
Program Optimization
Through Loop Vectorization

María Garzarán, Saeed Maleki
 William Gropp and David Padua

Department of Computer Science

University of Illinois at Urbana-Champaign

Simple Example
•  Loop vectorization transforms a program so that the

same operation is performed at the same time on several
vector elements

for (i=0; i<n; i++)
 c[i] = a[i] + b[i];

… Register File

X1

Y1

Z1

32 bits

32 bits

+

32
bits

Scalar Unit Vector
Unit

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

n
times

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n/4
times

4

SIMD Vectorization
•  The use of SIMD units can speed up the program.
•  Intel SSE and IBM Altivec have 128-bit vector registers and

functional units
–  4 32-bit single precision floating point numbers
–  2 64-bit double precision floating point numbers
–  4 32-bit integer numbers
–  2 64 bit integer
–  8 16-bit integer or shorts
–  16 8-bit bytes or chars

•  Assuming a single ALU, these SIMD units can execute 4 single
precision floating point number or 2 double precision operations in
the time it takes to do only one of these operations by a scalar unit.

	

5

Executing Our Simple Example

for (i=0; i<n; i++)
 c[i] = a[i] + b[i];

… Register File

X
1

Y1

Z1

32 bits

+

32 bits

Scalar Unit Vector
Unit

Intel Nehalem
Exec. Time scalar code: 6.1
Exec. Time vector code: 3.2
Speedup: 1.8

IBM Power 7

Exec. Time scalar code: 2.1
Exec. Time vector code: 1.0
Speedup: 2.1

S000

6

How do we access the SIMD units?
•  Three choices

1.  C code and a vectorizing compiler

2.  Macros or Vector Intrinsics

3.  Assembly Language

7

for (i=0; i<LEN; i++)
 c[i] = a[i] + b[i];

void example(){
__m128 rA, rB, rC;
 for (int i = 0; i <LEN; i+=4){
 rA = _mm_load_ps(&a[i]);
 rB = _mm_load_ps(&b[i]);

 rC = _mm_add_ps(rA,rB);
 _mm_store_ps(&C[i], rC);
}}

 ..B8.5

 movaps a(,%rdx,4), %xmm0
 addps b(,%rdx,4), %xmm0
 movaps %xmm0, c(,%rdx,4)
 addq $4, %rdx
 cmpq $rdi, %rdx
 jl ..B8.5

Compiler directives

14

void test(float* A, float* B, float*
C, float* D, float* E)
{
 for (int i = 0; i <LEN; i++){
 A[i]=B[i]+C[i]+D[i]+E[i];
 }
}

S1111 S1111

S1111

Intel Nehalem
Compiler report: Loop was not
vectorized.
Exec. Time scalar code: 5.6
Exec. Time vector code: --
Speedup: --

Intel Nehalem
Compiler report: Loop was
vectorized.
Exec. Time scalar code: 5.6
Exec. Time vector code: 2.2
Speedup: 2.5

void test(float* __restrict__ A,
float* __restrict__ B,
float* __restrict__ C,
float* __restrict__ D,
float* __restrict__ E)
{
 for (int i = 0; i <LEN; i++){
 A[i]=B[i]+C[i]+D[i]+E[i];
 }
}

S1111

Loop Transformations

16

 for (int i=0;i<LEN;i++){
 sum = (float) 0.0;
 for (int j=0;j<LEN;j++){

 sum += A[j][i];
 }
 B[i] = sum;
 }

j

i

 for (int i=0;i<size;i++){
 sum[i] = 0;
 for (int j=0;j<size;j++){

 sum[i] += A[j][i];
 }
 B[i] = sum[i];
 }

Loop Transformations

17

 for (int i=0;i<LEN;i++){
 sum = (float) 0.0;
 for (int j=0;j<LEN;j++){

 sum += A[j][i];
 }
 B[i] = sum;
 }

S136 S136_1 S136_2

S136 S136_1 S136_2

Intel Nehalem
Compiler report: Loop was not
vectorized. Vectorization
possible but seems inefficient
Exec. Time scalar code: 3.7
Exec. Time vector code: --
Speedup: --

Intel Nehalem
report: Permuted loop
was vectorized.
scalar code: 1.6
vector code: 0.6
Speedup: 2.6

Intel Nehalem
report: Permuted loop
was vectorized.
scalar code: 1.6
vector code: 0.6
Speedup: 2.6

 for (int i=0;i<LEN;i++)
 sum[i] = (float) 0.0;
 for (int j=0;j<LEN;j++){

 sum[i] += A[j][i];
 }
 B[i]=sum[i];
 }

 for (int i=0;i<LEN;i++)
 B[i] = (float) 0.0;
 for (int j=0;j<LEN;j++){

 B[i] += A[j][i];
 }
 }

Stripmining
•  Stripmining is a simple transformation.

•  It is typically used to improve locality.

32

for (i=1; i<n; i++){
 …
}

/* n is a multiple of q */
for (k=1; k<n; k+=q){
 for (i=k; i<k+q-1; i++){
 …
 }
}

Stripmining (cont.)
•  Stripmining is often used when vectorizing

33

for (i=1; i<n; i++){
 a[i] = b[i] + 1;
 c[i] = a[i] + 2;
}

for (i=1; i<n; i+=q){
 a[i:i+q-1] = b[i:i+q-1] + 1;
 c[i:i+q-1] = a[i:i+q] + 2;
}

for (k=1; k<n; k+=q){
/* q could be size of vector register */
 for (i=k; i < k+q; i++){
 a[i] = b[i] + 1;
 c[i] = a[i-1] + 2;
 }
}

stripmine

vectorize

Loop Vectorization
•  Loop Vectorization is not always a legal and

profitable transformation.
•  Compiler needs:

–  Compute the dependences
•  The compiler figures out dependences by

–  Solving a system of (integer) equations (with constraints)
–  Demonstrating that there is no solution to the system of

equations

–  Remove cycles in the dependence graph
–  Determine data alignment
–  Vectorization is profitable

35

Simple Example
•  Loop vectorization transforms a program so that the

same operation is performed at the same time on
several of the elements of the vectors

for (i=0; i<LEN; i++)
 c[i] = a[i] + b[i];

36

… Register File

X1

Y1

Z1

32 bits

32 bits

+

32
bits

Scalar Unit Vector
Unit

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

n
times

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3m addr3

n/4
times

Loop Vectorization
•  When vectorizing a loop with several statements the

compiler need to strip-mine the loop and then apply loop
distribution

for (i=0; i<LEN; i++){
 a[i]=b[i]+(float)1.0;
 c[i]=b[i]+(float)2.0;
}

S1
S2

37

for (i=0; i<LEN; i+=strip_size){
 for (j=i; j<i+strip_size; j++)
 a[j]=b[j]+(float)1.0;
 for (j=i; j<i+strip_size; j++)
 c[j]=b[j]+(float)2.0;
}

S2 S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1

i=0 i=1 i=2 i=3

S1 S1 S1 S1

i=4 i=5 i=6 i=7

Loop Vectorization
•  When vectorizing a loop with several statements the

compiler need to strip-mine the loop and then apply loop
distribution

for (i=0; i<LEN; i++){
 a[i]=b[i]+(float)1.0;
 c[i]=b[i]+(float)2.0;
}

S1
S2

38

for (i=0; i<LEN; i+=strip_size){
 for (j=i; j<i+strip_size; j++)
 a[j]=b[j]+(float)1.0;
 for (j=i; j<i+strip_size; j++)
 c[j]=b[j]+(float)2.0;
}

S2 S2 S2 S2 S2 S2 S2 S2

S1 S1 S1 S1

i=0 i=1 i=2 i=3

S1 S1 S1 S1

i=4 i=5 i=6 i=7

Loop Transformations
•  Compiler Directives
•  Loop Distribution or loop fission
•  Reordering Statements
•  Node Splitting
•  Scalar expansion
•  Loop Peeling
•  Loop Fusion
•  Loop Unrolling
•  Loop Interchanging

72

47

S214 S214_1

S114 S114_1

Intel Nehalem
Compiler report: Loop was not
vectorized. Existence of vector
dependence
Exec. Time scalar code: 7.6
Exec. Time vector code: --
Speedup: --

Intel Nehalem
Compiler report: Loop was vectorized
Exec. Time scalar code: 7.6
Exec. Time vector code: 3.8
Speedup: 2.0

Acyclic Dependenden Graphs
 Backward Dependences (II)

S1

S2

S1

S2

for (int i=1;i<LEN;i++) {
 a[i]=d[i-1]+(float)sqrt(c[i]);
 d[i]=b[i]+(float)sqrt(e[i]);

}

for (int i=1;i<LEN;i++) {
 d[i]=b[i]+(float)sqrt(e[i]);
 a[i]=d[i-1]+(float)sqrt(c[i]);

}

S1
S2

for (i=0; i<LEN; i++) {
 d[i] = a[i+1]+(float)1.0;
 a[i]= b[i] + c[i];
}

S2
S1

S1

S2

backward
depedence

S2

S1

forward
depedence

43

Acyclic Dependenden Graphs
 Backward Dependences (I)

S1

S2

S1

S2

S1

S2

S2

S1

S2

S1

S2

S1

Reorder of statements
for (i=0; i<LEN; i++) {
 a[i]= b[i] + c[i]
 d[i] = a[i+1] + (float) 1.0;
}

#pragma vector always
for (int i = 0; i < LEN; i++){
 if (c[i] < (float) 0.0)
 a[i] = a[i] * b[i] + d[i];
}

Conditional Statements – I
•  Loops with conditions need #pragma vector always	

–  Since the compiler does not know if vectorization will be
profitable

–  The condition may prevent from an exception

152

for (int i = 0; i < LEN; i++){
 if (c[i] < (float) 0.0)
 a[i] = a[i] * b[i] + d[i];
}

Conditional Statements – I

153

S137 S137_1

S137 S137_1

Intel Nehalem
Compiler report: Loop was not
vectorized. Condition may protect
exception
Exec. Time scalar code: 10.4
Exec. Time vector code: --
Speedup: --

Intel Nehalem
Compiler report: Loop was
vectorized.
Exec. Time scalar code: 10.4
Exec. Time vector code: 5.0
Speedup: 2.0

#pragma vector always
for (int i = 0; i < LEN; i++){
 if (c[i] < (float) 0.0)
 a[i] = a[i] * b[i] + d[i];
}

for (int i = 0; i < LEN; i++){
 if (c[i] < (float) 0.0)
 a[i] = a[i] * b[i] + d[i];
}

Conditional Statements

•  Compiler removes if conditions when
generating vector code

155

Compiler Directives

•  Compiler vectorizes many loops, but many more can be
vectorized if the appropriate directives are used

158

Compiler Hints for Intel ICC Semantics

#pragma ivdep Ignore assume data dependences

#pragma vector always override efficiency heuristics

#pragma novector disable vectorization

__restrict__ assert exclusive access through
pointer

__attribute__ ((aligned(int-val))) request memory alignment

memalign(int-val,size); malloc aligned memory

__assume_aligned(exp, int-val) assert alignment property

