Chapter 5

Pipelined Computations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 1

Pipelined Computations

Problem divided Into a series of tasks that have

to be completed one after the other (the basis of

sequential programming). Each task executed by

a separate process or processor.

P, P P, P, P, P-

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 2

Example

Add all the elements of array a to an accumulating sum:

for (1=0;1<n;i++)
sum =sum + a[li];

The loop could be “unfolded” to yield

sum =sum + a
sum =sum + a
sum =sum + a
sum =sum + a
sum =sum + a

AW N RO

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 3

Pipeline for an unfolded loop

a[0] a[1] a[2] a[3] a[4]

| | | | |

d a d a a

SUM —=ISin - SoutfF—=1Sin Sout|—={Sin Sout}—={Sin SoutF—={Sin Soutf—=---------

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 54

Another Example

Freguency filter - Objective to remove specific frequencies
(fo, T;, f,,15, etc.) from a digitized signal, f(t).
Signal enters pipeline from left:

Signal without Signal without
frequency f; frequency f3

Signal without Signal without
frequency f frequency f5

signal
f(t) —= fin ToutF—={fin Toutf|—={fin ToutF—={fin foutfF—=fin Toutf—s=-===----

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 5

Where pipelining can be used to
good effect

Assuming problem can be divided into a series of sequential
tasks, pipelined approach can provide increased execution
speed under the following three types of computations:

1. If more than one instance of the complete problem is to be
Executed

2. If a series of data items must be processed, each requiring
multiple operations

3. If information to start next process can be passed forward
before process has completed all its internal operations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

5.6

“Type 1” Pipeline Space-Time Diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

p-1 m
el il
Instance | Instance|Instance | Instance | Instance
1 2 3 4 5
Instance | Instance|Instance [Instance | Instance | Instance
1 2 3 4 5 6
Instance | Instance | Instance | Instance | Instance | Instance | Instance
1 2 3 4 5 6 7
Instance|Instance | Instance | Instance| Instance [Instance | Instance
1 2 3 4 5 6 7
Instance | Instance | Instance | Instance | Instance| Instance | Instance
1 2 3 4 5 6 7
Instance |Instance | Instance | Instance | Instance | Instance | Instance
1 2 3 4 5 6 7
—_———
Time

5.7

Alternative space-time diagram

Instance 0 PU P1 P2 Pg P4 P5
Instance 1 P{} P1 P2 P3 P4 P5
Instance 2 PU P1 P2 P3 P,q_ P5
Instance 3 PU P1 PZ P3 P4 P5
Instance 4 Pg P1 P2 P3 P4 P5
| |
I |
I |
Time
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 8

“Type 2” Pipeline Space-Time Diagram

Input sequence

dgdgd7dgdsdd3drddy~ Py A

P

"P2|’

P3*P4|‘P5*P5'P?|‘PB*PQ

(a) Pipeline structure

. p-1 - n
Py do|dq|do|ds3|dy|ds|dg
PB dU d1 d2 d3 d4 d5 de d?
P? dU d1 d2 d3 d4 d5 G"ﬁ d? dg
Ps do| dy|d2|d3|dy|ds|dg|d7|dg|dg
Ps do| d1|d2|d3|dy|ds5|dg|d7|dg|dg
Py dp| d4|dp|d3|dy|ds|dg|d7|dg| dg
PB dg d1 d2 d3 d4 d5 d@ d? dg G"g
P2 dg d1 d2 d3 d4 G"5 G"ﬁ d? da dg
P; do| d1|d2|d3|dy|ds5|dg|d7|dg|dg
Po |do| di|d2|d3|dy|d5|dg|d7|dg|dg

“Time
(b) Timing diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 P

earson Education Inc. All rights reserved.

5.9

“Type 3" Pipeline Space-Time Diagram

Ps
! &

Information p
transfer 3
sufficient to P>
start next
process . P

— 1 Information passed

Py | to next stage =)

Time Time

(b) Processes not with the

(a) Processes with the same ot wi
same execution time

execution time

Pipeline processing where information passes to next
stage before previous state completed.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 10

If the number of stages is larger than the
number of processors in any pipeline, a group
of stages can be assigned to each processor:

Processor 0 Processor 1 Processor 2

%‘Pol'P1|“P2|‘P3f"*°4|'P5|‘Ps|“P?f"Pa|“P9|‘P1o|'P11—i"

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 11

Computing Platform for Pipelined Applications

Multiprocessor system with a line configuration

e N Multiprocessor
K ’ Processors ™
|
Host 4 v - _ |
computer | |
I I
_ S T

Strictly speaking pipeline may not be the best structure
for a cluster - however a cluster with switched direct
connections, as most have, can support simultaneous
message passing.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 12

Pipelined Instructions on a Processor

Time Execution

Four instructions are waiting to be Clocl ':'_‘;.-"C"E
executed
Q 1 Z2 3 4 S 5] ri 8

*The green instruction is fetched from
memory

*The green instruction is decoded
*The purple instruction is fetched

from memory Waitin |

The green instruction is executed Instructions
(actual operation is performed)

*The purple instruction is decoded

*The blue instruction is fetched

*The green instruction's results are Stage 1: Fetch . .
written back to the register file or LL

MEMON o = Stage 2: Decode . .
*The purple instruction is executed _

*The blue instruction is decoded L

*The red instruction is fetched o Stage 3: Erecute .

0- ite-back
«The green instruction is completed L L8 T H T

*The purple instruction is written back
*The blue instruction is executed
*The red instruction is decoded

*The purple instruction is completed C':'ml:'l'EtEd _<

*The blue instruction is written back !
*The red instruction is executed Iﬂstru CtIDHS

*The blue instruction is completed
*The red instruction is written back

*The red instruction is completed

All four instructions are executed Source Wiki ped ia

Intel Sandybridge has a 14 to 19 stage instruction pipeline

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 12

Example possible stages for Multiply

 Real numbers can be represented as mantissa and exponent in a
“normalized” representation, e.g.: s*0.m * 10° with

Signs={-1,1}
Mantissa m which does not contain 0 in leading digit
Exponent e some positive or negative integer

* Multiply two real numbers rl1*r2 = r3
rl=s1*0.m1 * 10! , r2=s2*0.m2 * 10°? :
s1*0.ml1 * 108t * s2*0.m2 * 10°?

2> (s1*s2)* (0.m1*0.m2) * 10¢l+e2)

- Normalize result; s3* 0.m3 * 10¢3

Source - D. Fey and G. Wellein

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

5-stage Multiplication-Pipeline: A(1))=B()*C(i) ; I=1,...,N

L Cyeler 1 S 4 DS N+4
Stage
Separate |[B(1) ||B(2) ||B(3) =(5) 11B(6)
Mant. / Expi| C(1)]| C(2)]| C(3) ILC(5) 11 C(6)
Mult. B(1) ||B(2) ||B(3) B(5)
Mantissa C)IL C(2)I1 C(3) L C(B)
Add. B(1) ||B(2) ||B(3)
Exponents C()ILC(2)ILC(3) 1
Normal. B(3)
Result A AG) C(3)
Insert Sign A(D) || A(2) A(N)

First result is available after 5 cycles (=latency of pipeline)!
After that one instruction is Completed in each cycle

Source D. Fey and G. Wellein

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Pipelining and SIMD Calculations in Modern CPUs
Intel Advanced Vector Extensions AVX

128 bit Instructions previously used SSE
expanded to 256 bit

256 bits 128 bits
Three and four operands available.
Faster operations A = A*B+C (Fused YMMIO
multiply add) and new A = B*C
New instruction set (Vex) YMMIL
Builds on earlier SSE .
Extensions to 512 bit coming b
Can only get close to peak performance YMNIL5
If AVX used 255 12;:;27 0

16 256 bit registers YMM aliased over
old XMM SSE registers

Four floating point operations
concurrently in a pipeline

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Intel AVX vs SSE

SSE and AVX-128 types l]

3 W N u
o
e

AVX-256 types

:.:.I.-I..I.:.

4x float

2x double

16x byte

8x 16-bit word

4x 32-bit doubleword
2x 64-bit quadword

1x 128-bit doublequadwort

8x float

4x double

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Intel AVX SIMD Mode

SIMD Mode Scalar Mod

BERE PR
-+
EOEEE B e

Figure 3. SIMD versus scalar operations

il o+

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Mandelbrot Set
Example

e Standard Code

// simple code to compute Mandelbrot in C++
#include <complex>

void MandelbrotCPU(float x1, float yl, float x2, float y2,

int width, int height, int maxIters, unsigned short * image)
{

float dx = (x2-x1)/width, dy = (y2-yl)/height;
for (int 7 = 0; j < height; ++7j)
for (int 1 = 0; 1 < width; ++1)
{
complex<float> c (xl+dx*1i, yl+dy*j), z(0,0);
int count = -1;
while ((++count < maxIters) &é&
Z = Z*¥ZtC;
*imaget+ = count;

(normi{z) < 4.0))

DIUCD Ul Falalcl Fiuylailiiiiigy 1 SUyued oL APPILAUUIDS UDINY INEWVUIREU VYV UIRSLAUUID & Faldlicl CUTTIPULETD £11U EU., Uy D. VVIRIIDUIL O IVI. AT, W £UU4 FEdidUll CuuLauull v, Al TIYIIW 1E3E1VEU.

AVX Mandelbrot Code Using AVX
Instructions

Listing 5. Intel® AVX-intrinsic Mandelbrot Implementation

float dx = (x2-x1)/width;

float dy = (y2-yl)/height;

// round up width to next multiple of 8
int roundedWidth = (width+7) & ~7UL;

float constants[] = {dxz, dy, x1, v1, 1.0f, 4.0f};
m256 ymm0 = mm256 broadcast ss(constants); /7 oall dx

_ m256 ymml = mm256 broadcast ss(constants+l); // all dy
_ m256 ymm2 = mm256 broadcast ss(constants+2); // all xl
mZ256 ymm3 =

_ m256 ymmd = mm256 broadcast ss(constants+4); // all 1's (iter 1ncrements)
~ m256 ymm5 = mm256 broadcast ss(constants+5); // all 4's (comparisons)

()
()
mm256 broadcast ss(constants+3); // all yl
()
()

float incr[8]={0.0£f,1.0f£,2.0£,3.0£,4.0£,5.0f,6.0£,7.0£f}; // used to reset the 1 position when
j increases
m256 ymmé = mm256 xor ps(ymm0,ymm0); // zero out 7 counter (ymm0 i1s just a dummy)

for (int §J = 0; j < height; j+=1)
{
_ m256 ymm7 mm256 load ps(incr); // 1 counter set to 0,1,2,..,7

for (int 1 = 0; i < roundedwidth; i+=8)
{

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

. m256 ymm8 = mm256 mul ps (ymm7, ymm0); // =0 = (i+k)*dx

ymms = _mm256_add_ps(ymm8, vmm2) 7 420 = xl+(i+k) *dx

. m256 ymm? = mmZ56 mul ps (ymmé&, ymml); // v0 = j*dy

ymm9 = mm256 add ps(ymm9, ymm3); S/ ov0 = yl+grdy

_ m256 ymml0 = mm256 xor ps (ymm0,ymm0); // zero out iteration counter
. m256 ymmll = ymml0, ymml2 = ymmlO; f/ zet initial xi=0, vi=0
unsigned int test = 0;

int iter = 07

do

{

_ m256 ymml3 _mm256 mul ps{ymmll,ymmll); // =i*=x=i
_ m256 ymml4d = mm256 mul ps(ymmlZ,ymmlZ2); // yi*tyi
. m256 ymml5 = mmZ256 add ps(ymml3,ymmld); // xitxit+tyityi

A/ ®iFtxdi+yi*yi < 4 in each slot
ymml5 = mmZ5& cmp ps {(ymml5,ymm5, CMP LT OQ) ;
/4 now yrmlb has all 1s in the non overflowed locations

test = mm256 movemask ps (ymml5) &255; /4 lower 8 bits are comparisons
ymml5 = mm256 and ps (ymmlb5, ymmd) 7
A/ oget 1.0f or 0.0f in each field as counters
// counters for each pixel iteration

ymml0 = mm25& add ps (ymml0O, ymml5) ;
ymml5 = mm256 mul ps (ymmll,ymmlZ) ; S/ o xityi
ymmll = mm256 sub ps (ymml3,ymmld) ; /o riFxi-yivyi
ymmll = mmZ256 add ps (ymmll, ymmS8) ; S/ il <— xi*xi-yi*yi+x0 done!
ymml2 = mm256 add ps (ymml5,ymml5) ; LS 2Fxiryi
ymmlZ2 = mmZ56& add ps(ymmlZ, ymm%) ; SSoyi < 2FRiFyi+y0
++iter;
I while ({test != 0) && {(iter < maxIters)) ;

[/ convert iterations to ocutput wvalues
m2561 ymml0i = mm256 cvitps epil32 (ymmlO) ;

/4 write only where needed
int top = (i+7) < width? 8: width&7;
for (int k = 0; k < top; ++k)
image [i+k+j*width] = ymml0i.m2561 il6[2*k];

// next 1 position — dincrement each slot by B
ymm7 = mm256 add ps(ymm7, ymm5) ;
ymm7 = mmz56 add ps(ymm7, ymm5) ;

}

ymmé = mm256_ add_ ps(ymmé,ymmd); // increment j counter

rved.

Mandelbrot Set Performance

Performance relative to float version
(higher is better)

MComplex MFloat MSSE M Intel® AVX

7.41 7.58

7.00 7.05 7.22
6.59 . w

128 256 512 1024 2048 4096

For more information see presentation by Gropp et al.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example Pipelined Solutions
(Examples of each type of computation)

lications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 13

Pipeline Program Examples

Adding Numbers

Type 1 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 14

Basic code for process Pi :

recv(&accumulation, Pi-1);
accumulation = accumulation + number;
send(&accumulation, Pi+1);

except for the first process, PO, which is
send(&number, P1);

and the last process, Pn-1, which is

recv(&number, Pn-2);
accumulation = accumulation + number;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 15

SPMD program

If (process > 0) {
recv(&accumulation, Pi-1);
accumulation = accumulation + number;

}

If (process <n-1)
send(&accumulation, P i+1);

The final result is in the last process.

Instead of addition, other arithmetic operations could be
done.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 16

Pipelined addition numbers

Master process and ring configuration

Master process Slaves

! n-1-- d2d1d “““““ -
i : . . . \
\\x SLJII'[J;’: /

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 17

Sorting Numbers

A parallel version of insertion sort.
numbers i P, P, P; P,

43125 O—-O—~-O—-0O—-0
2 4,312 B—-O—-O—-0O—-0O

Pipeline for sorting using insertion sort

P Smaller p P,
° numbers ' .

Series of numbers
Compare

N = N]

}(IIIHX

Xp-1 --- X1Xp

Next largest

Largest number number

Type 2 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 19

The basic algorithm for process Pi is

recv(&number, Pi-1);
If (number > x) {
send(&x, Pi+l);
X = number;
} else send(&number, Pi+1);

With n numbers, number ith process is to accept =n - |I.
Number of passesonward=n-i1-1
Hence, a simple loop could be used.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 20

Insertion sort with results returned to master
process using bidirectional line configuration

Master preeeee

. dod; do _____
Z Serted -
N sequence)/

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 21

Insertion sort with results returned

Sorting phase Returning sorted numbers

-} -} o

2n -1 n
Py Shown forn =5

Time

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 22

Prime Number Generation
Sieve of Eratosthenes

» Series of all integers generated from 2.

 First number, 2, is prime and kepit.

 All multiples of this number deleted as they cannot be prime.
» Process repeated with each remaining number.

* The algorithm removes non-primes, leaving only primes.

Not multiples of
1st prime number

Po P, P,
Series of numbers m m
Xp1---0432 ~. ~~g g -
=DV
Compare 1st prime 2nd prime 3rd prime

multiples number number number

Type 2 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 23

The code for a process, Pi, could be based upon

recv(&x, Pi-1);

[* repeat following for each number */
recv(&number, Pi-1);

If (number % x) = 0) send(&number, P i+1);

Each process will not receive the same number of numbers
and is not known beforehand. Use a “terminator” message,
which is sent at the end of the sequence:

recv(&x, Pi-1);
for(i=0;i<n;i++){
recv(&number, Pi-1);
If (number ==terminator) break;
(number % x) '=0) send(&number, P i+1);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 . 24

Solving a System of Linear Equations
Upper-triangular form

an-1.0X0 T @n-11X1 T @n12X2 .. T 8n1n-1Xn-1 = b1
a 0Xg + @g 1X1 + @g2Xo = b,
a1 0Xo + a1 .1Xq = b,
ap 0Xo = bg

where a’'s and b’s are constants and x’s are unknowns to be
found.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 25

Back Substitution

First, unknown X, is found from last equation; I.e.,

_ by
XD i —
400

Value obtained for x, substituted into next equation to

obtain x;; I.e., h
1~ 81.0%0

aq 1

X1=

Values obtained for x, and x, substituted into next
equation to obtain X,:

v = by —a5 nXp — 85 1 Xy
422

and so on until all the unknowns are found.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 26

Pipeline Solution

First pipeline stage computes x, and passes X, onto the
second stage, which computes x; from x, and passes both x,
and x, onto the next stage, which computes x, from x, and

X,, and so on.

Po P, P P
Xo - Xo = Xo
X0 — X1 — X,
Compute x,—Compute x;| X; |Compute x, ——=|Compute Xx;
— 2 2 X,
_-- el
— X3
1 divide 1 send 1divide 1 mult send 2 1divide2mults send 3 1divide 3 mults 4 sends

Type 3 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 27

The ith process (0 <1 < n) receives the values X,, X;, Xo, ...,
X, and computes x; from the equation:

[—1
P X
j=0

] .
9

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 5 28

Sequential Code

Given constants a;; and b, stored in arrays a[][| and b[],
respectively, and values for unknowns to be stored in array,
X[], sequential code could be

X[0] = b[0]/a[0][0]; [* computed separately */
for(I=1;1<n;i++){ [*for remaining unknowns?*/
sum = 0;

For (j=0;]<I;|++
sum =sum + a[i][j]*x[J];
x[1] = (b[1] - sum)/a[i][i];

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 529

Parallel Code

Pseudocode of process P; (1 <1 < n) of could be

for) =0;) <1; J++) {
recv(&x[j], Pi-1);
send(&x[j], Pi+1);

}

sum = 0;

for (j =0;] <I; j++)
sum =sum + a[i][j]*x[J];

x[i] = (b[1] - sum)/ali][i];

send(&x]i], Pi+1);

Now have additional computations to do after receiving
and resending values.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 530

Pipeline processing using back
substitution

Ps | A

P, J ;\

|
P, * } | Final computed value
Processes -
|

) .
[= ™ First value passed onward
0

—_—

Time

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 531

Analysis of Pipelined Form of backsolve.

N
Multiplications = tmultZ(i ~-1)+1

t(o 5SN(N —1) + N)

muI

Communications = Z(ts + 1t40)
i=1

= Nt +t,..0.5N(N +1)

data

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

PARALLEL BACKSOLVE USING da CUNHA and HOPKINS
e Partition rows of upper triangular matrix into fixed blocks
e Each processor has multiple blocks of rows

» As soon as block of results ready it is distributed to all the
other processors.

* AS soon as a processor | gets a result x(i) it can use it to
perform part of the computation af(j,i)*x(i)/a(j,))

e Algorithm shows good performance, but what about
scalability?

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example of Distribution 2 processors 8 rows array.
Proc

1 a(7,0)x0+a(7,1l)x1+a(7,2)x2+a(7,3)x3+...+a(7,7)Xx7=b7
1 a(6,0)x0+a(6,1)x1+a(6,2)x2+a(6,3)x3+...+a(6,6)x6=b6

0 a(5,0x0+a(5,1)x1+a(5,2)x2+a(5,3)x3+...+a(5,5)x5=b5
0 a(4,0)x0+a(4,1)x1+a(4,2)x2+a(4,3)x3+a(4,4)x(4)=b4
1 a(3,0)x0+a(3,1)x1+a(3,2)x2+a(3,3)x3=b3

1 a(2,0)x0+a(2,1)x1+a(2,2)x2=b2

o

a(1,0)x0+a(1,1)x1=bl
0 a(0,0)x0=Db0

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Analysis of Distributed Form of backsolve.

Communications N sendstop Nlog(p)

Multiplications N N/p (overestimate — assumes
all rows are full)

Total Time N log(p) (ts +tdaa) + NN/P tmutt

Compare against previous shows that there is a
Speedup of p against previous multiplications

There Is also a speedup in the communications
If N |Og(p)(ts +tdata) << Nts+ O.5N(N+1)tdata

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserve

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Example possible stages for Multiply
	5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N
	Pipelining and SIMD Calculations in Modern CPUs Intel Advanced Vector Extensions AVX
	Intel AVX vs SSE
	Intel AVX SIMD Mode
	Mandelbrot Set Example
	AVX Mandelbrot Code Using AVX Instructions
	Slide Number 21
	Mandelbrot Set Performance
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45

