
CS 6230: High-Performance Computing
and Parallelization – Introduction to MPI

Dr. Mike Kirby

School of Computing and
Scientific Computing and Imaging Institute

University of Utah
Salt Lake City, UT, USA

University of Utah!

(BlueGene/L - Image courtesy of IBM / LLNL)

MPI is the de facto standard for programming distributed processes.

A large API with over 300 functions exists and is widely supported.

Several popular and robust (free) implementations: MPICH and OpenMPI

Scientific Computing and Imaging Institute, University of Utah!

Distributed Computing

Fast
Interconnect

University of Utah!

The success of MPI (Courtesy of Al Geist, EuroPVM / MPI 2007)

How Widely Used Is MPI?

Scientific Computing and Imaging Institute, University of Utah!

University of Utah!

Why MPI is Complex: Collision of Features

–  Send
–  Receive
–  Send / Receive
–  Send / Receive / Replace
–  Broadcast
–  Barrier
–  Reduce

–  Rendezvous mode
–  Blocking mode
–  Non-blocking mode
–  Reliance on system buffering
–  User-attached buffering
–  Restarts/Cancels of MPI Operations

–  Non Wildcard receives
–  Wildcard receives
–  Tag matching
–  Communication spaces

An MPI program is an
interesting (and legal)
combination of elements
from these spaces

Scientific Computing and Imaging Institute, University of Utah!

University of Utah!

So What is MPI Anyway?

MPI is not a language. It is an API.

Application Programming Interface (API): An API defines
the calling conventions and other information needed
for one software module (typically an application
program) to utilize the services provided by another
software module.

MPI provides a collection of functions that allow inter-
process communication through an MPI
communications “layer”.

One compiles “with” MPI.

University of Utah!

Programming and Compiling

#include <iostream>
#include "mpi.h"

using namespace std;

int main(int argc, char ** argv){
 int mynode, totalnodes;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
 MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

 cout << "I am process " << mynode << " out of " << totalnodes << endl;

 MPI_Finalize();

 return 0;
}

C++/MPI Code From Practical 1

mpicc –o prac1 prac1.cpp

or

g++ -o prac1 -I <header
path> -L <MPI library path>
-lmpi prac1.cpp

This produces an
 executable prac1

University of Utah!

Conceptual View of MPI

MPI Layer

 Machine 1 Machine 2 Machine 3 Machine 4

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Software Perspective

Hardware Perspective

University of Utah!

MPI “Boot”

MPI Layer

 Machine 1 Machine 2 Machine 3 Machine 4

MPI “Boot” (called different things per implementation)
starts a daemon per machine – sometimes called the MPI
daemon.

This daemon waits for an MPI job to be started using mpirun.

University of Utah!

Running MPI

MPI Layer

 Machine 1 Machine 2 Machine 3 Machine 4

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

mpirun –np 7 prac1

Hardware Perspective

University of Utah!

Groups and Communicators

•  A group defines the participants in the communication of a
communicator. It is actually an ordered collection of
processes, each with a rank.

•  Message passing in MPI is via communicators, each of
which specifies a set (group) of processes that participate in
the communication.

•  Communicators can be created and destroyed dynamically
by coordinating processes.

•  Information about topology and other attributes of a
communicator can be updated dynamically.

University of Utah!

Groups and Communicators

•  Group Functions start with MPI_Group_*
–  MPI_Group_rank
–  MPI_Group_size
–  MPI_Group_create

•  Communicator Functions start with MPI_Comm_*
–  MPI_Comm_rank
–  MPI_Comm_size
–  MPI_Comm_compare
–  MPI_Comm_dup

University of Utah!

Guaranteed Communicator

MPI Layer

 Machine 1 Machine 2 Machine 3 Machine 4

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

MPI_COMM_WORLD

University of Utah!

Predefined MPI Datatypes

University of Utah!

Predefined MPI Operations

University of Utah!

Predefined MPI Operations

Defined in header file

Used as arguments in
MPI function calls

University of Utah!

Output Considerations

This is probably what you see as output on your screen:

Note: This makes assumptions about the output device
and how the MPI subsystem is handling standard output.

University of Utah!

MPI Function Declarations

University of Utah!

Sending in MPI

message count (in this case 5) datatype

University of Utah!

•  Must be specific as to the process to whom you are
sending (no wildcard).

•  dest and comm are used together in concert to
determine to whom a process is sending.

•  Send assumes that the message in memory to be
sent is contiguous.

•  Tags are integers which are used to distinguish
between particular messages sent from one process
to another.

•  MPI_Send is blocking – the function will only return
when the user can reuse the memory which was
passed.

Notes on MPI_Send

University of Utah!

Receiving in MPI

message count (in this case 11) datatype

University of Utah!

•  The count within the MPI_Recv denotes the size of
the buffer into which the system may place an
incoming message. It is not used to select which
message is received.

•  Assuming the same tags, messages are received in
their sending order. Tags are used to distinguish
between messages on the incoming message stack.

•  MPI_Recv is blocking. It will only return after the
message has been received (otherwise an error has
occurred which will be denoted in the error and status
information).

Notes on MPI_Recv

University of Utah!

•  MPI_ANY_SOURCE (Wildcard Source)
•  MPI_ANY_TAG (Wildcard Tag)

•  These can only be used with Receive (and its
variants). There is no such thing as a wildcard Send.

Predefined MPI Constants

University of Utah!

Example Serial Program

University of Utah!

Example Parallelization of Serial Program

The Programmer
Does the Partitioning

Work

University of Utah!

Example Parallelization of Serial Program

Common Place For A Bug Pass by Reference

University of Utah!

Key Concepts

University of Utah!

Terminology: Correctness

Deadlock: An error condition common in parallel
programming in which the computation has stalled because a
group of processes are blocked and waiting for each other in
a cyclic configuration.

Example of a Deadlock Scenario:

Process 0 Process 1
MPI_Send(…,1,…) MPI_Send(…,0,…);
MPI_Recv(…,1,…) MPI_Recv(…,0,…);

University of Utah!

Terminology: Correctness

Race condition: An error condition peculiar to parallel
programs in which the outcome of a program changes as the
relative scheduling of processes varies.

Example of a Race Condition Scenario:

Process 0 Process 1 Process 2
MPI_Send(…,2,…) MPI_Send(…,2,…) MPI_Recv(a,MPI_ANY_SOURCE)

// Accomplish Func A with data a
MPI_Recv(b,MPI_ANY_SOURCE)
// Accomplish Func B with data b

University of Utah!

Terminology: Latency

Latency: The fixed cost of serving a request, such as
sending a message or accessing information from a disk.
In parallel computing, the term most often is used to refer
to the time it takes to send an empty message over the
communication medium, from the time the send routine is
called to the time the empty message is received by the
recipient.

Message Size (Kilobytes)

Ti
m

e
(m

ic
ro

se
co

nd
s)

Latency Offset

University of Utah!

Terminology: Bandwidth

Bandwidth: The capacity of a system, usually expressed
as items per second. In parallel computing, the most
common usage of the term “bandwidth” is in reference to
the number of bytes per second that can be moved across
a network link.

Notes:

•  Can increase the bandwidth by making the “pipe” larger.

•  Larger bandwidth does not equate to lower latency.

University of Utah!

MPI_Isend

University of Utah!

•  MPI_Isend is non-blocking. The function is used to
“initiate” a send and returns immediately. This does
not mean that one can reuse the memory as the
message may not have been read out of memory yet.

•  MPI_Wait or Test is used to bring closure to the non-
blocking send operation.

•  Isend can be received by all of the various blocking
and non-blocking receives.

Notes on MPI_Isend

University of Utah!

MPI_Irecv

University of Utah!

•  MPI_Irecv is non-blocking. The function is used to
“initiate” a recv and returns immediately. This does
not mean that one can use the memory as the
message may not have been read into memory yet.

•  MPI_Irecv can be used with any of the blocking or
non-blocking MPI send calls.

Notes on MPI_Irecv

University of Utah!

MPI_Wait

University of Utah!

•  The Wait function does not return until the request
which was initiated by an Isend or Irecv has
completed.

•  The wait is the point at which the process blocks. If
one does not want to block, one can use Test (but
test requires polling to see when the process finally
completes).

Notes on MPI_Wait

University of Utah!

MPI_Sendrecv

University of Utah!

Isend/Irecv/Wait

University of Utah!

•  The sendrecv command is used whenever two
processes are going to “swap” data. Note it is not
required that the swapping be symmetrical – each
process within the pair may send different data
(different types and different number).

•  MPI contains a Sendrecv_replace operator which
technically only works when buffering exists within
the system.

Notes on MPI_Sendrecv

University of Utah!

Sendrecv

University of Utah!

MPI Collective Operations

University of Utah!

MPI_Barrier

University of Utah!

MPI_Bcast

University of Utah!

MPI_Bcast

University of Utah!

MPI_Reduce

University of Utah!

Predefined MPI Operations

University of Utah!

MPI_Allreduce

University of Utah!

MPI_Gather

University of Utah!

MPI_Gather

University of Utah!

MPI_Gatherv

University of Utah!

MPI_Allgather

University of Utah!

MPI_Allgather

University of Utah!

MPI_Allgatherv

University of Utah!

MPI_Scatter

University of Utah!

MPI_Scatter

University of Utah!

MPI_Scatterv

University of Utah!

MPI_Alltoall

University of Utah!

MPI_Alltoall

University of Utah!

MPI_Alltoallv

