
 
 

Petascale Parallel Computing and Beyond  
 
  
General trends and lessons 

1. Technology Trends  
2. Towards Exascale  
3. Trends in programming large scale systems  
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What kind of machine will you use in 2020? 
 
What kind of problems will be solved  
 
HPC power has increased by a factor of 1000 
every decade. 
 
 

Present state of the architectures see 
http://www.euroben.nl/reports/overview10.pdf 



The  future? 
 
E.G. 
 
Engineering 
calculations 
 
Validation 
Verification 
Uncertainty 
Quantification 
 applied to 
 multiscale 
problems 



Predictive Computational Science [Oden Karniadakis] 

Science is based on subjective probability in which 
predictions must account for uncertainties in 
parameters, models, and experimental data . This 
involves many “experts” who are often wrong 

Predictive Computational Science: 
Successful models are verified (codes)  and 
validated (experiments) (V&V). The uncertainty in 
computer predictions (the QoI’s)  must be quantified 
if the predictions are used in important decisions. 
(UQ) 

 

Predictive Computational Science is changing  
e.g. nano-maufacturing 

 “Uncertainty is an essential 
and non-negotiable part of a 
forecast. 
Quantifying  uncertainty 
carefully and explicitly is 
essential to scientific 
progress.” Nate Silver 

We cannot  deliver 
predictive  
engineering design 
over the next decade 
without quantifying 
uncertainty 

Confidence interval  



 
 

                             
CURRENT DEVELOPMENTS IN PROCESSORS & HPC 
 
Time of rapid  technological change  
Processors, parallel machines, graphics chips, cloud computing, networks, storage are 
all changing very quickly right now…. 
 
Petaflop reached by two DoE machines in 2009 
 17 Petaflop reached in 2012  Titan (GPU based). 
 33 Petaflop reached in 2013  Tianhe-2  
     (Intel MIC based). 
 
 
 
The moves are now to peak and sustained petascale performance and to begin to plan 
for the development of  exascale machines 
A major challenge is to build such a machine running at 20 MW   
 
1 Teraflop = 10**12 flops = 1000 Gigaflops, 1 Gigaflop = 1000 megaflops, 10**9 
1 Petaflop = 10**15 flops   1 Exaflop = 10**18 flops 
 
 
 



Programming Models for  Petascale?  

Jaguar        Titan & sequoia 

DOE ROADMAP [Geist] 

Titan 

Harrod SC12: “today’s bulk 
synchronous (BSP), distributed 
memory, execution  model  is 
approaching an efficiency, 
scalability, and power wall.”  

 Bulk synchronous 
approach 

 MPI-only 
 Costly global sync 

points 

Jaguar Trinity 

Possible but ? 

Barrier 
Synchronisation 



Why worry about 
Parallel Computing ?  

• Energy problems mean that 
processor clock speeds can’t 
easily increase anymore. 

• Improved processes mean that 
chips with feature sizes of 45nm 
(and below) are both here and 
possible  Feature size is half the 
distance between cells in a 
dynamic RAM memory chip.  

• Moore’s Law perhaps now 
means that the number of cores 
doubles every 18 months. 

High volume 
manufacturing 

2008 2010 2012 2014 2016 2018 2020 2022 

Feature size 45 32 22 16 11 8 6 4 
Number of cores 8 16 32 64 128 256 512 1024 

Are the commercial mass-market drivers there? Telemedicine? 
New processes e.g GaN  7nm ?  Is this real?  



Collision or Convergence? 

CPU 

GPU 

multi-threading multi-core many-core 

fixed function 

partially programmable 

fully programmable 

? 
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parallelism 
after Justin Rattner, Intel, SC09 

Intel Xeon Phi 

NVIDIA 
Kepler 
 

Intel/AMD  
Multicore 

Shared 
Memory 

Intel AMD 
graphics 

NVIDIA link  
with ARM 
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H. Meuer, H. Simon, E. Strohmaier, & J. Dongara 

 

   - Listing of the 500 most powerful 
     Computers in the World 
   - Yardstick: Rmax from LINPACK MPP 
 Ax=b, dense problem 

 
   - Updated twice a year 
SC‘xy in the States in November 
Meeting in Germany in June 
 
   - All data available from www.top500.org 

Size 

R
at

e 

TPP performance 



Rmax is the achieved performance on the Benchmark 







Impact of Accelerators 
On the top 500 



2.4 petaflops/megawatt   exascale requires  50 petaflops / megawatt 
 
ALL THE EFFICIENT MACHINES ARE ACCELERATOR BASED 



Scalability of  frameworks for complex multiscale multiphysics  
problems on  Blue Waters, Sequoia, Titan and future machines? 
 
“Exascale programming will require prioritization of critical-path and 
non-critical path tasks, adaptive directed acyclic graph scheduling of 
critical-path tasks, and adaptive rebalancing of all tasks…...”[Brown et al. 
Exascale Report ] 
 
Today’s bulk synchronous (BSP), distributed memory, communicating 
sequental  processes  (CSP) based execution  model  is approaching 
an efficiency, scalability, and power wall.  [Harrod SC12] – suggests…. 
 
•    New Programming Models and DSLs 
•    Dynamic Runtime Systems: adapt to changing application goals and 
system conditions  
 
•    Locality-aware and Energy-efficient Strategies 
•    Language Interoperability 

The Challenge?  



Task-based apps code specifying connectivity to other 
tasks ( and data required outputs delivered etc)  
 
Abstract treatment of communications via data 
warehouse  no MPI 
 
Have a runtime system that distributes these tasks, 
load balances and rebalances these tasks and executes 
them efficiently on large parallel architectures.  

One solution? 

Example - Uintah Software 
2003:code scales on 2K cores  -  2012: code scales on 200K cores  
 
WITHOUT CHANGING A SINGLE LINE OF APPLICATIONS CODE (almost    
 
Work on   Titan, Stampede, BG/Q  ongoing  Wasatch DSL 



Uintah Architecture   

 Application Specification 
via ICE MPM ARCHES or 
NEBO/WASATCH DSL  

 
 Abstract task-graph 

program that executes on: 
 
Runtime System with: 
Asynchronous out-of-order 

execution 
 Work stealing 
 Overlap communication & 

computation 
Tasks running on cores and 

accelerators 
Scalable I/O via Visus PIDX 
Viz using VisIt 

Simulation 
Controller 

Scheduler 

Load 
Balancer 

Runtime System  

ARCHES 

NEBO 
WASATCH 

PIDX  VisIT  

MPM 
ICE 



Task Graph Based Languages/frameworks 
1:
1 

1:
2 

1:
3 

1:
4 

2:
2 

2:
3 

2:
4 

2:
2 

Charm++: Object-based Virtualization   

Intel CnC: 
new language for  
graph based parallelism 
 

Plasma 
(Dongarra): 
DAG based  
Parallel linear  
algebra  
software 
 

Uintah Taskgraph 
based PDE Solver 

V. Sarkar 
L. (S). Kale 
S Parker 
K. Knobe  
J. Dongarra 
etc 

Wasatch Taskgraph  
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Why does Dynamic Execution of  
Directed Acyclic Graphs  Work Well?  

Fork-Join – parallel BLAS (Dongarra) 

DAG-based – dynamic scheduling 

Time 

Time  
saved 

• Eliminate spurious 
synchronizations points e.g. 
 

• Have multiple task-graphs per 
multicore (+ gpu) node – 
provides excess parallelism -  
slackness 
 

• Overlap  communication with 
computation by executing 
tasks as they become 
available – avoid waiting (use 
out-of order execution). 
 

• Load balance complex 
workloads by having a 
sufficiently rich mix of tasks 
per multicore node that load 
balancing is done per node 
 
 

 

DATA FLOW APPROACH - SPECIFY 
ORDER OF EXECUTION ONLY  



DARPA Exascale Software Study 
• DARPA public report by (Vivek Sarkar  et al.) 
• Silver model for exascale software which must: 

• Have abstraction for high degree of concurrency  for 
directed dynamic graph structured calculations. 

• Enable latency hiding by overlapping computation 
and communications 

• Minimize synchronization and other overheads 
• Support adaptive resource scheduling  
• Unified approach to heterogeneous procesing    

• Silver model is a graph-based asynchronous-task work 
queue model. 

• Some  instances of this type of approach in use now. 
CnC, Charm++, Plasma, Uintah Very disruptive 
technology - forces us to rethink programming model 

 



Specific Programming Challenges 

• Explicit management of resources 
• This data on that processor+this work on that processor 

• Analogy: memory management 
• We declare arrays, and malloc dynamic memory chunks  
• Do not specify memory addresses 

• As usual, indirection is the key 
• Programmer:  

• This data, partitioned into these pieces 
• This work divided that way 

• System: automatic mapping of  data and work to processors 
 

 Must rethink the design of our software-Another disruptive technology 
Similar to what happened with cluster computing and message passing 
Rethink and rewrite the applications, algorithms, and software 
 



Concurrent Collections CnC 

• A new language for expressing graph based 
parallelism [Knobe] Intel 

• Separates out specification of task-graph 
from its execution.  

• Combines ideas from tuple-space (Linda) 
streaming and data flow languages.  

• Implemented by HP, Intel Rice GaTech on 
distributed and shared memory 

• Static/dynamic distribution scheduling  
 



 



Parallel Scalability Metrics   

Data structures and algorithms cannot depend on P – the number of 
processors- everything must be local and linear wrt processors 

ISOEFFICIENCY: How fast does the problem size have to grow  
as the number of processors grows to maintain constant efficiency.  
 
ISOTIME: How does the number of processors and/or problem size  
have to change to deliver a solution in constant time. 
 
ISOMEMORY: How does the memory usage change with problem  
size and processor numbers  
 
Weak scalability: constant time with constant load per/core- needs 
isomemory and isoefficiency and isotime 
 
Strong scalability: fixed problem size time reduced according to 
number of cores – needs all of above and very low overheads! 
 



Uintah Parallel Computing Framework  
• Uintah uses  NSF ( Ranger Kraken) DOE parallel computers, typical run 

– 2K to 98K  cores    107 cells, 107  particles 
 

• Uintah [1998-2005] - far-sighted design by Steve Parker:  
  Solution of broad class of fluid-structure interaction  problems  
  Patch-based AMR using particles and mesh-based fluid solver 
           
          Automated task-graph generation for scheduling parallelism 
          Automated load balancing  
          Asynchronous communication        
          User only writes “serial” code for a hexahedral  patch  
 
• Uintah has “legacy” code aspects –original  design sound  
•  MANY COMPONENTS OF THE CODE HAVE BEEN REWRITTEN  
 
        How do we apply Uintah to model Developing Detonations? 
        How do we start to think about scaling to petascale and beyond? 
 



Directed Acyclic Graphs 

• Each task defines its computation 
with required inputs and outputs 
 

• Uintah uses this information to 
create a task graph of 
computation (nodes) + 
communication (along edges) 
 

• Similar to Charm++  TBlas, CnC  
DAG approach increasingly 
popular for efficient parallelism 
with irregular communications 
 

• Slow static execution replaced by 
asynchronous and out-of-order 
execution by keeping MULTIPLE 
VERSIONS of TASK INPUTS  
 



ICE is a cell-
centered 
finite volume 
method for 
Navier Stokes 
equations 
 

MPM is a novel 
method that uses 
particles and nodes 
 

• Structured Grid Variable (for Flows) are Cell 
Centered Nodes, Face Centered Nodes. 

• Unstructured Points (for Solids) are 
Particles 

 

Uintah Methods Patch and Variables 

ARCHES is a 
combustion 
code using 
several  
different  
radiation 
models and 
linear  solvers 

• Structured Grid + Unstructured Points 
• Patch-based Domain Decomposition 
• Adaptive Mesh Refinement 

 
• Dynamic Load Balancing 

• Profiling + Forecasting Model 
• Parallel Space Filling Curves 

 
 

 



Fluid Structure Interaction Example:  
AMR MPMICE 

A PBX explosive flow  pushing a piece of its metal container 

Flow velocity and particle volume  Computational grids and particles 

Grid Variables:        Fixed number per patch, relative easy to balance    
Particle Variables:   Variable  number per patch,  hard to load balance 

Click 



THE PARTICLES AND AMR  CAUSE 
SIGNIFICANT AND UNPREDICTABLE LOAD 

IMBALANCES 
Particle number at two locations  
vs time  

Time per patch at two locations 
vs time 



Scalability on Titan CPUs  

    
One flow with particles moving 
3-level AMR MPM ICE 70% efficiency 
At 256K cores vs 16K cores 

OLD 

Scaling Breakdown 

Distributed Controller 

• Poor scalability up to 98K cores 
(Kraken, NICS) 

• Issues:  
• Out of memory with 98K cores 
• AMR MPMICE scaling, Load 

Imbalance 
• Solution: New runtime system with 

Hybrid thread/MPI 
 



Unified Heterogeneous Scheduler & Runtime  

Running CPU Task 

N
etw

ork 

Data 
Warehouse 

 
(variables) 

PUT 
 

GET 

Running CPU Task 

Running CPU Task 

CPU Task Queues 
Internal ready tasks  

CPU Threads 

Shared 
Scheduler  

Objects 
 

MPI Data 
Ready 

MPI sends 

MPI recvs 

Task 
Graph 

PUT 
 

GET 

 
GPU 
Data 

Warehouse 
 

H2D 
strea
m 

D2H 
stream 

Running GPU Task 

GPU Task 
Queues 

Running GPU Task PUT 
 

GET 
co

m
pl

et
ed

 ta
sk

s 

stream  
events 

GPU Kernels 

GPU-enabled tasks 

ready tasks  GPU ready tasks  

One MPI process and warehouse per multi-
core/gpu node – 10% of memory 



DARPA Exascale Hardware Study 
• DARPA public report (Peter Kogge et al.) 
• Describes Challenges in going to Exascale at national 

level and petascale at  University level. 
•  Exascale machine Aggressive Strawman: 

• 742 cores per socket, 12 sockets per node, 32 nodes per rack 
• 166,113,024 cores, 223,872 sockets 
• 4 flops per cycle per core @1.5Ghz,  1.029 PFlops  
• Power 67MW! DoE aims for just 25MW 

• Novel technologies considered e.g. t 
• On chip optics (ongoing e.g. HP) 
• Phase change or Holographic memory 

• Extraordinary concurrency is the only game in town 
• Power, fault tolerance, programmability are key 

 
IMPLICATION IS PETASCALE AT LOCAL LEVEL – terascale laptops! 



Extrapolating to Exaflop/s in 2018 

Source: David Turek, IBM 

?!?! 



CRAY CASCADE – Next generation  
 
• Cray Cascade supercomputer 
• Sustained application performance  

codes: 236 Tflop/s  Aggregate memory: 
333 TB 

• 5,200 computes nodes with 64 GB 
memory per node 

• Cray Aries high-speed interconnect 
(0.25 μs to 3.7 μs MPI latency, 
~8GB/sec MPI bandwidth) 

• Prototype 100pF machine 

 Dragonfly 
Network 



 
Echelon design incorporates a large number (~1024) of stream cores and a  
smaller (~8) number of latency-optimized CPU-like cores on a single chip,  
sharing a common memory system.  
 
Eight stream cores will form a streaming multiprocessor (SM) and 128 of SMs  
will forum the large pool of throughput-optimized processing elements.  
 
Such a chip could deliver 20 TeraFLOPS with double precision and a number of  
them will form a 2.6 PetaFLOPS rack. At present Nvidia Fermi (GF110) chip 512  
with stream processors operating at 1544MHz can deliver 0.79TFLOPS of DP  
compute performance.  
 
Considerint the 25 times difference in performance, it is highly likely that the 

Echelon will employ post-Maxwell (~2013 ~ 2014) Nvidia GPU design. 
 
In order to keep power consumption of such a chip relatively low, stream 

processors have to process a double-precision floating point operation using 
just 10 picojoules of power, down from 200 picojoules on Nvidia's current 
Fermi chips,  

 
Current AMD INTEL processors use 200 nanojoules per flop  a thousand times as 

much 
 

 

Sketch of Nvidia Echelon research system 



NVIDIAs Exascale Vision  
 
                Node 
 
 
 
                          Petaflop 
Chip                  Cabinet   



IBM Stacked Chip 

Examples of the technology to be used 
 
(i) Stacked chips 
(ii) On chip optical routing 
(iii) Very large numbers of cores per chip 
(iv) Extra memory for fault tolerance etc 

We do not know what exascale machines will look  like. 
China’s Tianhe 2 is  an interesting addition  



Summary 
 

• Petascale computing is here 
• Rapid developments with GPUs 
• Much new technology being developed 
• New architecture and software models 

needed for 100M cores 
• This is a great time to work in HPC! 
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