COMPUTATIONAL LINEAR ALGEBRA

- Matrix –Vector Multiplication
- Matrix matrix Multiplication
- ° Slides from UCSD and USB

- ° Directed Acyclic Graph Approach Jack Dongarra
- ° A new approach using Strassen`s algorithm Jim Demmel

How do we optimize performance ?

Using a Simpler Model of Memory to Optimize

- ° Assume just 2 levels in the hierarchy, fast and slow
- ° All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m
 - q = f / m average number of flops per slow element access
- ° Min. possible time = $f^* t_f$ when all data in fast memory
- [°] Actual time

$$= f \cdot t_f + m \cdot t_m = f \cdot t_f \cdot \left(1 + \frac{t_m}{t_f} \frac{1}{q}\right)$$

 $^{\rm o}$ Larger q means Time closer to minimum f * $t_{\rm f}$

Warm up: Matrix-vector multiplication

```
{implements y = y + A*x}
for i = 1:n
for j = 1:n
y(i) = y(i) + A(i,j)*x(j)
```


Warm up: Matrix-vector multiplication

```
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
    {read row i of A into fast memory}
    for j = 1:n
        y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}
```

- $m = number of slow memory refs = 3n + n^2$
- f = number of arithmetic operations = $2n^2$
- $q = f / m \sim = 2$
- Matrix-vector multiplication limited by slow memory speed

"Naïve" Matrix Multiply

Algorithm has 2*n³ = O(n³) Flops and operates on 3*n² words of memory

Matrix Multiply on RS/6000

O(N³) performance would have constant cycles/flop Performance looks much closer to O(N⁵) "Naïve" Matrix Multiply

• When cache (or TLB or memory) can't hold entire B matrix, there will be a miss on every line.

- When cache (or TLB or memory) can't hold a row of A, there will be a miss on each access
- *Assumes column-major order

Matrix Multiply on RS/6000

Note on Matrix Storage

° A matrix is a 2-D array of elements, but memory addresses are "1-D"

° Conventions for matrix layout

- by column, or "column major" (Fortran default)
- by row, or "row major" (C default)

		*		
	0	5	10	15
	1	6	11	16
↓	2	7	12	17
	3	8	13	18
	4	9	14	19

Column major

Row major

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19

```
Standard Approach to Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
    {read C(i,j) into fast memory}
    {read column j of B into fast memory}
    for k = 1 to n
      C(i,j) = C(i,j) + A(i,k) * B(k,j)
    {write C(i,j) back to slow memory}
                                       A(i,:)
        C(i,j)
                         C(i,j)
                                                        B(:,j)
                                                 *
                                   +
                  =
```

Standard Approach to Matrix Multiply

Number of slow memory refs on unblocked matrix multiply

- $m = n^3$: read each column of B n times
 - + n^2 : read each column of A once for each i
 - + $2n^{2\,:}$ read and write each element of C once
 - $= n^3 + 3n^2$

So
$$q = f / m = 2n^3 / (n^3 + 3n^2)$$

$$\sim = 2$$
 for large n

Alternative forms of Matrix Matrix Multiply

```
I-J-K nest:
                         Large N: Estimate number of memory accesses
do i=1,N
                         2*N2 + N* N2 + N2~ N3
do j=1,N
                         High probability that b(i,1:N)remains in cache for
   s=a(i,j)
                         each i loop + stride=N for c access
   do k=1,N
        s=s+b(i,k)*c(k,j)
   end
   a(i,j)=s
end
end
                           Large N: Estimate number of memory accesses
K-I-J nest:
                           2*N*N2 + N2 + N2~ 2*N3
do k=1,N
                           Matrix A must be loaded and stored N
do i=1,N
                           times + stride=N for a & c accesses!
   s=b(i,k)
  do j=1,N
       a(i,j) = a(i,j) + s * c(k,j)
  end
end
end
```

- □ J-K-I nest: 0
- ° do j=1,N
- ° do k=1,N
- s=c(j,k) 0
- do i=1,N ο
 - a(i,j) = a(i,j) + b(i,k) * s
- 0 end
- ° End

0

ο end Large N: Estimate number of memory accesses 2*N2 + N* N2 + N2~ N3 B must be loaded N-times but stride=1 access in inner loop!

Block Structured Matrix Multiply

Let A,B,C be n by n matrices split into

N by N matrices of **b** by **b** subblocks where **block size** is **b**=n / N

```
for i = 1 to N

for j = 1 to N

{read block C(i,j) into fast memory}

for k = 1 to N

{read block A(i,k) into fast memory}

{read block B(k,j) into fast memory}

C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}
```



```
Consider A,B,C to be N by N matrices of b by b subblocks where b=n / N
 is called the block size
   for i = 1 to N
     for j = 1 to N
        {read block C(i,j) into fast memory}
        for k = 1 to N
            {read block A(i,k) into fast memory}
            {read block B(k,j) into fast memory}
            C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
        {write block C(i,j) back to slow memory}
```


Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of algorithm efficiency in the memory system So: $m = N^*n^2$ read each block of B N³ times (N³ * n/N * n/N) $+ N^*n^2$ read each block of A N³ times $+ 2n^2$ read and write each block of C once $= (2N + 2) * n^2$

So computational intensity $q = f / m = 2n^3 / ((2N + 2) * n^2)$ ~= n / N = b for large n

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q ~= b ° The larger the block size, the more efficient our algorithm will be

- Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size M_{fast}
 3b² <= M_{fast}, so q ~= b <= sqrt(M_{fast}/3)

To build a machine to run matrix multiply at the peak arithmetic speed of the machine, we need a fast memory of size

 $M_{fast} >= 3b^2 \sim= 3q^2 = 3(T_m/T_f)^2$

This sizes are reasonable for L1 cache, but not for register sets

Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each C[i,j] by applying associativity
- ^o The previous analysis showed that the blocked algorithm has computational intensity:

q ~= b <= sqrt(M_{fast}/3)

 There is a lower bound result that says we cannot do any better than this (using only algebraic associativity)

 Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only algebraic associativity) is limited to q = O(sqrt(M_{fast}))

Basic Linear Algebra Subroutines

- Industry standard interface (evolving)
- ° Vendors, others supply optimized implementations

° History

- BLAS1 (1970s):
 - vector operations: dot product, saxpy (y= α *x+y), etc
 - m=2*n, f=2*n, q ~1 or less
- BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - m=n^2, f=2*n^2, q~2, less overhead
 - somewhat faster than BLAS1
- BLAS3 (late 1980s)
 - matrix-matrix operations: matrix matrix multiply, etc
 - m >= 4n^2, f=O(n^3), so q can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2

° Good algorithms use BLAS3 when possible (LAPACK)

• See www.netlib.org/blas, www.netlib.org/lapack

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

Search Over Block Sizes

Performance models are useful for high level algorithms

- Helps in developing a blocked algorithm
- Models have not proven very useful for block size selection
 - too complicated to be useful
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.

° Some systems use search

- Atlas
- BeBOP

° Graph Based Approach is now used – Plasma

Parallelism in LAPACK / ScaLAPACK

Two well known open source software efforts for dense matrix problems.

Steps in the LAPACK LU

Fork-Join vs. Dynamic Execution

Fork-Join – parallel BLAS

Experiments on Intel's Quad Core Clovertown with 2 Sockets w/ 8 Treads Fork-Join vs. Dynamic **Execution**

Fork-Join – parallel BLAS

Time

saved

Consider a system of linear equations

$$A x = b$$
,

where A is symmetric positive definite (SPD). This means

z^TA z >= 0 for all nonzero x

We solve this by computing the Cholesky factorization

$$A = L L^T$$

and then solve by successive forward and backward substitution

$$Ly = b L^T x = y.$$

Cholesky factorization algorithm

```
for j = 1, n
     for k = 1, j - 1
           for i = j, n
                 a(i,j) = a(i,j) - a(i,k) * a(j,k);
              end
      end
      \mathbf{a}(\mathbf{j},\mathbf{j}) = \mathbf{sqrt} (\mathbf{a}(\mathbf{j},\mathbf{j}))
      for k = j+1, n
              a(k,j) = a(k,j)/a(j,j);
      end
end
```

This is only one way to arrange the loops.

***** Since A is Symmetric Positive Definite the square roots are taken from positive numbers

- * No pivoting is needed
- * Only the lower triangle L is ever accessed and overwrites A

Each column j is modified by a multiple of each prior column

*****Elements of A which were non-zero become zero - fill-in

Cholesky Factorization DAG-based Dependency Tracking

1:1			
1:2	2:2		
1:3	2:3	3:3	
1:4	2:4	3:4	4:4

Dependencies expressed by the DAG

are enforced on a tile basis:

fine-grained parallelizationflexible scheduling

Cholesky on the IBM Cell

(no waiting for data).

Achieves 174 Gflop/s; 85% of peak in SP.

How to Deal with Architectural and Algorithmic Complexity?

- Adaptivity is the key for applications to effectively use available resources whose complexity is exponentially increasing
- Goal:
 - Automatically bridge the gap between the application and computers that are rapidly changing and getting more and more complex

Achieving this Goal

- Writing programs as collections of tasks with dependencies is one way to achieve this as it allows the specification of parallelism to be decoupled from the implementation
- This approach also allows tasks to be executed when they can be and not to be subject to some arbitrary ordering
- An important side effect of this is that communication is to some extent overlapped with computation
- A major challenge with this approach is that the run-time system has to be very efficient.
- Examples Plasma, Charm++, Uintah and CnC concurrent collections from Intel

Summary of CA Linear Algebra

- "Direct" Linear Algebra
 - Lower bounds on communication for linear algebra problems like Ax=b, least squares, Ax = λx , SVD, etc
 - Mostly not attained by algorithms in standard libraries
 - New algorithms that attain these lower bounds
 - Being added to libraries: Sca/LAPACK, PLASMA, MAGMA
 - Large speed-ups possible
 - Autotuning to find optimal implementation
- Ditto for "Iterative" Linear Algebra

Avoiding communication helps performance

Algorithms have two costs (measured in time or energy):

- 1. Arithmetic (FLOPS)
- 2. Communication: moving data between
 - levels of a memory hierarchy (sequential case)
 - processors over a network (parallel case).

Fast memory of size M

Lower bound for all "n³-like" linear algebra

Let M = "fast" memory size (per processor)

#words_moved (per processor) = Ω (#flops (per processor) / M^{1/2})

#messages_sent \geq #words_moved / largest_message_size #messages_sent (per processor) = Ω (#flops (per processor) / $M^{3/2}$)

- Parallel case: assume either load or memory balanced
- Holds for
 - Matmul, BLAS, LU, QR, eig, SVD, and others
 - ense and sparse matrices (where #flops << n³)
 - Sequential and parallel algorithms

Lower bound $F(x) = \Omega(g(x))$ if 0 < c g(x) < f(x) for some c and $x > x_0$

Strassen's Algorithm for Matrix Multiplication

$$d_{1} = (a_{11}+a_{22}) * (b_{11}+b_{22})$$

$$d_{2} = (a_{12}-a_{22}) * (b_{21}+b_{22})$$

$$d_{3} = (a_{11}-a_{21}) * (b_{11}+b_{12}) \quad d_{6} = (a_{11}) * (b_{12}-b_{22})$$

$$d_{4} = (a_{11}+a_{12}) * (b_{22}) \qquad d_{7} = (a_{22}) * (-b_{11}+b_{21})$$

$$d_{5} = (a_{21}+a_{22}) * (b_{11})$$

$C_{11} = d_1 + d_2 - d_4 + d_7$	$C_{21} = d_5 + d_7$
$C_{12} = d_4 + d_6$	$C_{22} = d_1 - d_3 - d_5 + d_6$

$$d_{1} = (a_{11}+a_{22}) * (b_{11}+b_{22}) 7$$
multiplications
and 18 Additions
or Subtractions
$$d_{2} = (a_{12}-a_{22}) * (b_{21}+b_{22})$$
or Subtractions
$$d_{3} = (a_{11}-a_{21}) * (b_{11}+b_{12}) d_{6} = (a_{11}) * (b_{12}-b_{22}) d_{4} = (a_{11}+a_{12}) * (b_{22}) d_{7} = (a_{22}) * (-b_{11}+b_{21}) d_{5} = (a_{21}+a_{22}) * (b_{11})$$
$$C_{11} = d_{1} + d_{2} - d_{4} + d_{7} C_{21} = d_{5} + d_{7}$$

 $C_{12} = d_4 + d_6$

 $C_{22} = d_1 - d_3 - d_5 + d_6$

Strassen's Algorithm for Matrix Multiplication

T(n) = Time to multiply two n by n matrices. $T(n)= 7 T(n/2) + 18(n/2)^2$

Solution: $T(n) = O(n^k)$ where $k = \log_2(7)$.

Recursive Use of Strassen`s algorithm

T(n) = Cost of multiplying nxn matrices = 7*T(n/2) + 18*(n/2)²

- $= O(n \log_2 7)$
- = O(n 2.81)

Asymptotically faster Several times faster for large n in practice Cross-over depends on machine

Needs more memory than standard algorithm Can be a little less accurate because of roundoff error Communication Lower Bounds for Strassen-like matmul algorithms

Classical O(n³) matmul: Strassen's O(n^{lg7}) matmul:

#words_moved = $\Omega (M(n/M^{1/2})^3/P)$

#words_moved = $\Omega (M(n/M^{1/2})^{\lg 7}/P)$

Strassen-like O(n^w) matmul:

#words_moved = $\Omega (M(n/M^{1/2})^{\omega}/P)$

- Proof: graph expansion (different from classical matmul)
 - Strassen-like: DAG must be "regular" and connected
- Extends up to M = $n^2 / p^{2/\omega}$
- Best Paper Prize (SPAA'11), Ballard, D., Holtz, Schwartz,
- Is the lower bound attainable?

Performance Benchmarking, Strong Scaling Plot Franklin (Cray XT4) n = 94080

