Additional Material from Chapter 11

- Solving a system of linear equations using iterative methods

Relationship of Matrices to Linear Equations

A system of linear equations can be written in matrix form:

$$
A x=b
$$

Matrix A holds the a constants
\mathbf{x} is a vector of the unknowns
\mathbf{b} is a vector of the b constants.

Solving a System of Linear Equations

$$
\begin{array}{llll}
a_{n-1,0} x_{0}+a_{n-1,1} x_{1}+a_{n-1,2} x_{2} & \ldots & +a_{n-1, n-1} x_{n-1} & =b_{n-1} \\
& \cdot & & \\
& \cdot & & \\
& \cdot & & \\
a_{2,0} x_{0}+a_{2,1} x_{1}+a_{2,2} x_{2} & \ldots & +a_{2, n-1} x_{n-1} & =b_{2} \\
a_{1,0} x_{0}+a_{1,1} x_{1}+a_{1,2} x_{2} & \ldots & +a_{1, n-1} x_{n-1} & =b_{1} \\
a_{0,0} x_{0}+a_{0,1} x_{1}+a_{0,2} x_{2} & \ldots & +a_{0, n-1} x_{n-1} & =b_{0}
\end{array}
$$

which, in matrix form, is

$$
\mathbf{A x}=\mathbf{b}
$$

Objective is to find values for the unknowns, $x 0, x 1, \ldots, x n-1$, given values for $a 0,0, a 0,1, \ldots, a n-1, n-1$, and $b 0, \ldots, b n$.

Solving a System of Linear Equations

Dense matrices

Gaussian Elimination - parallel time complexity O(n2)

Sparse matrices

By iteration - depends upon iteration method and number of iterations but typically O(log n)

- Jacobi iteration
- Gauss-Seidel relaxation (not good for parallelization)
- Red-Black ordering
- Multigrid

Iterative Methods

Time complexity of direct method at $\mathrm{O}\left(N^{\wedge} 2\right)$ with N processors, is significant.

Time complexity of iteration method depends upon:

- the type of iteration,
- number of iterations
- number of unknowns, and
- required accuracy
but can be less than the direct method especially for a few unknowns i.e a sparse system of linear equations.

Jacobi Iteration

Iteration formula - ith equation rearranged to have ith unknown on left side:

$$
x_{i}^{k}=\frac{1}{a_{i, i}}\left[b_{i}-\sum_{j \neq i} a_{i, j} x_{j}^{k-1}\right]
$$

Superscript indicates iteration:

x_{i}^{k} is k th iteration of x_{i}, x_{j}^{k-1} is $(k-1)$ th iteration of x_{j}.

Example of a Sparse System of Linear Equations Laplace's Equation

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

Also need to specify a domain
$0<=x<=1$
$0<=y<=1$
And also to specify
$f(x, y)$ on the edges of the domain

Solve for f over the two-dimensional $x-y$ space.
For a computer solution, finite difference methods are appropriate
Two-dimensional solution space is "discretized" into a large number of solution points.

Finite Difference Method

Solution space

Method of Manufactured Solutions

A way to construct solutions for equations so that you cantest numerical accuracy
E.G consider $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, u$ known on boundaries

We may not always know an exact solution $u(x, y)$ so suppose We know an approximate solution $v(x, y)$ we van then test the Accuracy of our code by solving the equation that $v(x, y)$ does satisfy

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=f(x, y)
$$

E.G if $v(x, y)=6 x^{3}+3 y^{2}$ then $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=36 x+6$

This is called the method of manufactured solutions
For analytical solutions see course web page

If distance between points, Δ, made small enough:

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}} \approx \frac{1}{\Delta^{2}}[f(x+\Delta, y)-2 f(x, y)+f(x-\Delta, y)] \\
& \frac{\partial^{2} f}{\partial y^{2}} \approx \frac{1}{\Delta^{2}}[f(x, y+\Delta)-2 f(x, y)+f(x, y-\Delta)]
\end{aligned}
$$

Substituting into Laplace's equation, we get

$$
\frac{1}{\Delta^{2}}[f(x+\Delta, y)+f(x-\Delta, y)+f(x, y+\Delta)+f(x, y-\Delta)-4 f(x, y)]=0
$$

Rearranging, we get

$$
f(x, y)=\frac{[f(x-\Delta, y)+f(x, y-\Delta)+f(x+\Delta, y)+f(x, y+\Delta)]}{4}
$$

Rewritten as an iterative formula:

$$
f^{k}(x, y)=\frac{\left[f^{k-1}(x-\Delta, y)+f^{k-1}(x, y-\Delta)+f^{k-1}(x+\Delta, y)+f^{k-1}(x, y+\Delta)\right]}{4}
$$

$f^{k}(x, y)-k$ th iteration, $f^{k-1}(x, y)-(k-1)$ th iteration.

Natural Order

Boundary points (see text)

$\begin{array}{cccccccccc}\bullet & \bullet \\ x_{81} & x_{82} & x_{83} & x_{84} & x_{85} & x_{86} & x_{87} & x_{88} & x_{89} & x_{90} \\ \bullet & - & \bullet & - \\ x_{91} & x_{92} & x_{93} & x_{94} & x_{95} & x_{96} & x_{97} & x_{98} & x_{99} & x_{100}\end{array}$

Relationship with a General System of Linear Equations

Using natural ordering, ith point computed from ith equation:

$$
x_{i}=\frac{x_{i-n}+x_{i-1}+x_{i+1}+x_{i+n}}{4}
$$

or

$$
x_{i-n}+x_{i-1}-4 x_{i}+x_{i+1}+x_{i+n}=0
$$

which is a linear equation with five unknowns (except those with boundary points).
In general form, the ith equation becomes:

$$
a_{i, i-n} x_{i-n}+a_{i, i-1} x_{i-1}+a_{i, i} x_{i}+a_{i, i+1} x_{i+1}+a_{i, i+n} x_{i+n}=0
$$

where $a_{i, i}=-4$, and $a_{i, i-n}=a_{i, i-1}=a_{i, i+1}=a_{i, i+n}=1$.

Gauss-Seidel Relaxation

Uses some newly computed values to compute other values in that iteration.

Gauss-Seidel Iteration Formula

$$
x_{i}^{k}=\frac{1}{a_{i, i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i, j} x_{j}^{k}-\sum_{j=i+1}^{N} a_{i, j} x^{k-1}\right]
$$

where the superscript indicates the iteration.
With natural ordering of unknowns, formula reduces to

$$
x_{i=\left(-1 / a_{i, i}^{k}\right)\left[a_{i, i-n} x_{i-n}^{k}+a_{i, i-1} x_{i-1}^{k}+a_{i, i+1} x_{i+1}^{k-1}+a_{i, i+n} x_{i+n}^{k-1}\right] ~}^{c}
$$

At the k th iteration, two of the four values (before the ith element) taken from the k th iteration and two values (after the ith element) taken from the $(k-1)$ th iteration. We have:

$$
f^{k}(x, y)=\frac{\left[f^{k}(x-\Delta, y)+f^{k}(x, y-\Delta)+f^{k-1}(x+\Delta, y)+f^{k-1}(x, y+\Delta)\right]}{4}
$$

Red-Black Ordering

First, black points computed. Next, red points computed. Black points computed simultaneously, and red points computed simultaneously.

Red-Black Parallel Code

```
forall (i=1; i < n; i++)
    forall (j = 1; j < n; j++)
        if ((i + j) % 2 == 0)
            f[i][j] = 0.25*(f[i-1][i] + f[i][j-1] + f[i+1][j] + f[i][i+1]);
forall (i=1; i < n; i++)
    forall (j = 1; j < n; j++)
    if ((i + j) % 2 != 0)
                            |* compute black points */
    f[i][j] = 0.25*(f[i-1][i] + f[i][j-1] + f[i+1][i] + f[i][i+1]);
```


Higher-Order Difference Methods

More distant points could be used in the computation. The following update formula:

$$
\begin{gathered}
f^{k}(x, y)= \\
\frac{1}{60}\left[16 f^{k-1}(x-\Delta, y)+16 f^{k-1}(x, y-\Delta)+16 f^{k-1}(x+\Delta, y)+16 f^{k-1}(x, y+\Delta) .\right. \\
\left.-f^{k-1}(x-2 \Delta, y)-f^{k-1}(x, y-2 \Delta)-f^{k-1}(x+2 \Delta, y)-f^{k-1}(x, y+2 \Delta)\right]
\end{gathered}
$$

Nine-point stencil

Overrelaxation

Improved convergence obtained by adding factor $(1-\omega) x_{i}$ to Jacobi or Gauss-Seidel formulae. Factor ω is the overrelaxation parameter.

Jacobi overrelaxation formula

$$
x_{i}^{k}=\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j \neq i} a_{i j} x_{i}^{k-1}\right]+(1-\omega) x_{i}^{k-1}
$$

where $0<\omega<1$.
Gauss-Seidel successive overrelaxation

$$
x_{i}^{k}=\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{i}^{k}-\sum_{j=i+1}^{N} a_{i j} x_{i}^{k-1}\right]+(1-\omega) x_{i}^{k-1}
$$

where $0<\omega \leq 2$. If $\omega=1$, we obtain the Gauss-Seidel method.

