CS 6230: High-Performance Computing
and Parallelization — Introduction to MPI

Dr. Mike Kirby

School of Computing and
Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT, USA

THE
U UNIVERSITY
OF UTAH

IIIIIIIII

Distributed Computing

Fast
Interconnect

(BlueGene/L - Image courtesy of IBM /LLNL)
MPI is the de facto standard for programming distributed processes.

A large API with over 300 functions exists and is widely supported.

Several popular and robust (free) implementations: MPICH and OpenMPI

Scientific Computing and Imaging Institute, University of Utah

How Widely Used Is MPI?

X &

Languagé;;og Models

---------- RT--- Devy-- O

hiat

= 3

Sys

Fortran95s

CAF

OpenhiP

i

g

Global Amays

Python
ARMCI

BLACS

CCA-Tools

PHDF5

MPI-10

netCDF
pnetCDF
Cray Scilib
FFTPACK
FFTW
MUNMPS
PBLAS
PEIGS
Parmetis
PARPACK
PetSC
Scalapack
SGISCSL
SPRHG
ZOLTAHN

LSMS

- |Fortran77

= |C/IC++

= |GHU Make

= |NMPI2

= |HDF5

= | XML

= |ctime
tar
CcP
Mikdir
Rm
Other

OMC

- = |BLAS

CHIMERA

= == |L APACK

POP/CICE

SD3

GTC

MADHESS

— L — b D o b D

AORSA 1

= iaiaiaiaiaiaias Fortran90

LAMMPS

FLASH

Milc ' Chroma

PFLOTRAN

QOBOX

— e D e

CAM

CCSD

T3P

VASP

HEWTRHNX

HWChem |1

OReTran

CASINO

|:| Must have

The success of MPI (Courtesy of Al Geist, EuroPVM / MPI 2007)

|:| Can use

Scientific Computing and Imaging Institute, University of Utah

TTTTTTTTT

Why MPI is Complex: Collision of Features

— Rendezvous mode

Send — Blocking mode

Receive — Non-blocking mode

Send / Receive — Reliance on system buffering

Send / Receive / Replace — User-attached buffering

Broadcast — Restarts/Cancels of MPI Operations
Barrier

Reduce

An MPI program is an
interesting (and legal)

Wildcard receives _j——> combination of elements

Tag matching from these spaces
Communication spaces

Non Wildcard receives

Scientific Computing and Imaging Institute, University of Utah

INSTITUTE

So What is MPI Anyway?

MPI is not a language. Itis an API.

Application Programming Interface (API). An API defines
the calling conventions and other information needed
for one software module (typically an application
program) to utilize the services provided by another
software module.

MPI provides a collection of functions that allow inter-
process communication through an MPI
communications “layer”.

One compiles “with” MPI.

University of Utah

IIIIIIIIII

Programming and Compiling

C++/MPI Code From Practical 1

#include <iostream>
#include "mpi.h" mpicc —o prac1 prac1.cpp

using namespace std;

or
int main(int argc, char ** argv){
int mynode, totalnodes;

g++ -o prac1 -l <header
MPI_Init(&argc,&argv);

MPI_Comm_size(MP|_COMM_WORLD, &totalnodes); path> -L <MPI library path>
MPI_Comm_rank(MPI_COMM_WORLD, &mynode); _|mpi praC1 .Cpp

cout << "l am process " << mynode << " out of " << totalnodes << end|;

This produces an

MPI_Finalize(); executable prac1

return O;

University of Utah

TTTTTTTTT

Conceptual View of MPI

Software Perspective

Hardware Perspective

University of Utah

MPI “Boot”

MPI “Boot” (called different things per implementation)

TTTTTTTTT

starts a daemon per machine — sometimes called the MPI

daemon.

This daemon waits for an MPI job to be started using mpirun.

University of Utah

Running MPI

mpirun —np 7 prac

TTTTTTTTT

Hardware Perspective

University of Utah

INSTITUTE

Groups and Communicators

A group defines the participants in the communication of a
communicator. It is actually an ordered collection of
processes, each with a rank.

Message passing in MPI is via communicators, each of
which specifies a set (group) of processes that participate in
the communication.

Communicators can be created and destroyed dynamically
by coordinating processes.

Information about topology and other attributes of a
communicator can be updated dynamically.

University of Utah

INSTITUTE

Groups and Communicators

« Group Functions start with MPIl_Group *
— MPI_Group_rank
— MPI_Group_size
— MPI_Group_create

« Communicator Functions start with MPl_Comm_*
— MPI_Comm_rank
— MPI_Comm_size
— MPI_Comm_compare
— MPI_Comm_dup

University of Utah

Guaranteed Communicator

TTTTTTTTT

MPI_COMM_WORLD

(o >

University of Utah

TTTTTTTTTT

Predefined MPI Datatypes

MPI datatype

C datatype

MPI_CHAR
MPI_SHORT

MPI_INT

MPI_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_BYTE
MPI_PACKED

signed char
singed short int
signed int

singed long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double
long double

University of Utah

TTTTTTTTTT

Predefined MP| Operations

Operation Name | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC | Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

University of Utah

TTTTTTTTTT

Predefined MP| Operations

Defined in header file
#include <iostrem.k/
[#include <mpi.h>]
int main(int argc, char * argv[]){

int mynode, totalnodes; Used as arguments in
— MPI function calls

MPI_Init(&argc,&argv) ; -
MPI_Comm_size[(MPI_COMM_WORLD| &totalnodes) ;
MPI_Comm_rank(MPI_COMM_WORLD| &mynode) ;

cout << "Hello world from processor " << mynode << " of " << totalnodes << endl;
MPI_Finalize();

return O;

University of Utah

Output Considerations

IIIIIIIIII

This is probably what you see as output on your screen:

Hello
Hello
Hello
Hello

world from
world from
world from
world from

processor
processor
processor
processor

= N W O

Note: This makes assumptions about the output device
and how the MPI subsystem is handling standard output.

University of Utah

TTTTTTTTTT

MPI| Function Declarations

int MPI_Init(
int* argc_ptr /* infout */,
char** argv.ptr[] /* in/out */)

int MPI_Finalize(void)

int MPI_Comm_rank(
MPI_Comm comm /* in ,
int* result /* out */)

>

int MPI_Comm _size(
MPI_Comm comm /* in */,
int™ size /* out */)

University of Utah

IIIIIIIIII

Sending in MPI
int MPI_Send(
void* message /* in ¥/
int count /¥ in %/,
MPI Datatype datatype /* in */,
int dest /* im %/
int tag /* in * 9

MPI_Comm comim /* in */)

T o

message datatype \ count (in this case 5)

University of Utah

INSTITUTE

Notes on MPI| Send

Must be specific as to the process to whom you are
sending (no wildcard).

dest and comm are used together in concert to
determine to whom a process is sending.

Send assumes that the message in memory to be
sent is contiguous.

Tags are integers which are used to distinguish
between particular messages sent from one process
to another.

MPI_Send is blocking — the function will only return
when the user can reuse the memory which was
passed.

University of Utah

int MPI_Recv(
void™*
int

Receiving in MPI

message
count

MPI_Datatype datatype

1nt source
int tag
MPI_Comm comin

MPI_Status™ status

/>l<
/>|<
/>|<
/>l<
/>l<
/>l<
/>l<

out
in
in
in
in
n
out

TTTTTTTTTT

*/7
*/7
*/7
*/7
>l</7

x
y

*/)

-~ —

message datatype

count (in this case 11)/

University of Utah

INSTITUTE

Notes on MP| Recv

« The count within the MPI_Recv denotes the size of
the buffer into which the system may place an

Incoming message. It is not used to select which
message is received.

« Assuming the same tags, messages are received in
their sending order. Tags are used to distinguish
between messages on the incoming message stack.

 MPI _Recv is blocking. It will only return after the
message has been received (otherwise an error has
occurred which will be denoted in the error and status
information).

University of Utah

INSTITUTE

Predefined MPI Constants

MPI_ANY_ SOURCE (Wildcard Source)
MPI_ANY_ TAG (Wildcard Tag)

These can only be used with Receive (and its
variants). There is no such thing as a wildcard Send.

University of Utah

TTTTTTTTTT

Example Serial Program
#include<iostream.h>
int main(int argc, char * argv[]){
int sum;
sum = O;

for(int i=1;i<=1000;i++)
sum = sum + 1;

cout << "The sum from 1 to 1000 is: " << sum << endl;

return O;

University of Utah

TTTTTTTTTT

Example Parallelization of Serial Program

#include<iostream.h>
#include<mpi.h>

int main(int argc, char * argv[]){
int mynode, totalnodes;
int sum,startval,endval,accum;
MPI_Status status;

MPI_Init(argc,argv);
MPI_Comm_size (MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

sum = 0;
startval = 1000*mynode/totalnodes+1; D;-ehsetlf::g)g;ar’:ir’:irgr?irn
endval = 1000*(mynode+1)/totalnodes; J

Work

for(int i=startval;i<=endval;i++)
sum = sum + 1i;

University of Utah

TTTTTTTTTT

Example Parallelization of Serial Program

for(int i=startval;i<=endval;i++)

sum = sum + 1i;
Cassnion Réderchoe A Bug

[if (mynode!=0
MPI_Send(&sum)1,MPI_INT,0,1,MPI_COMM_WORLD) ;

else
[for(int j=1;j<totalnodes;j++){
MPI_Recv(&accum,1,MPI_INT,j,1,MPI_COMM_WORLD, &status);
sum = sum + accum;

}

if (mynode == 0)
cout << "The sum from 1 to 1000 is: " << sum << endl;

MPI_Finalize();

return O;

University of Utah

TTTTTTTTT

Key Concepts

Key Concept

e Almost everything in MPI can be summed up in the single idea of “Message Sent - Message
Received”.

Key Concept

e There must be a one-to-one correspondence between MPI_Send and MPI_Recv commands.
For every message sent using MPI_Send, there must be an explicit receiver using MPI_Recv.

Key Concept

e There must be a one-to-one correspondence between MPI_Send and MPI_Recv commands.
For every message sent using MPI_Send, there must be an explicit receiver using MPI_Recv.

University of Utah

TTTTTTTTTT

Terminology: Correctness

Deadlock: An error condition common in parallel
programming in which the computation has stalled because a
group of processes are blocked and waiting for each other in

a cyclic configuration.

Example of a Deadlock Scenario:

Process 0 Process 1
MPI_Send(...,1,...) MPI_Send(...,0,...);
MPI_Recv(...,1,...) MPI_Recyv(...,0,...);

University of Utah

IIIIIIIIII

Terminology: Correctness

Race condition: An error condition peculiar to parallel
programs in which the outcome of a program changes as the
relative scheduling of processes varies.

Example of a Race Condition Scenario:

Process 0 Process 1 Process 2

MPI_Send(...,2,...) | MPI_Send(...,2,...) | MPI_Recv(a,MPl_ANY_SOURCE)
// Accomplish Func A with data a

MPI_Recv(b,MPI_ANY_SOURCE)
// Accomplish Func B with data b

University of Utah

IIIIIIIIII

Terminology: Latency

Latency: The fixed cost of serving a request, such as
sending a message or accessing information from a disk.
In parallel computing, the term most often is used to refer
to the time it takes to send an empty message over the
communication medium, from the time the send routine is
called to the time the empty message is received by the

recipient.

Time (microseconds)

Latency Offset

Message Size (Kilobytes)

University of Utah

INSTITUTE

Terminology: Bandwidth

Bandwidth: The capacity of a system, usually expressed
as items per second. In parallel computing, the most
common usage of the term “bandwidth” is in reference to
the number of bytes per second that can be moved across
a network link.

Notes:
 Can increase the bandwidth by making the “pipe” larger.

 Larger bandwidth does not equate to lower latency.

University of Utah

MPI Isend
int MPI _Isend(

void* message
int count
MPI Datatype datatype
int dest
int tag
MPI_Comm comm

MPI_Request®* request

/*
/*
/*
/*
/*
/*
/*

in
in
in
in
in
in
out

TTTTTTTTT

*/,
*/’
*/,
>I</7
*/’

*
?

*/)

University of Utah

INSTITUTE

Notes on MPI Isend

 MPI _Isend is non-blocking. The function is used to
“initiate” a send and returns immediately. This does
not mean that one can reuse the memory as the
message may not have been read out of memory yet.

« MPI_Wait or Test is used to bring closure to the non-
blocking send operation.

 Isend can be received by all of the various blocking
and non-blocking receives.

University of Utah

MPI_Irecv
int MPI Irecv(

void* message
int count
MPI Datatype datatype
int dest
int tag
MPI_Comm comin

MPI_Request®* request

/*
/*
/*
/*
/*
/*
/*

out
in
in
in
in
in
out

TTTTTTTTT

*/,
*/7

*/
*/’

*
?

*/)

University of Utah

INSTITUTE

Notes on MPI_Irecv

 MPI Irecv is non-blocking. The function is used to
“initiate” a recv and returns immediately. This does
not mean that one can use the memory as the
message may not have been read into memory yet.

 MPI_Irecv can be used with any of the blocking or
non-blocking MPI send calls.

University of Utah

MPI_Wait

int MPI_Wait(
MPI_Request®* request
MPI_Status™ status

/*
/*

in/out
out

TTTTTTTTT

"/
*/)

University of Utah

INSTITUTE

Notes on MP| Wait

« The Wait function does not return until the request
which was initiated by an Isend or Irecv has
completed.

« The wait is the point at which the process blocks. [f
one does not want to block, one can use Test (but
test requires polling to see when the process finally
completes).

University of Utah

MP| Sendrecv

int MPI_Sendrecv(

void*

int

MPI _Datatype
int

int

void*

int
MPI_Datatype
int
MPI_Datatype
MPI_Comm
MPI_Status™

sendbuf
sendcount
sendtype
dest
sendtag
recvbuf
recvcount
recvtype
source
recvtag
comm
status

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

TTTTTTTTT

in %/,
in ¥/,
n ¥,
in */,
in %/,
out */,
in */,
in %/,
in ¥/,
n ¥,
in %/,
out */)

University of Utah

Isend/Irecv/Walit

Process 0

MPI _Isend

Time

MPI_Wait

Post Send

Process 1

MPI _Irecv

MPI_Wait

TTTTTTTTTT

University of Utah

INSTITUTE

Notes on MPI Sendrecv

 The sendrecv command is used whenever two
processes are going to “swap” data. Note it is not
required that the swapping be symmetrical — each
process within the pair may send different data
(different types and different number).

 MPI contains a Sendrecv_replace operator which
technically only works when buffering exists within
the system.

University of Utah

IIIIIIIIII

Sendrecv

I
I

Processor 0 : Processor 1 Processor 3
I

I I Receive

Receive U Send

Send

University of Utah

MPI Collective Operations

INSTITUTE

University of Utah

int MPI_Barrier(

MPI| Barrier

MPI Comm comm /*

n

TTTTTTTTT

University of Utah

TTTTTTTTT

MPI|_Bcast

int MPI_Bcast(

void* buffer /* infout */,
int count /* in */,
MPI Datatype datatype /* in */,
int root /* in */

MPI_Comm comm /* in */)

University of Utah

Process 0

Process 1

Process 2

databuffer

MPI|_Bcast

X00

Xo1

----------------»

IIIIIIIIII

databuffer
Xoo | o1
Xoo | Xo1
Xoo | o

University of Utah

int

[_Reduce(
void*
void*
int
MPI_Op

1nt

MPI| Reduce

operand
result
count
operator
root

MPI Comm comm

/*
/*
/*
/*
/*
/*

in
out
in
in
n
in

TTTTTTTTT

*/,
*/’
*/’

*
b

*/)

University of Utah

TTTTTTTTTT

Predefined MP| Operations

Operation Name | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC | Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

University of Utah

int

MPI_Allreduce

[_Allreduce(

void* operand
void™® result

int count
MPI Datatype datatype
MPI_Op operator
MPI_Comm comm

/*
/*
/*
/*
/*
/*

TTTTTTTTT

n ¥,
out */,
n ¥,
n ¥/,
in */,
i *)

University of Utah

MPI| Gather

int MPI_Gather(
void™
int
MPI_Datatype
void™
int
MPI_Datatype
MPI_Comm

sendbuf
sendcount
sendtype
recvbuf
recvcounts
recvtype
comim

/*
/*
/*
/*
/*
/*
/*

TTTTTTTTT

n
n %/,
n %/,
out */,
in */
in */,
n %)

University of Utah

Process 0

Process 1

Process 2

senddata
Xoo | Xo1
X100 | X1
X20 | X21

MPI| Gather

IIIIIIIIII

recvdata

X10

X11 | X2 | X2

-
~ -
- a
- -
- -

bl
-~ -
-~
~ -

-~

-

l

University of Utah

TTTTTTTTT

MPI| Gatherv
int MPI_Gatherv(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /¥ in ¥/,
void* recvbuf /* out */,
int recvcounts| | /* in ¥/
int displacements[| /* in */,
MPI Datatype recvtype /* in */
int root /¥ in ¥/,
MPI_Comm comm /* in */)

University of Utah

MPI_Allgather

int MPI_Allgather(

void* sendbuf
int sendcount
MPI Datatype sendtype
void* recvbuf
int recvcount
MPI Datatype recvtype
MPI_Comm comm

/*
/*
/*
/*
/*
/*
/*

in
in
in
out
in
in
in

TTTTTTTTT

*/’
*/’
*/’
*/’
-/

*/)

University of Utah

Process 0

Process 1

Process 2

senddata
Xoo | Xo1
X100 | X1
X20 | X21

MPI_Allgather

IIIIIIIIII

recvdata

X10

X11 | X2 | X2

-
~ -
- a
- -
- -

bl
-~ -
-~
~ -

-~

-

l

University of Utah

TTTTTTTTT

MPI_Allgatherv

int MPI_Allgatherv(

void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcounts| | /* in */
int displacements| | /* in */,
MPI Datatype recvtype /* in ¥/,
MPI_Comm comm /¥ in */)

University of Utah

MPI| Scatter
int MPI_Scatter(

void* sendbuf
int sendcount
MPI Datatype sendtype
void* recvbuf
int recvecount
MPI Datatype recvtype
int root
MPI_Comm comim

/*
/*
/*
/*
/*
/*
/*
/*

in
in
in
out
in
in
in
in

TTTTTTTTT

*/’
*/’
*/,
*/’
"/
*/’

*
?

*/)

University of Utah

IIIIIIIIII

MPI| Scatter

senddata recvdata
Process 0 | Xoo | Xo1 | Xoo | Xo3 | Xos | Xos > Xoo | Xo1
Process 1 R i — E | Xpo | Xo3
Process 2 | Xos | Xos

University of Utah

MPI_Scatterv

int MPI_Scatterv(

void* sendbuf

int sendcounts| |

int displacements| |

MPI Datatype sendtype

void* recvbuf

int recvcount

MPI Datatype recvtype

int root

MPI_Comm comin

/*
/*
/*
/*
/*
/*
/*
/*
/*

TTTTTTTTT

in %/,
n ¥,
in %/,
n %,
out */,
in */
n
in */,
in *)

University of Utah

MPI_Alltoall

int MPI_Alltoall(

void* sendbuf
int sendcount
MPI Datatype sendtype
void* recvbuf
int recveount
MPI Datatype recvtype
MPI_Comm comm

/*
/*
/*
/*
/*
/*
/*

in
in
in
out
in
in
in

TTTTTTTTT

*/,
*/,
*/,
*/,
"/

*/)

University of Utah

Process 0

Process 1

Process 2

MPI_Alltoall

senddata
Xoo | Xo1 | Xoz | Xo3 | Xos | Xos
X0 | X11| X2 | X3 | X4
Xoo | Xop | Xoo | Xo3 [Xog | Xos

SClI

INSTITUTE

recvdata
Xoo | Xor | X10 | X11 | X20 | X2y
Xz | Xoz | X12 | X153 | X2 | X3
Xog | Xos | X1a | Xi5 | Xog | Xos

University of Utah

int MPI_Alltoallv(
void*
int
int
MPI_Datatype
void*
int
int
MPI_Datatype
MPI_Comm

MPI_Alltoallv

sendbuf

sendcounts| |

send _displacements] |
sendtype

recvbuf

recvcounts| |
recv_displacements| |
recvtype

comm

/*
/*
/*
/*
/*
/*
/*
/*
/*

TTTTTTTTT

n %
n ¥/,
n ¥,
n ¥,
out */,
in */
in %/,
in */,
n)

University of Utah

