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Chapter 4 

Partitioning 
 and Divide-and-Conquer Strategies 
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Partitioning 
Partitioning simply divides the problem into parts. 

Divide and Conquer 
Characterized by dividing problem into sub-problems of 
same form as larger problem. Further divisions into still 
smaller sub-problems, usually done by recursion. 

Recursive divide and conquer amenable to parallelization 
because separate processes can be used for divided parts. 
Also usually data is naturally localized. 
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Partitioning/Divide and Conquer 
 Examples 

Many possibilities. 

• Operations on sequences of number such as 
simply adding them together 
 
• Several sorting algorithms can often be 
partitioned or constructed in a recursive fashion 
 
• Numerical integration 
 
• N-body problem 
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Partitioning a sequence of numbers 
into parts and adding the parts 
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Tree construction 
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Dividing a list into parts 
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Partial summation 
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Quadtree 
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Dividing an image 
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Bucket sort 
One “bucket” assigned to hold numbers that fall within each region.  
Numbers in each bucket sorted using a sequential sorting algorithm. 

Sequential sorting time complexity: O(nlog(n/m). 
Works well if the original numbers uniformly distributed across a 
known interval, say 0 to a - 1. 
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Parallel version of bucket sort 
Simple approach 

Assign one processor for each bucket. 
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Further Parallelization 
Partition sequence into m regions, one region for 
each processor. 
 
Each processor maintains p “small” buckets and 
separates numbers in its region into its own small 
buckets. 
 
Small buckets then emptied into p final buckets for 
sorting, which requires each processor to send one 
small bucket to each of the other processors 
(bucket i to processor i). 
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Another parallel version of bucket sort 

Introduces new message-passing operation - all-to-all broadcast. 
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“all-to-all” broadcast routine 
Sends data from each process to every other process 
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“all-to-all” routine actually transfers rows of an array to columns: 
Transposes a matrix. 
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Performance Analysis  
Broadcast groups of numbers to each processor 
 

1comm startup datat t nt= +
Separate n/p numbers into p buckets 

2 /compt n p=

Distribute each bucket with n/(p*p) elements. Each 
process sending (p-1) buckets- worst case 

2
3 ( 1)( ( / ) )comm startup datat p p t n p t= − +

Overlapping communications leads to  
2

3 ( 1)( ( / ) )comm startup datat p t n p t= − +
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Computation 
 

4 ( / ) log( / )compt n p n p=

Summing all these gives 
2( / )(1 log( / ) ( 1)( / ))p startup datat n p n p pt n p n p t= + + + + −

Speedup factor = 

2

log( / )( , )
( / )(1 log( / )) ( 1)( / )startup data

n n n pS n p
n p n p pt n p n p t

+
=

+ + + + −

Efficiency = S(n,p)/p 
                  ( 1)(1 1 / )

1
( / )(1 log( / )

startup datapt nt p
n p n p

−+ + 
≈ + + 

Plot this! 

Note this p is m the bucket 
number           in serial case   
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Constant efficiency as  problem and processor sizes 
change is known as Isoefficiency 

Efficiency = S(n,p)/p 
                  ( 1)(1 1 / )

1
( / )(1 log( / )

startup datapt nt p
n p n p

−+ + 
+ = + 

is Constant ? 
Can we pick problem sizes, n,  and processor numbers, p, 
so that   

const 

( 1)
2

( 1)
3

   1  const
(1 log( )

( / )
   1  const

(1 2log( ))

startup data

startup data

t pt
if n p then

p

t p pt
if n p then

p

−

−

+ 
= + ≈ + 

+ 
= + ≈ + 

? 

? 
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Efficiency = S(n,p)/p 
                  

( 1)(1 1 / )
( / )(1 log( / )

1 startup datapt nt p
n p n p

−
 + +
 

+
+ =



is Constant ? 

const 

1
1 α+

Constant or increasing requires  α decreasing 

2

2

2

( / )(1 log( / )) (1 1 / )

(1 log( / p)) (p 1)

 
(1 ( 1) log(p)) (p 1)

   and ( 1) log( ) (p 1

Let

Hence )

startup data

startup data

startup data

startup data

n p n p pt nt p

n n p t nt

n p
p p t p t

p t p t

β

β β

β

β

β−

+ ≥ + +

+ ≥ + +

=

+ − ≥ + +

> − > +

If startup dominates  2β > but not really scalable 
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Scalability Implications  

• Hence increasing the core count p by a factor of 
1000 means that n the problem size has to grow 
by at least  factor of as much as 1000,000 but 
only if startup cost dominates. 

• The second β term is more problematic as we 
require  roughly β > p/log(p)td 

• This is unlikely for large p.  
• Is the algorithm scalable in terms of efficiency?  
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n/p 2 4 8 16 32 64 128 256 512 1024 
10**4 11 5 3 1 

12 6 3 1 
10**6 14 7 4 2 

16 8 4 2 

10**8 17 9 5 2 1 
19 10 5 3 1 

10**10 20 11 6 3 1 
22 12 6 3 2 

10**12 23 13 7 3 2 
25 14 7 4 2 

10**14 26 15 8 4 2 

Bucket Sort Efficiency%   tstart =1000  tdata =50 
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n/p 2 4 8 16 32 64 128 256 512 1024 
10**4 54 36 21 11 5 3 1 

59 40 24 13 7 3 2 
10**6 62 44 27 15 8 4 2 

65 47 30 17 9 5 2 1 

10**8 68 50 33 19 10 5 3 1 
70 53 35 21 11 6 3 1 

10**10 72 55 38 23 13 6 3 2 
74 58 40 24 14 7 4 2 

10**12 75 60 42 26 15 8 4 2 
76 61 44 28 16 8 4 2 1 

10**14 78 63 46 29 17 9 5 2 1 

Bucket Sort Efficiency  tstartup =100  tdata =5 
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n/p 2 4 8 16 32 64 128 256 512 1024 
10**4 99 98 96 92 85 72 54 34 18 8 

99 99 97 94 88 77 61 42 25 13 
10**6 99 99 97 95 90 80 66 47 30 17 

99 99 98 95 91 83 69 52 34 20 

10**8 100 99 98 96 92 85 72 56 38 22 
100 99 98 96 93 86 75 59 41 25 

10**10 100 99 98 97 93 87 77 62 44 27 
100 99 99 97 94 88 79 64 47 30 

10**12 100 99 99 97 94 89 80 66 49 32 
100 99 99 97 95 90 82 68 51 34 

10**14 100 99 99 98 95 91 83 70 53 36 

Bucket Sort Efficiency  tstartup =1  tdata = 0.05 
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Numerical integration using rectangles 
Each region calculated using an approximation given by 
rectangles: 
Aligning the rectangles: 
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Numerical integration using 
trapezoidal method 

May not be better! 
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Adaptive Quadrature 
Solution adapts to shape of curve. Use three areas, A, B, 
and C. Computation terminated when largest of A and B 
sufficiently close to sum of remain two areas . 
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Adaptive quadrature with 
false termination. 

Some care might be needed in choosing when to terminate. 

Might cause us to terminate early, as two large regions are 
the same (i.e., C = 0). 
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• Adaptive algorithms such as this are used in many 
scientific and engineering applications e.g. aerospace. 
The size of spatial elements is reduced where accuracy is 
needed e.g the triangles on the surface and tetrahedra in 
the volume  around features such as on the wing below 

Source Jianjun Chen 

We then need to use graph-based 
Techniques to partition the domain 
on different processors shown by 
different colors 
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/********************************************************************************* 
pi_calc.cpp calculates value of pi and compares with actual  
value (to 25digits) of pi to give error. Integrates function f(x)=4/(1+x^2). 
July 6, 2001 K. Spry CSCI3145 
**********************************************************************************/ 
#include <math.h> //include files 
#include <iostream.h> 
#include "mpi.h“ 
 
void printit();                                                             //function prototypes 
int main(int argc, char *argv[]) 
{ 
double actual_pi = 3.141592653589793238462643; 
                                                                               //for comparison later 
int n, rank, num_proc, i; 
double temp_pi, calc_pi, int_size, part_sum, x; 
char response = 'y', resp1 = 'y'; 
MPI::Init(argc, argv);                                             //initiate MPI 
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num_proc = MPI::COMM_WORLD.Get_size(); 
rank = MPI::COMM_WORLD.Get_rank(); 
if (rank == 0) printit();             /* I am root node, print out welcome */ 
 
while (response == 'y') { 
 if (resp1 == 'y') { 
 if (rank == 0) {            /*I am root node*/ 
 cout <<"__________________________________" <<endl; 
 cout <<"\nEnter the number of intervals: (0 will exit)" << endl; 
 cin >> n;} 
} else n = 0; 
 
MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);     //broadcast n 
if (n==0) break; //check for quit condition 
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else { 
int_size = 1.0 / (double) n;                          //calcs interval size 
part_sum = 0.0; 
 
for (i = rank + 1; i <= n; i += num_proc) 
 {                                                               //calcs partial sums 
 x = int_size * ((double)i - 0.5); 
 part_sum += (4.0 / (1.0 + x*x)); 
} 
temp_pi = int_size * part_sum; 
                                       //collects all partial sums computes pi 
 
MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1, 
MPI::DOUBLE, MPI::SUM, 0); 
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if (rank == 0) {                                                     /*I am server*/ 
cout << "pi is approximately " << calc_pi 
<< ". Error is " << fabs(calc_pi - actual_pi) 
<< endl 
<<"_______________________________________" 
<< endl; 
} 
}                                                                        //end else 
if (rank == 0) { /*I am root node*/ 
cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1; 
} 
}//end while 
MPI::Finalize();                                              //terminate MPI 
return 0; 
}                                                                   //end main 
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//functions 
void printit() 
{ 
cout << "\n*********************************" << endl 
<< "Welcome to the pi calculator!" << endl 
<< "Programmer: K. Spry" << endl 
<< "You set the number of divisions \nfor estimating the 
integral: 
\n\tf(x)=4/(1+x^2)" 
<< endl 
<< "*********************************" << endl; 
}                      //end printit 
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Gravitational N-Body Problem 

Finding positions and movements of bodies in space 
subject to gravitational forces from other bodies, using 
Newtonian laws of physics. 
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Gravitational N-Body Problem Equations 
Gravitational force between two bodies of masses ma and mb is: 

G is the gravitational constant and r the distance between the 
bodies. Subject to forces, body accelerates according to 
Newton’s 2nd law: 

m is mass of the body, F is force it experiences, and a the 
resultant acceleration. 

F = ma 
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New velocity is: 

where vt+1 is the velocity at time t + 1 and vt is the velocity at time t. 
 
Over time interval ∆t, position changes by 

where xt is its position at time t. 
Once bodies move to new positions, forces change. 
Computation has to be repeated. 

Details 
Let the time interval be   t. For a body of mass m, the force is: 
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Sequential Code 

Overall gravitational N-body computation can be described by: 

for (t = 0; t < tmax; t++)               /* for each time period */ 
 for (i = 0; i < N; i++) {         /* for each body */ 
      F = Force_routine(i);   /* compute force on ith body */ 
        v[i]new = v[i] + F * dt / m;      /* compute new velocity */ 
      x[i]new = x[i] + v[i]new * dt;   /* and new position */ 
} 
for (i = 0; i < nmax; i++) {             /* for each body */ 
      x[i] = x[i]new;                   /* update velocity & position*/ 
      v[i] = v[i]new; 
} 
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Parallel Code 

The sequential algorithm is an O(N2) algorithm 
(for one iteration) as each of the N bodies is 
influenced by each of the other N - 1 bodies. 

Not feasible to use this direct algorithm for most 
interesting N-body problems where N is very 
large. 
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Time complexity can be reduced approximating a 
cluster of distant bodies as a single distant body 
with mass sited at the center of mass of the cluster: 
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Barnes-Hut Algorithm 
Start with whole space in which one cube contains 
the bodies (or particles). 

•   First, this cube is divided into eight subcubes. 
 
•   If a subcube contains no particles, subcube deleted 
from further consideration. 
 
•   If a subcube contains one body, subcube retained. 
 
•   If a subcube contains more than one body, it is 
recursively divided until every subcube contains one body. 



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.32 

Creates an octtree - a tree with up to eight edges 
from each node. 
 
The leaves represent cells each containing one 
body. 
 
After the tree has been constructed, the total 
mass and center of mass of the subcube is stored 
at each node. 
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Force on each body obtained by traversing tree 
starting at root, stopping at a node when the 
clustering approximation can be used, e.g. when: 

where   is a constant typically 1.0 or less. 
 
 
Constructing tree requires a time of O(nlogn), and 
so does computing all the forces, so that overall 
time complexity of method is O(nlogn). 
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Quad tree Recursive division of 
2-dimensional space 
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Oct Trees 

• Extension of quad tree idea to 3D. 
• Very widely used in many applications in science and 

engineering 
•  Subdivide space into 8 at each step 
• Adaptive subdivision can be used as in quad tree case 
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Octree Based Mesh of Aircraft 
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(For 2-dimensional area) First, a vertical line found that divides 
area into two areas each with equal number of bodies. For 
each area, a horizontal line found that divides it into two areas 
each with equal number of bodies. Repeated as required. 

Orthogonal Recursive Bisection 
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Astrophysical N-body simulation 
By Scott Linssen (UNCC student, 1997) using O(N2) algorithm. 
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Astrophysical N-body simulation 
By David Messager (UNCC student 1998) using Barnes-Hut algorithm. 
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• The fast multipole method (FMM) is a mathematical technique that 
was developed to speed up the calculation of long-ranged forces in 
the n-body problem. It does this by expanding the system Green's 
function using a multipole expansion, which allows one to group 
sources that lie close together and treat them as if they are a single 
source.[1] 

• The FMM, introduced by Rokhlin and Greengard, has been 
acclaimed as one of the top ten algorithms of the 20th century.[4] The 
FMM algorithm dramatically reduces the complexity of matrix-vector 
multiplication involving a certain type of dense matrix which can 
arise out of many physical systems. 

• the FMM has also been applied for efficiently treating the Coulomb 
interaction in Hartree–Fock and density functional 
theory calculations in quantum chemistry. 

• Reduces complexity from O(n*n)  to O(n) – very important for large 
n, constant in front n is large – good for GPUs 

Method of Choice (?) – Fast Multipole Method FMM 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/Green%27s_function_(many-body_theory)
http://en.wikipedia.org/wiki/Green%27s_function_(many-body_theory)
http://en.wikipedia.org/wiki/Multipole_expansion
http://en.wikipedia.org/wiki/Fast_multipole_method#cite_note-1
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Fast_multipole_method#cite_note-4
http://en.wikipedia.org/wiki/Hartree%E2%80%93Fock
http://en.wikipedia.org/wiki/Density_functional_theory
http://en.wikipedia.org/wiki/Density_functional_theory
http://en.wikipedia.org/wiki/Quantum_chemistry
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