
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.1

Pipelined Computations

Chapter 5

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.2

Pipelined Computations
Problem divided into a series of tasks that have

to be completed one after the other (the basis of

sequential programming). Each task executed by

a separate process or processor.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.3

Example
Add all the elements of array a to an accumulating sum:

 for (i = 0; i < n; i++)
 sum = sum + a[i];

The loop could be “unfolded” to yield

 sum = sum + a[0];
 sum = sum + a[1];
 sum = sum + a[2];
 sum = sum + a[3];
 sum = sum + a[4];
 .
 .
 .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.4

Pipeline for an unfolded loop

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.5

Another Example
Frequency filter - Objective to remove specific frequencies
(f0, f1, f2,f3, etc.) from a digitized signal, f(t).
Signal enters pipeline from left:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.6

Where pipelining can be used to
good effect

Assuming problem can be divided into a series of sequential
tasks, pipelined approach can provide increased execution
speed under the following three types of computations:

1. If more than one instance of the complete problem is to be
 Executed

2. If a series of data items must be processed, each requiring
 multiple operations

3. If information to start next process can be passed forward
 before process has completed all its internal operations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.7

“Type 1” Pipeline Space-Time Diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.8

Alternative space-time diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.9

“Type 2” Pipeline Space-Time Diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

“Type 3” Pipeline Space-Time Diagram

Pipeline processing where information passes to next
stage before previous state completed.

5.10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

If the number of stages is larger than the
number of processors in any pipeline, a group
of stages can be assigned to each processor:

5.11

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Computing Platform for Pipelined Applications

Multiprocessor system with a line configuration

Strictly speaking pipeline may not be the best structure
for a cluster - however a cluster with switched direct
connections, as most have, can support simultaneous
message passing.

5. 12

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipelined Instructions on a Processor

5. 12

Time Execution

0 Four instructions are waiting to be
executed

1 •The green instruction is fetched from
memory

2
•The green instruction is decoded
•The purple instruction is fetched
from memory

3

•The green instruction is executed
(actual operation is performed)
•The purple instruction is decoded
•The blue instruction is fetched

4

•The green instruction's results are
written back to the register file or
memory
•The purple instruction is executed
•The blue instruction is decoded
•The red instruction is fetched

5

•The green instruction is completed
•The purple instruction is written back
•The blue instruction is executed
•The red instruction is decoded

6
•The purple instruction is completed
•The blue instruction is written back
•The red instruction is executed

7 •The blue instruction is completed
•The red instruction is written back

8 •The red instruction is completed

9 All four instructions are executed

Intel Sandybridge has a 14 to 19 stage instruction pipeline

Source Wikipedia

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example possible stages for Multiply

• Real numbers can be represented as mantissa and exponent in a
“normalized” representation, e.g.: s*0.m * 10e with

 Sign s={-1,1}
 Mantissa m which does not contain 0 in leading digit
 Exponent e some positive or negative integer

• Multiply two real numbers r1*r2 = r3
•

r1=s1*0.m1 * 10e1 , r2=s2*0.m2 * 10e2 :

s1*0.m1 * 10e1 * s2*0.m2 * 10e2

 (s1*s2)* (0.m1*0.m2) * 10(e1+e2)

 Normalize result: s3* 0.m3 * 10e3

Source - D. Fey and G. Wellein

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

1

B(1)
 C(1)

2

B(2)
 C(2)
B(1)
 C(1)

3

B(3)
 C(3)
B(2)
 C(2)
B(1)
 C(1)

4

B(4)
 C(4)
B(3)
 C(3)
B(2)
 C(2)

A(1)

5

B(5)
 C(5)
B(4)
 C(4)
B(3)
 C(3)

A(2)

A(1)

6

B(6)
 C(6)
B(5)
 C(5)
B(4)
 C(4)
B(3)
 C(3)

A(2)

N+4 ...

A(N)

...

...

...

...

...

Cycle:

Separate
Mant. / Exp.

Mult.
Mantissa

Add.
Exponents
Normal.
Result

Insert Sign

Stage

First result is available after 5 cycles (=latency of pipeline)!
After that one instruction is completed in each cycle

Source D. Fey and G. Wellein

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipelining and SIMD Calculations in Modern CPUs
Intel Advanced Vector Extensions AVX

• 128 bit Instructions previously used SSE
expanded to 256 bit

• Three and four operands available.
• Faster operations A = A*B+C (Fused

multiply add) and new A = B*C
• New instruction set (Vex)
• Builds on earlier SSE
• Extensions to 512 bit coming
• Can only get close to peak performance

if AVX used
• 16 256 bit registers YMM aliased over

old XMM SSE registers
• Four floating point operations

concurrently in a pipeline

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Intel AVX vs SSE

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Intel AVX SIMD Mode

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Mandelbrot Set
Example

• Standard Code

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

AVX Mandelbrot Code Using AVX
Instructions

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Mandelbrot Set Performance

For more information see presentation by Gropp et al.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example Pipelined Solutions
(Examples of each type of computation)

5.13

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipeline Program Examples
Adding Numbers

Type 1 pipeline computation

5.14

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Basic code for process Pi :

recv(&accumulation, Pi-1);
accumulation = accumulation + number;
send(&accumulation, Pi+1);

except for the first process, P0, which is

send(&number, P1);

and the last process, Pn-1, which is

recv(&number, Pn-2);
accumulation = accumulation + number;

5.15

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

SPMD program

if (process > 0) {
 recv(&accumulation, Pi-1);
 accumulation = accumulation + number;
}
if (process < n-1)
 send(&accumulation, P i+1);

The final result is in the last process.

Instead of addition, other arithmetic operations could be
done.

5.16

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipelined addition numbers

Master process and ring configuration

5.17

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sorting Numbers
A parallel version of insertion sort.

5.18

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.19

Pipeline for sorting using insertion sort

Type 2 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

The basic algorithm for process Pi is

recv(&number, Pi-1);
if (number > x) {
 send(&x, Pi+1);
 x = number;
} else send(&number, Pi+1);

With n numbers, number ith process is to accept = n - i.
Number of passes onward = n - i - 1
Hence, a simple loop could be used.

5.20

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Insertion sort with results returned to master
process using bidirectional line configuration

5.21

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Insertion sort with results returned

5.22

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Prime Number Generation
Sieve of Eratosthenes

• Series of all integers generated from 2.
• First number, 2, is prime and kept.
• All multiples of this number deleted as they cannot be prime.
• Process repeated with each remaining number.
• The algorithm removes non-primes, leaving only primes.

Type 2 pipeline computation

5.23

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

The code for a process, Pi, could be based upon

recv(&x, Pi-1);
/* repeat following for each number */
recv(&number, Pi-1);
if ((number % x) != 0) send(&number, P i+1);

Each process will not receive the same number of numbers
and is not known beforehand. Use a “terminator” message,
which is sent at the end of the sequence:

recv(&x, Pi-1);
for (i = 0; i < n; i++) {
 recv(&number, Pi-1);
 If (number == terminator) break;
 (number % x) != 0) send(&number, P i+1);
}

5.24

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Solving a System of Linear Equations
Upper-triangular form

where a’s and b’s are constants and x’s are unknowns to be
found.

5.25

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Back Substitution
First, unknown x0 is found from last equation; i.e.,

Value obtained for x0 substituted into next equation to
obtain x1; i.e.,

Values obtained for x1 and x0 substituted into next
equation to obtain x2:

and so on until all the unknowns are found.

5.26

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipeline Solution
First pipeline stage computes x0 and passes x0 onto the
second stage, which computes x1 from x0 and passes both x0
and x1 onto the next stage, which computes x2 from x0 and
x1, and so on.

Type 3 pipeline computation

5.27

1 divide 1 send 1 divide 1 mult send 2 1 divide 2 mults send 3 1 divide 3 mults 4 sends

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

The ith process (0 < i < n) receives the values x0, x1, x2, …,
xi-1 and computes xi from the equation:

5.28

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sequential Code
Given constants ai,j and bk stored in arrays a[][] and b[],
respectively, and values for unknowns to be stored in array,
x[], sequential code could be

x[0] = b[0]/a[0][0]; /* computed separately */
for (i = 1; i < n; i++) { /*for remaining unknowns*/
 sum = 0;
 For (j = 0; j < i; j++
 sum = sum + a[i][j]*x[j];
 x[i] = (b[i] - sum)/a[i][i];
}

5.29

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Parallel Code
Pseudocode of process Pi (1 < i < n) of could be

for (j = 0; j < i; j++) {
 recv(&x[j], Pi-1);
 send(&x[j], Pi+1);
}
sum = 0;
for (j = 0; j < i; j++)
 sum = sum + a[i][j]*x[j];
x[i] = (b[i] - sum)/a[i][i];
send(&x[i], Pi+1);

Now have additional computations to do after receiving
and resending values.

5.30

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5.31

Pipeline processing using back
substitution

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Analysis of Pipelined Form of backsolve.

Multiplications
1

(1) 1

(0.5 (1))

N

mult
i

mult

t i

t N N N
=

= − +

= − +

∑

1

(t)

0.5 (1)

N

s data
i

s data

it

Nt t N N
=

= +

= + +

∑Communications

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

PARALLEL BACKSOLVE USING da CUNHA and HOPKINS

• Partition rows of upper triangular matrix into fixed blocks

• Each processor has multiple blocks of rows

• As soon as block of results ready it is distributed to all the
other processors.

• As soon as a processor j gets a result x(i) it can use it to
perform part of the computation a(j,i)*x(i)/a(j,j)

• Algorithm shows good performance, but what about
scalability?

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example of Distribution 2 processors 8 rows array.

Proc

1 a(7,0)x0+a(7,1)x1+a(7,2)x2+a(7,3)x3+...+a(7,7)x7=b7
1 a(6,0)x0+a(6,1)x1+a(6,2)x2+a(6,3)x3+...+a(6,6)x6=b6

0 a(5,0)x0+a(5,1)x1+a(5,2)x2+a(5,3)x3+...+a(5,5)x5=b5
0 a(4,0)x0+a(4,1)x1+a(4,2)x2+a(4,3)x3+a(4,4)x(4)=b4

1 a(3,0)x0+a(3,1)x1+a(3,2)x2+a(3,3)x3=b3
1 a(2,0)x0+a(2,1)x1+a(2,2)x2=b2

0 a(1,0)x0+a(1,1)x1=b1
0 a(0,0)x0 = b0

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Analysis of Distributed Form of backsolve.

Communications N sends to p Nlog(p)

Multiplications N N/p (overestimate – assumes
 all rows are full)

Total Time N log(p) (ts +tdata) + NN/p tmult

Compare against previous shows that there is a
Speedup of p against previous multiplications

There is also a speedup in the communications
If N log(p)(ts +tdata) << N ts + 0.5N(N+1)tdata

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Example possible stages for Multiply
	5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
	Pipelining and SIMD Calculations in Modern CPUs Intel Advanced Vector Extensions AVX
	Intel AVX vs SSE
	Intel AVX SIMD Mode
	Mandelbrot Set Example
	AVX Mandelbrot Code Using AVX Instructions
	Slide Number 21
	Mandelbrot Set Performance
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45

