
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Chapter 4

Partitioning
 and Divide-and-Conquer Strategies

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.1

Partitioning
Partitioning simply divides the problem into parts.

Divide and Conquer
Characterized by dividing problem into sub-problems of
same form as larger problem. Further divisions into still
smaller sub-problems, usually done by recursion.

Recursive divide and conquer amenable to parallelization
because separate processes can be used for divided parts.
Also usually data is naturally localized.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.2

Partitioning/Divide and Conquer
 Examples

Many possibilities.

• Operations on sequences of number such as
simply adding them together

• Several sorting algorithms can often be
partitioned or constructed in a recursive fashion

• Numerical integration

• N-body problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.3

Partitioning a sequence of numbers
into parts and adding the parts

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.4

Tree construction

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.5

Dividing a list into parts

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.6

Partial summation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.7

Quadtree

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.8

Dividing an image

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.9

Bucket sort
One “bucket” assigned to hold numbers that fall within each region.
Numbers in each bucket sorted using a sequential sorting algorithm.

Sequential sorting time complexity: O(nlog(n/m).
Works well if the original numbers uniformly distributed across a
known interval, say 0 to a - 1.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.10

Parallel version of bucket sort
Simple approach

Assign one processor for each bucket.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.11

Further Parallelization
Partition sequence into m regions, one region for
each processor.

Each processor maintains p “small” buckets and
separates numbers in its region into its own small
buckets.

Small buckets then emptied into p final buckets for
sorting, which requires each processor to send one
small bucket to each of the other processors
(bucket i to processor i).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.12

Another parallel version of bucket sort

Introduces new message-passing operation - all-to-all broadcast.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.13

“all-to-all” broadcast routine
Sends data from each process to every other process

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.14

“all-to-all” routine actually transfers rows of an array to columns:
Transposes a matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Performance Analysis
Broadcast groups of numbers to each processor

1comm startup datat t nt= +
Separate n/p numbers into p buckets

2 /compt n p=

Distribute each bucket with n/(p*p) elements. Each
process sending (p-1) buckets- worst case

2
3 (1)((/))comm startup datat p p t n p t= − +

Overlapping communications leads to
2

3 (1)((/))comm startup datat p t n p t= − +

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Computation

4 (/) log(/)compt n p n p=

Summing all these gives
2(/)(1 log(/) (1)(/))p startup datat n p n p pt n p n p t= + + + + −

Speedup factor =

2

log(/)(,)
(/)(1 log(/)) (1)(/)startup data

n n n pS n p
n p n p pt n p n p t

+
=

+ + + + −

Efficiency = S(n,p)/p
 (1)(1 1 /)

1
(/)(1 log(/)

startup datapt nt p
n p n p

−+ +
≈ + +

Plot this!

Note this p is m the bucket
number in serial case

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Constant efficiency as problem and processor sizes
change is known as Isoefficiency

Efficiency = S(n,p)/p
 (1)(1 1 /)

1
(/)(1 log(/)

startup datapt nt p
n p n p

−+ +
+ = +

is Constant ?
Can we pick problem sizes, n, and processor numbers, p,
so that

const

(1)
2

(1)
3

 1 const
(1 log()

(/)
 1 const

(1 2log())

startup data

startup data

t pt
if n p then

p

t p pt
if n p then

p

−

−

+
= + ≈ +

+
= + ≈ +

?

?

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Efficiency = S(n,p)/p

(1)(1 1 /)
(/)(1 log(/)

1 startup datapt nt p
n p n p

−
 + +

+
+ =

is Constant ?

const

1
1 α+

Constant or increasing requires α decreasing

2

2

2

(/)(1 log(/)) (1 1 /)

(1 log(/ p)) (p 1)

(1 (1) log(p)) (p 1)

 and (1) log() (p 1

Let

Hence)

startup data

startup data

startup data

startup data

n p n p pt nt p

n n p t nt

n p
p p t p t

p t p t

β

β β

β

β

β−

+ ≥ + +

+ ≥ + +

=

+ − ≥ + +

> − > +

If startup dominates 2β > but not really scalable

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Scalability Implications

• Hence increasing the core count p by a factor of
1000 means that n the problem size has to grow
by at least factor of as much as 1000,000 but
only if startup cost dominates.

• The second β term is more problematic as we
require roughly β > p/log(p)td

• This is unlikely for large p.
• Is the algorithm scalable in terms of efficiency?

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

n/p 2 4 8 16 32 64 128 256 512 1024
10**4 11 5 3 1

12 6 3 1
10**6 14 7 4 2

16 8 4 2

10**8 17 9 5 2 1
19 10 5 3 1

10**10 20 11 6 3 1
22 12 6 3 2

10**12 23 13 7 3 2
25 14 7 4 2

10**14 26 15 8 4 2

Bucket Sort Efficiency% tstart =1000 tdata =50

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

n/p 2 4 8 16 32 64 128 256 512 1024
10**4 54 36 21 11 5 3 1

59 40 24 13 7 3 2
10**6 62 44 27 15 8 4 2

65 47 30 17 9 5 2 1

10**8 68 50 33 19 10 5 3 1
70 53 35 21 11 6 3 1

10**10 72 55 38 23 13 6 3 2
74 58 40 24 14 7 4 2

10**12 75 60 42 26 15 8 4 2
76 61 44 28 16 8 4 2 1

10**14 78 63 46 29 17 9 5 2 1

Bucket Sort Efficiency tstartup =100 tdata =5

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

n/p 2 4 8 16 32 64 128 256 512 1024
10**4 99 98 96 92 85 72 54 34 18 8

99 99 97 94 88 77 61 42 25 13
10**6 99 99 97 95 90 80 66 47 30 17

99 99 98 95 91 83 69 52 34 20

10**8 100 99 98 96 92 85 72 56 38 22
100 99 98 96 93 86 75 59 41 25

10**10 100 99 98 97 93 87 77 62 44 27
100 99 99 97 94 88 79 64 47 30

10**12 100 99 99 97 94 89 80 66 49 32
100 99 99 97 95 90 82 68 51 34

10**14 100 99 99 98 95 91 83 70 53 36

Bucket Sort Efficiency tstartup =1 tdata = 0.05

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.15

Numerical integration using rectangles
Each region calculated using an approximation given by
rectangles:
Aligning the rectangles:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.16

Numerical integration using
trapezoidal method

May not be better!

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.17

Adaptive Quadrature
Solution adapts to shape of curve. Use three areas, A, B,
and C. Computation terminated when largest of A and B
sufficiently close to sum of remain two areas .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.18

Adaptive quadrature with
false termination.

Some care might be needed in choosing when to terminate.

Might cause us to terminate early, as two large regions are
the same (i.e., C = 0).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

• Adaptive algorithms such as this are used in many
scientific and engineering applications e.g. aerospace.
The size of spatial elements is reduced where accuracy is
needed e.g the triangles on the surface and tetrahedra in
the volume around features such as on the wing below

Source Jianjun Chen

We then need to use graph-based
Techniques to partition the domain
on different processors shown by
different colors

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 3.19

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.20

/***
pi_calc.cpp calculates value of pi and compares with actual
value (to 25digits) of pi to give error. Integrates function f(x)=4/(1+x^2).
July 6, 2001 K. Spry CSCI3145
**/
#include <math.h> //include files
#include <iostream.h>
#include "mpi.h“

void printit(); //function prototypes
int main(int argc, char *argv[])
{
double actual_pi = 3.141592653589793238462643;
 //for comparison later
int n, rank, num_proc, i;
double temp_pi, calc_pi, int_size, part_sum, x;
char response = 'y', resp1 = 'y';
MPI::Init(argc, argv); //initiate MPI

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.21

num_proc = MPI::COMM_WORLD.Get_size();
rank = MPI::COMM_WORLD.Get_rank();
if (rank == 0) printit(); /* I am root node, print out welcome */

while (response == 'y') {
 if (resp1 == 'y') {
 if (rank == 0) { /*I am root node*/
 cout <<"__________________________________" <<endl;
 cout <<"\nEnter the number of intervals: (0 will exit)" << endl;
 cin >> n;}
} else n = 0;

MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0); //broadcast n
if (n==0) break; //check for quit condition

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.22

else {
int_size = 1.0 / (double) n; //calcs interval size
part_sum = 0.0;

for (i = rank + 1; i <= n; i += num_proc)
 { //calcs partial sums
 x = int_size * ((double)i - 0.5);
 part_sum += (4.0 / (1.0 + x*x));
}
temp_pi = int_size * part_sum;
 //collects all partial sums computes pi

MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1,
MPI::DOUBLE, MPI::SUM, 0);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.23

if (rank == 0) { /*I am server*/
cout << "pi is approximately " << calc_pi
<< ". Error is " << fabs(calc_pi - actual_pi)
<< endl
<<"_______________________________________"
<< endl;
}
} //end else
if (rank == 0) { /*I am root node*/
cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1;
}
}//end while
MPI::Finalize(); //terminate MPI
return 0;
} //end main

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.24

//functions
void printit()
{
cout << "\n*********************************" << endl
<< "Welcome to the pi calculator!" << endl
<< "Programmer: K. Spry" << endl
<< "You set the number of divisions \nfor estimating the
integral:
\n\tf(x)=4/(1+x^2)"
<< endl
<< "*********************************" << endl;
} //end printit

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.25

Gravitational N-Body Problem

Finding positions and movements of bodies in space
subject to gravitational forces from other bodies, using
Newtonian laws of physics.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.26

Gravitational N-Body Problem Equations
Gravitational force between two bodies of masses ma and mb is:

G is the gravitational constant and r the distance between the
bodies. Subject to forces, body accelerates according to
Newton’s 2nd law:

m is mass of the body, F is force it experiences, and a the
resultant acceleration.

F = ma

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.27

New velocity is:

where vt+1 is the velocity at time t + 1 and vt is the velocity at time t.

Over time interval ∆t, position changes by

where xt is its position at time t.
Once bodies move to new positions, forces change.
Computation has to be repeated.

Details
Let the time interval be t. For a body of mass m, the force is:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 3.28

Sequential Code

Overall gravitational N-body computation can be described by:

for (t = 0; t < tmax; t++) /* for each time period */
 for (i = 0; i < N; i++) { /* for each body */
 F = Force_routine(i); /* compute force on ith body */
 v[i]new = v[i] + F * dt / m; /* compute new velocity */
 x[i]new = x[i] + v[i]new * dt; /* and new position */
}
for (i = 0; i < nmax; i++) { /* for each body */
 x[i] = x[i]new; /* update velocity & position*/
 v[i] = v[i]new;
}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.29

Parallel Code

The sequential algorithm is an O(N2) algorithm
(for one iteration) as each of the N bodies is
influenced by each of the other N - 1 bodies.

Not feasible to use this direct algorithm for most
interesting N-body problems where N is very
large.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.30

Time complexity can be reduced approximating a
cluster of distant bodies as a single distant body
with mass sited at the center of mass of the cluster:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.31

Barnes-Hut Algorithm
Start with whole space in which one cube contains
the bodies (or particles).

• First, this cube is divided into eight subcubes.

• If a subcube contains no particles, subcube deleted
from further consideration.

• If a subcube contains one body, subcube retained.

• If a subcube contains more than one body, it is
recursively divided until every subcube contains one body.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.32

Creates an octtree - a tree with up to eight edges
from each node.

The leaves represent cells each containing one
body.

After the tree has been constructed, the total
mass and center of mass of the subcube is stored
at each node.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.33

Force on each body obtained by traversing tree
starting at root, stopping at a node when the
clustering approximation can be used, e.g. when:

where is a constant typically 1.0 or less.

Constructing tree requires a time of O(nlogn), and
so does computing all the forces, so that overall
time complexity of method is O(nlogn).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.34

Quad tree Recursive division of
2-dimensional space

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Oct Trees

• Extension of quad tree idea to 3D.
• Very widely used in many applications in science and

engineering
• Subdivide space into 8 at each step
• Adaptive subdivision can be used as in quad tree case

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Octree Based Mesh of Aircraft

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.35

(For 2-dimensional area) First, a vertical line found that divides
area into two areas each with equal number of bodies. For
each area, a horizontal line found that divides it into two areas
each with equal number of bodies. Repeated as required.

Orthogonal Recursive Bisection

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.36

Astrophysical N-body simulation
By Scott Linssen (UNCC student, 1997) using O(N2) algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.37

Astrophysical N-body simulation
By David Messager (UNCC student 1998) using Barnes-Hut algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

• The fast multipole method (FMM) is a mathematical technique that
was developed to speed up the calculation of long-ranged forces in
the n-body problem. It does this by expanding the system Green's
function using a multipole expansion, which allows one to group
sources that lie close together and treat them as if they are a single
source.[1]

• The FMM, introduced by Rokhlin and Greengard, has been
acclaimed as one of the top ten algorithms of the 20th century.[4] The
FMM algorithm dramatically reduces the complexity of matrix-vector
multiplication involving a certain type of dense matrix which can
arise out of many physical systems.

• the FMM has also been applied for efficiently treating the Coulomb
interaction in Hartree–Fock and density functional
theory calculations in quantum chemistry.

• Reduces complexity from O(n*n) to O(n) – very important for large
n, constant in front n is large – good for GPUs

Method of Choice (?) – Fast Multipole Method FMM

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/N-body_problem
http://en.wikipedia.org/wiki/Green%27s_function_(many-body_theory)
http://en.wikipedia.org/wiki/Green%27s_function_(many-body_theory)
http://en.wikipedia.org/wiki/Multipole_expansion
http://en.wikipedia.org/wiki/Fast_multipole_method#cite_note-1
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Fast_multipole_method#cite_note-4
http://en.wikipedia.org/wiki/Hartree%E2%80%93Fock
http://en.wikipedia.org/wiki/Density_functional_theory
http://en.wikipedia.org/wiki/Density_functional_theory
http://en.wikipedia.org/wiki/Quantum_chemistry

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Performance Analysis
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Scalability Implications
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Oct Trees
	Octree Based Mesh of Aircraft
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

