

M

M

M M

M

Fast memory of size M

Lower bound for all “n3-like” linear algebra

• Holds for
– Matmul, BLAS, LU, QR, eig, SVD, and others
– ense and sparse matrices (where #flops << n3)
– Sequential and parallel algorithms

• Let M = “fast” memory size (per processor)

#words_moved (per processor) = Ω(#flops (per processor) / M1/2)

#messages_sent ≥ #words_moved / largest_message_size
#messages_sent (per processor) = Ω(#flops (per processor) / M3/2)

• Parallel case: assume either load or memory balanced

Lower bound F(x) = Ω(g(x)) if 0 < c g(x) < f(x) for some
c and x > x0

Strassen’s Algorithm for

 Matrix Multiplication

c11 c12

c21 c22

a11 a12

a21 a22

b11 b12

b21 b22

= *

d1= (a11+a22) * (b11+b22)

d2= (a12-a22) * (b21+b22)

d3= (a11-a21) * (b11+b12)

d4= (a11+a12) * (b22)

d5= (a21+a22) * (b11)

d6=(a11) * (b12-b22)

d7=(a22) *(-b11+b21)

C11 = d1 + d2 –d4 + d7

C12 = d4 + d6

C21 = d5 + d7

C22 = d1 - d3 –d5 + d6

d1= (a11+a22) * (b11+b22)

d2= (a12-a22) * (b21+b22)

d3= (a11-a21) * (b11+b12)

d4= (a11+a12) * (b22)

d5= (a21+a22) * (b11)

d6=(a11) * (b12-b22)

d7=(a22) *(-b11+b21)

C11 = d1 + d2 – d4 + d7

C12 = d4 + d6

C21 = d5 + d7

C22 = d1 - d3 –d5 + d6

7 multiplications
and 18 Additions
or Subtractions

46

Strassen’s Algorithm for Matrix Multiplication

C11 C12

C21 C22

A11 A12

A21 A22

B11 B12

B21 B22

= *

T(n) = Time to multiply two n by n matrices.

T(n)= 7 T(n/2) + 18(n/2)2

Solution: T(n)= O(n k) where k= log2(7).

func C = StrMM (A, B, n)
 if n=1 (or small enough), C = A * B, else
 { P1 = StrMM (A12 - A22 , B21 + B22 , n/2)
 P2 = StrMM (A11 + A22 , B11 + B22 , n/2)
 P3 = StrMM (A11 - A21 , B11 + B12 , n/2)
 P4 = StrMM (A11 + A12 , B22 , n/2)
 P5 = StrMM (A11 , B12 - B22 , n/2)
 P6 = StrMM (A22 , B21 – B11 , n/2)
 P7 = StrMM (A21 + A22 , B11 , n/2)
 C11 = P1+ P2 – P4 + P6, C12 = P4+ P5

 C22 = P2 - P3 + P5 – P7, C21 = P6+ P7 }
 return

Recursive Use of Strassen`s algorithm

48

Asymptotically faster
Several times faster for large n in practice
Cross-over depends on machine

Needs more memory than standard algorithm
Can be a little less accurate because of roundoff
error

Communication Lower Bounds for
Strassen-like matmul algorithms

• Proof: graph expansion (different from classical matmul)
– Strassen-like: DAG must be “regular” and connected

• Extends up to M = n2 / p2/ω

• Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz,
• Is the lower bound attainable?

Classical
O(n3) matmul:

#words_moved =
Ω (M(n/M1/2)3/P)

Strassen’s
O(nlg7) matmul:

#words_moved =

Ω (M(n/M1/2)lg7/P)

Strassen-like
O(nω) matmul:

#words_moved =

Ω (M(n/M1/2)ω/P)

50

Performance Benchmarking, Strong Scaling Plot
Franklin (Cray XT4) n = 94080

Speedups: 24%-184%
(over previous Strassen-based algorithms)

Research Highlight in CACM

	Slide Number 1
	 Using a Simpler Model of Memory to Optimize
	Warm up: Matrix-vector multiplication
	Warm up: Matrix-vector multiplication
	“Naïve” Matrix Multiply
	Matrix Multiply on RS/6000
	“Naïve” Matrix Multiply
	Matrix Multiply on RS/6000
	Note on Matrix Storage
	Standard Approach to Matrix Multiply
	 Standard Approach to Matrix Multiply
	Slide Number 12
	Slide Number 13
	Block Structured Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Blocked (Tiled) Matrix Multiply
	Using Analysis to Understand Machines
	Limits to Optimizing Matrix Multiply
	Basic Linear Algebra Subroutines
	BLAS speeds on an IBM RS6000/590
	Search Over Block Sizes
	Parallelism in LAPACK / ScaLAPACK
	Slide Number 29
	Slide Number 30
	Adaptive Lookahead - Dynamic
	Fork-Join vs. Dynamic Execution
	Fork-Join vs. Dynamic Execution
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Cholesky Factorization �DAG-based Dependency Tracking
	Cholesky on the IBM Cell
	How to Deal with Architectural and Algorithmic Complexity?
	Summary of CA Linear Algebra
	Avoiding communication helps performance
	Lower bound for all “n3-like” linear algebra
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Communication Lower Bounds for Strassen-like matmul algorithms
	Slide Number 50

