## COMPUTATIONAL LINEAR ALGEBRA

${ }^{\circ}$ Matrix -Vector Multiplication
${ }^{\circ}$ Matrix - matrix Multiplication
${ }^{\circ}$ Slides from UCSD and USB
${ }^{\circ}$ Directed Acyclic Graph Approach Jack Dongarra
${ }^{\circ}$ A new approach using Strassen`s algorithm Jim Demmel

How do we optimize performance?

## Using a Simpler Model of Memory to Optimize

${ }^{\circ}$ Assume just 2 levels in the hierarchy, fast and slow
${ }^{\circ}$ All data initially in slow memory

- m = number of memory elements (words) moved between fast and slow memory
- $t_{m}=$ time per slow memory operation
- $\mathbf{f}=$ number of arithmetic operations
- $t_{f}=$ time per arithmetic operation $\ll t_{m}$
- $q=f / m$ average number of flops per slow element access
${ }^{\circ}$ Min. possible time $=f^{*} t_{f}$ when all data in fast memory
${ }^{\circ}$ Actual time

$$
=f \cdot t_{f}+m \cdot t_{m}=f \cdot t_{f} \cdot\left(1+\frac{t_{m}}{t_{f}} \frac{1}{q}\right)
$$

${ }^{\circ}$ Larger $q$ means Time closer to minimum $f{ }^{*} t_{f}$

## Warm up: Matrix-vector multiplication

$$
\begin{aligned}
& \text { \{implements } \left.y=y+A^{*} x\right\} \\
& \text { for } i=1: n \\
& \qquad \text { for } j=1: n \\
& \qquad y(i)=y(i)+A(i, j)^{*} x(j)
\end{aligned}
$$



## Warm up: Matrix-vector multiplication

\{read $x(1: n)$ into fast memory\}
\{read $y(1: n)$ into fast memory\}
for $\mathrm{i}=1$ : n
\{read row i of A into fast memory\}
for $\mathrm{j}=1$ : n

$$
y(i)=y(i)+A(i, j)^{\star} x(j)
$$

\{write y(1:n) back to slow memory\}

- $\mathrm{m}=$ number of slow memory refs $=3 n+n^{2}$
- $\mathrm{f}=$ number of arithmetic operations $=2 \mathrm{n}^{2}$
- $\mathrm{q}=\mathrm{f} / \mathrm{m} \sim=2$
- Matrix-vector multiplication limited by slow memory speed


## "Naïve" Matrix Multiply

```
{implements C = C + A*B}
fori=1 to n
    for j=1 to n
        for k= 1 to n
\[
C(i, j)=C(i, j)+A(i, k) * B(k, j)
\]
```

Algorithm has $2 * n^{3}=O\left(n^{3}\right)$ Flops and operates on $3^{*} n^{2}$ words of memory


## Matrix Multiply on RS/6000


$O\left(N^{3}\right)$ performance would have constant cycles/flop Performance looks much closer to $O\left(N^{5}\right)$

## "Naïve" Matrix Multiply



- When cache (or TLB or memory) can't hold entire B matrix, there will be a miss on every line.
- When cache (or TLB or memory) can't hold a row of A, there will be a miss on each access
*Assumes column-major order


## Matrix Multiply on RS/6000



## Note on Matrix Storage

${ }^{\circ}$ A matrix is a 2-D array of elements, but memory addresses are "1-D"
${ }^{\circ}$ Conventions for matrix layout

- by column, or "column major" (Fortran default)
- by row, or "row major" (C default)
Column major

| 0 | 5 | 10 | 15 |
| :---: | :---: | :---: | :---: |
| 1 | 6 | 11 | 16 |
| 2 | 7 | 12 | 17 |
| 3 | 8 | 13 | 18 |
| 4 | 9 | 14 | 19 |

Row major

| 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 |
| 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 |

## Standard Approach to Matrix Multiply

\{implements C = C + A*B\}
for $\mathrm{i}=1$ to n
\{read row i of A into fast memory\}
for $\mathbf{j}=\mathbf{1}$ to $\mathbf{n}$
\{read $\mathrm{C}(\mathrm{i}, \mathrm{j})$ into fast memory\}
\{read column j of B into fast memory\}
for $\mathrm{k}=1$ to n

$$
C(i, j)=C(i, j)+A(i, k) * B(k, j)
$$

\{write C(i,j) back to slow memory\}

| $\mathrm{C}(\mathrm{i}, \mathrm{j})$ | $=$ | $\begin{gathered} \mathrm{C}(\mathrm{i}, \mathrm{j}) \\ \square \end{gathered}$ | + | A(i, ) |  | $B(:, j)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | * |  |

## Standard Approach to Matrix Multiply

Number of slow memory refs on unblocked matrix multiply
$m=n^{3}$ : read each column of $B$ n times
$+n^{2}$ : read each column of $A$ once for each $i$
$+2 \mathbf{n}^{2}$ : read and write each element of $C$ once
$=\mathbf{n}^{3}+3 \mathbf{n}^{2}$
So $q=f / m=2 n^{3} I\left(n^{3}+3 n^{2}\right)$
~= 2 for large $n$


Alternative forms of Matrix Matrix Multiply

```
I-J-K nest:
do i=1,N
do j=1,N
    s=a(i,j)
    do k=1,N
                s=s+ b(i,k) *c(k,j)
    end
    a(i,j)=s
end
end
```

```
K-I-J nest:
```

K-I-J nest:
do $k=1, N$
do $k=1, N$
do $i=1, N$
do $i=1, N$
Large N: Estimate number of memory accesses
2*N*N2 + N2 + N2~ 2*N3
2*N*N2 + N2 + N2~ 2*N3
Matrix A must be loaded and stored N
Matrix A must be loaded and stored N
times + stride=N for a \& c accesses!
times + stride=N for a \& c accesses!
$s=b(i, k)$
$s=b(i, k)$
do $j=1, N$
do $j=1, N$
$a(i, j)=a(i, j)+s * c(k, j)$
$a(i, j)=a(i, j)+s * c(k, j)$
end
end
end
end
end

```
end
```


## $\square$ J-K-I nest:

do $\mathrm{j}=1, \mathrm{~N}$
do $k=1, N$
$s=c(j, k)$
do $i=1, N$

$$
a(i, j)=a(i, j)+b(i, k) * s
$$

end
End
end

Large N : Estimate number of memory accesses 2*N2 + N* N2 + N2~ N3
B must be loaded N -times but stride=1 access in inner loop!

$$
\mathrm{A}(\mathrm{i}, \mathrm{j})=\mathrm{A}(\mathrm{i}, \mathrm{j})+\mathrm{B}(\mathrm{i}, \mathrm{k})^{*} \mathrm{C}(\mathrm{k}, \mathrm{j})
$$




## Block Structured Matrix Multiply

Let $A, B, C$ be $n$ by $n$ matrices split into
$\mathbf{N}$ by $\mathbf{N}$ matrices of $b$ by $b$ subblocks where block size is $b=n / \mathbf{N}$ for $\mathrm{i}=1$ to N
for $\mathrm{j}=1$ to N
\{read block C(i,j) into fast memory\}
for $\mathrm{k}=1$ to $\mathbf{N}$
\{read block $A(i, k)$ into fast memory\}
\{read block $B(k, j)$ into fast memory\}
$C(i, j)=C(i, j)+A(i, k) * B(k, j)$ \{do a matrix multiply on blocks $\}$
\{write block $\mathrm{C}(\mathrm{i}, \mathrm{j})$ back to slow memory\}


## Blocked (Tiled) Matrix Multiply

Consider $A, B, C$ to be $N$ by $N$ matrices of $b$ by $b$ subblocks where $b=n / N$ is called the block size
for $\mathbf{i}=\mathbf{1}$ to $\mathbf{N}$ for $\mathbf{j}=\mathbf{1}$ to $\mathbf{N}$
\{read block C(i,j) into fast memory\}
for $\mathbf{k}=1$ to $\mathbf{N}$
\{read block $A(i, k)$ into fast memory\}
\{read block $B(k, j)$ into fast memory\}
$C(i, j)=C(i, j)+A(i, k) * B(k, j)$ \{do a matrix multiply on blocks\}
\{write block $\mathrm{C}(\mathrm{i}, \mathrm{j})$ back to slow memory\}


## Blocked (Tiled) Matrix Multiply



## Blocked (Tiled) Matrix Multiply

## Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb
f is number of floating point operations, $\mathbf{2 n}^{\mathbf{3}}$ for this problem
$q=f / m$ is our measure of algorithm efficiency in the memory system

So:

$$
\begin{aligned}
m= & N * n^{2} \quad \text { read each block of B } N^{3} \text { times }\left(N^{3} * n / N * n / N\right) \\
& +N^{*} n^{2} r \\
& \text { read each block of } A N^{3} \text { times } \\
& +2 n^{2} \quad \text { read and write each block of } C \text { once } \\
& =(2 N+2) * n^{2}
\end{aligned}
$$

So computational intensity $q=f / m=2 n^{3} /\left((2 N+2) * n^{2}\right)$

$$
\sim=n / N=b \text { for large } n
$$

So we can improve performance by increasing the blocksize $b$
Can be much faster than matrix-vector multiply (q=2)

## Using Analysis to Understand Machines

The blocked algorithm has computational intensity $\mathbf{q ~ \sim =} \mathbf{b}$

- The larger the block size, the more efficient our algorithm will be
${ }^{\circ}$ Limit: All three blocks from A,B,C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
${ }^{\circ}$ Assume your fast memory has size $\mathbf{M}_{\text {fast }}$ $\mathbf{3 b}^{2}<=\mathrm{M}_{\text {fast }}$, so $\mathbf{q} \sim=\mathrm{b}<=\operatorname{sqrt}\left(\mathrm{M}_{\text {fast }} / 3\right)$

To build a machine to run matrix multiply at the peak arithmetic speed of the machine, we need a fast memory of size

$$
M_{\text {fast }}>=3 b^{2} \sim=3 q^{2}=3\left(T_{m} / T_{t}\right)^{2}
$$

This sizes are reasonable for L1 cache, but not for register sets

## Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each $C[i, j]$ by applying associativity
- The previous analysis showed that the blocked algorithm has computational intensity:

$$
\mathrm{q} \sim=\mathrm{b}<=\operatorname{sqrt}\left(\mathrm{M}_{\mathrm{fast}} / 3\right)
$$

- There is a lower bound result that says we cannot do any better than this (using only algebraic associativity)
- Theorem (Hong \& Kung, 1981): Any reorganization of this algorithm (that uses only algebraic associativity) is limited to $q=$ O(sqrt( $\left.\mathrm{M}_{\text {fast }}\right)$ )


## Basic Linear Algebra Subroutines

## ${ }^{\circ}$ Industry standard interface (evolving)

${ }^{\circ}$ Vendors, others supply optimized implementations
${ }^{\circ}$ History

- BLAS1 (1970s):
- vector operations: dot product, saxpy ( $y=\alpha^{*} x+y$ ), etc
- $m=2 * n, f=2 * n, q \sim 1$ or less
- BLAS2 (mid 1980s)
- matrix-vector operations: matrix vector multiply, etc
- $m=n^{\wedge} 2, f=2 * n^{\wedge 2, ~} q \sim 2$, less overhead
- somewhat faster than BLAS1
- BLAS3 (late 1980s)
- matrix-matrix operations: matrix matrix multiply, etc
 potentially much faster than BLAS2
${ }^{\circ}$ Good algorithms use BLAS3 when possible (LAPACK)
- See www.netlib.org/blas, www.netlib.org/lapack


## BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops


BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

## Search Over Block Sizes

${ }^{\circ}$ Performance models are useful for high level algorithms

- Helps in developing a blocked algorithm
- Models have not proven very useful for block size selection
- too complicated to be useful
- too simple to be accurate
- Multiple multidimensional arrays, virtual memory, etc.
${ }^{\circ}$ Some systems use search
- Atlas
- BeBOP
${ }^{\circ}$ Graph Based Approach is now used - Plasma


## Parallelism in LAPACK / ScaLAPACK

Shared Memory

Distributed Memory


Two well known open source software efforts for dense matrix problems.

## Steps in the LAPACK LU



LAPACK

LAPACK

LAPACK

BLAS

BLAS Most of the work done here

LU Timing Profile (4 Core System)
$\qquad$


Adaptive Lookahead - Dynamic

Event Driven Multithreading Out of Order Execution
while(1)
fetch_task();
switch (task.type) \{ case PANEL:
dgetf2 () ;
update_progress () ; case COLUMN:
dlaswp (); dtrsm();
dgemm ();
update_progress () ; case END:
for ()
dlaswp () ;
return;
\}
\}
Reorganizing algorithms to use this approach

Fork-Join vs.
Dynamic Execution



## Experiments on <br> Intel's Quad Core Clovertown with 2 Sockets w/ 8 Treads

Fork-Join vs. Dynamic Execution


DAG-based - dynamic scheduling


Time
Experiments on
Intel's Quad Core Clovertown with 2 Sockets w/ 8 Treads

## Cholesky factorization

Consider a system of linear equations

$$
A x=b,
$$

where $A$ is symmetric positive definite (SPD). This means

$$
z^{\wedge} \text { TA } z>=0 \text { for all nonzero } x
$$

We solve this by computing the Cholesky factorization

$$
A=L L^{\wedge} T
$$

and then solve by successive forward and backward substitution

$$
L y=b \quad L \wedge T x=y
$$

## Cholesky factorization algorithm

```
for \(\mathrm{j}=1\), n
    for \(k=1, j-1\)
        for \(\mathbf{i}=\mathbf{j}, \mathbf{n}\)
                \(\mathbf{a}(\mathbf{i}, \mathbf{j})=\mathbf{a}(\mathbf{i}, \mathbf{j})-\mathbf{a}(\mathbf{i}, \mathbf{k})^{*} \mathbf{a}(\mathbf{j}, \mathbf{k}) ;\)
            end
        end
    \(\mathrm{a}(\mathrm{j}, \mathrm{j})=\mathrm{sqrt}(\mathrm{a}(\mathrm{j}, \mathrm{j}))\)
    for \(k=j+1, n\)
        \(\mathbf{a}(\mathbf{k}, \mathbf{j})=\mathbf{a}(\mathbf{k}, \mathbf{j}) / \mathbf{a}(\mathbf{j}, \mathbf{j}) ;\)
    end
end
```

This is only one way to arrange the loops.

## Cholesky factorization algorithm

* Since A is Symmetric Positive Definite the square roots are taken from positive numbers
* No pivoting is needed
* Only the lower triangle $L$ is ever accessed and overwrites A
*Each column $\mathbf{j}$ is modified by a multiple of each prior column
*Elements of A which were non-zero become zero - fill-in


## Cholesky Factorization <br> DAG-based Dependency Tracking

| $1: 1$ |  |  |  |
| :---: | :---: | :---: | :---: |
| $1: 2$ | $2: 2$ |  |  |
| $1: 3$ | $2: 3$ | $3: 3$ |  |
| $1: 4$ | $2: 4$ | $3: 4$ | $4: 4$ |

Dependencies expressed by the DAG are enforced on a tile basis:
$>$ fine-grained parallelization
$>$ flexible scheduling


## Cholesky on the IBM Cell



## Achieves 174 Gflop/s; $85 \%$ of peak in SP.

## How to Deal with Architectural and Algorithmic Complexity?

- Adaptivity is the key for applications to effectively use available resources whose complexity is exponentially increasing
- Goal:
- Automatically bridge the gap between the application and computers that are rapidly changing and getting more and more complex
- Achieving this Goal
- Writing programs as collections of tasks with dependencies is one way to achieve this as it allows the specification of parallelism to be decoupled from the implementation
- This approach also allows tasks to be executed when they can be and not to be subject to some arbitrary ordering
- An important side effect of this is that communication is to some extent overlapped with computation
- A major challenge with this approach is that the run-time system has to be very efficient.
- Examples - Plasma, Charm++, Uintah and CnC concurrent collections from Intel


## Summary of CA Linear Algebra

- "Direct" Linear Algebra
- Lower bounds on communication for linear algebra problems like $A x=b$, least squares, $A x=\lambda x$, SVD, etc
- Mostly not attained by algorithms in standard libraries
- New algorithms that attain these lower bounds
- Being added to libraries: Sca/LAPACK, PLASMA, MAGMA
- Large speed-ups possible
- Autotuning to find optimal implementation
- Ditto for "Iterative" Linear Algebra


## Avoiding communication helps performance

Algorithms have two costs (measured in time or energy):

1. Arithmetic (FLOPS)
2. Communication: moving data between

- levels of a memory hierarchy (sequential case)
- processors over a network (parallel case).


Fast memory of size M

## Lower bound for all " $n$ 3 -like" linear algebra

- Let M = "fast" memory size (per processor)
\#words_moved (per processor) = $\Omega$ (\#flops (per processor) / $\mathbf{M}^{1 / 2}$ )
\#messages_sent $\geq$ \#words_moved / largest_message_size \#messages_sent (per processor) $=\Omega$ (\#flops (per processor) / $\mathrm{M}^{3 / 2}$ )
- Parallel case: assume either load or memory balanced
- Holds for
- Matmul, BLAS, LU, QR, eig, SVD, and others
- ense and sparse matrices (where \#flops << $n^{3}$ )
- Sequential and parallel algorithms

Lower bound $F(x)=\Omega(g(x))$ if $0<c g(x)<f(x)$ for some c and $\mathrm{x}>\mathrm{X}_{0}$

## Strassen's Algorithm for

 Matrix Multiplication| $c_{11}$ | $c_{12}$ |
| :--- | :--- |
| $c_{21}$ | $c_{22}$ |$=$| $a_{11}$ | $a_{12}$ |
| :--- | :--- |
| $a_{21}$ | $a_{22}$ |$\quad$| $b_{11}$ | $b_{12}$ |
| :--- | :--- |
| $b_{21}$ | $b_{22}$ |

$$
\begin{aligned}
& d_{1}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right) \\
& d_{2}=\left(a_{12}-a_{22}\right)^{*}\left(b_{21}+b_{22}\right) \\
& d_{3}=\left(a_{11}-a_{21}\right)^{*}\left(b_{11}+b_{12}\right) \\
& d_{6}=\left(a_{11}\right) *\left(b_{12}-b_{22}\right) \\
& d_{4}=\left(a_{11}+a_{12}\right) *\left(b_{22}\right) \\
& d_{7}=\left(a_{22}\right) *\left(-b_{11}+b_{21}\right) \\
& d_{5}=\left(a_{21}+a_{22}\right) *\left(b_{11}\right) \\
& C_{11}=d_{1}+d_{2}-d_{4}+d_{7} \\
& c_{12}=d_{4}+d_{61}=d_{5}+d_{7} \\
& c_{22}=d_{1}-d_{3}-d_{5}+d_{6}
\end{aligned}
$$

$$
\left.\begin{array}{ll}
d_{1}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right) & 7 \text { multiplications } \\
d_{2}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right) & \text { and 18 Additions } \\
\text { or Subtractions }
\end{array}\right)
$$

Strassen's Algorithm for Matrix Multiplication

| $\mathrm{C}_{11}$ | $\mathrm{C}_{12}$ |
| :--- | :--- |
| $\mathrm{C}_{21}$ | $\mathrm{C}_{22}$ |$=$| $\mathrm{A}_{11}$ | $\mathrm{~A}_{12}$ |
| :--- | :--- |
| $\mathrm{~A}_{21}$ | $\mathrm{~A}_{22}$ |$*$| $\mathrm{B}_{11}$ | $\mathrm{~B}_{12}$ |
| :--- | :--- |
| $\mathrm{~B}_{21}$ | $\mathrm{~B}_{22}$ |

$T(n)=$ Time to multiply two $n$ by $n$ matrices.
$T(n)=7 T(n / 2)+18(n / 2)^{2}$

Solution: $T(n)=O\left(n^{k}\right)$ where $k=\log _{2}(7)$.

## Recursive Use of Strassen`s algorithm

```
func C = StrMM (A,B, n)
    if n=1 (or small enough), C = A * B, else
    { P}\mp@subsup{P}{1}{\prime}=\operatorname{StrMM (A}\mp@subsup{A}{12}{}-\mp@subsup{A}{22}{},\mp@subsup{B}{21}{}+\mp@subsup{B}{22}{},n/2
    P
    P
    P
    P
    P
    P
    C
    C22}=\mp@subsup{P}{2}{}-\mp@subsup{P}{3}{}+\mp@subsup{P}{5}{}-\mp@subsup{P}{7}{},\quad\mp@subsup{C}{21}{}=\mp@subsup{P}{6}{}+\mp@subsup{P}{7}{}
```

    return
    
## $\mathrm{T}(\mathrm{n}) \quad=$ Cost of multiplying nxn matrices <br> $=7^{*} \mathrm{~T}(\mathrm{n} / 2)+18^{*}(\mathrm{n} / 2)^{2}$ <br> $=O\left(n \log _{2} 7\right)$ <br> $=0(\mathrm{n} 2.81)$

Asymptotically faster
Several times faster for large $\mathbf{n}$ in practice Cross-over depends on machine

Needs more memory than standard algorithm Can be a little less accurate because of roundoff error

## Communication Lower Bounds for Strassen-like matmul algorithms

## Classical $\mathrm{O}\left(\mathrm{n}^{3}\right)$ matmul:

\#words_moved = $\Omega\left(M\left(n / M^{1 / 2}\right)^{3} / P\right)$


Strassen-like $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ matmul: \#words_moved = $\Omega\left(M\left(n / M^{1 / 2}\right)^{\omega} / P\right)$

- Proof: graph expansion (different from classical matmul)
- Strassen-like: DAG must be "regular" and connected
- Extends up to $M=n^{2} / p^{2 / \omega}$
- Best Paper Prize (SPAÁ11), Ballard, D., Holtz, Schwartz,
- Is the lower bound attainable?


## Performance Benchmarking, Strong Scaling Plot

Franklin (Cray XT4) n = 94080


