

Petascale Parallel Computing and Beyond

General trends and lessons

1. Technology Trends
2. Towards Exascale
3. Trends in programming large scale systems

Martin Berzins

What kind of machine will you use in 2020?

What kind of problems will be solved

HPC power has increased by a factor of 1000
every decade.

Present state of the architectures see
http://www.euroben.nl/reports/overview10.pdf

The future?

E.G.

Engineering
calculations

Validation
Verification
Uncertainty
Quantification
 applied to
 multiscale
problems

Predictive Computational Science [Oden Karniadakis]

Science is based on subjective probability in which
predictions must account for uncertainties in
parameters, models, and experimental data . This
involves many “experts” who are often wrong

Predictive Computational Science:
Successful models are verified (codes) and
validated (experiments) (V&V). The uncertainty in
computer predictions (the QoI’s) must be quantified
if the predictions are used in important decisions.
(UQ)

Predictive Computational Science is changing
e.g. nano-maufacturing

 “Uncertainty is an essential
and non-negotiable part of a
forecast.
Quantifying uncertainty
carefully and explicitly is
essential to scientific
progress.” Nate Silver

We cannot deliver
predictive
engineering design
over the next decade
without quantifying
uncertainty

Confidence interval

CURRENT DEVELOPMENTS IN PROCESSORS & HPC

Time of rapid technological change
Processors, parallel machines, graphics chips, cloud computing, networks, storage are
all changing very quickly right now….

Petaflop reached by two DoE machines in 2009
 17 Petaflop reached in 2012 Titan (GPU based).
 33 Petaflop reached in 2013 Tianhe-2
 (Intel MIC based).

The moves are now to peak and sustained petascale performance and to begin to plan
for the development of exascale machines
A major challenge is to build such a machine running at 20 MW

1 Teraflop = 10**12 flops = 1000 Gigaflops, 1 Gigaflop = 1000 megaflops, 10**9
1 Petaflop = 10**15 flops 1 Exaflop = 10**18 flops

Programming Models for Petascale?

Jaguar Titan & sequoia

DOE ROADMAP [Geist]

Titan

Harrod SC12: “today’s bulk
synchronous (BSP), distributed
memory, execution model is
approaching an efficiency,
scalability, and power wall.”

 Bulk synchronous
approach

 MPI-only
 Costly global sync

points

Jaguar Trinity

Possible but ?

Barrier
Synchronisation

Why worry about
Parallel Computing ?

• Energy problems mean that
processor clock speeds can’t
easily increase anymore.

• Improved processes mean that
chips with feature sizes of 45nm
(and below) are both here and
possible Feature size is half the
distance between cells in a
dynamic RAM memory chip.

• Moore’s Law perhaps now
means that the number of cores
doubles every 18 months.

High volume
manufacturing

2008 2010 2012 2014 2016 2018 2020 2022

Feature size 45 32 22 16 11 8 6 4
Number of cores 8 16 32 64 128 256 512 1024

Are the commercial mass-market drivers there? Telemedicine?
New processes e.g GaN 7nm ? Is this real?

Collision or Convergence?

CPU

GPU

multi-threading multi-core many-core

fixed function

partially programmable

fully programmable

?

pr
og

ra
m

m
ab

ili
ty

parallelism
after Justin Rattner, Intel, SC09

Intel Xeon Phi

NVIDIA
Kepler

Intel/AMD
Multicore

Shared
Memory

Intel AMD
graphics

NVIDIA link
with ARM

9

H. Meuer, H. Simon, E. Strohmaier, & J. Dongara

 - Listing of the 500 most powerful
 Computers in the World
 - Yardstick: Rmax from LINPACK MPP
 Ax=b, dense problem

 - Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

 - All data available from www.top500.org

Size

R
at

e

TPP performance

Rmax is the achieved performance on the Benchmark

Impact of Accelerators
On the top 500

2.4 petaflops/megawatt exascale requires 50 petaflops / megawatt

ALL THE EFFICIENT MACHINES ARE ACCELERATOR BASED

Scalability of frameworks for complex multiscale multiphysics
problems on Blue Waters, Sequoia, Titan and future machines?

“Exascale programming will require prioritization of critical-path and
non-critical path tasks, adaptive directed acyclic graph scheduling of
critical-path tasks, and adaptive rebalancing of all tasks…...”[Brown et al.
Exascale Report]

Today’s bulk synchronous (BSP), distributed memory, communicating
sequental processes (CSP) based execution model is approaching
an efficiency, scalability, and power wall. [Harrod SC12] – suggests….

•  New Programming Models and DSLs
•  Dynamic Runtime Systems: adapt to changing application goals and
system conditions

•  Locality-aware and Energy-efficient Strategies
•  Language Interoperability

The Challenge?

Task-based apps code specifying connectivity to other
tasks (and data required outputs delivered etc)

Abstract treatment of communications via data
warehouse no MPI

Have a runtime system that distributes these tasks,
load balances and rebalances these tasks and executes
them efficiently on large parallel architectures.

One solution?

Example - Uintah Software
2003:code scales on 2K cores - 2012: code scales on 200K cores

WITHOUT CHANGING A SINGLE LINE OF APPLICATIONS CODE (almost

Work on Titan, Stampede, BG/Q ongoing Wasatch DSL

Uintah Architecture

 Application Specification
via ICE MPM ARCHES or
NEBO/WASATCH DSL

 Abstract task-graph

program that executes on:

Runtime System with:
Asynchronous out-of-order

execution
 Work stealing
 Overlap communication &

computation
Tasks running on cores and

accelerators
Scalable I/O via Visus PIDX
Viz using VisIt

Simulation
Controller

Scheduler

Load
Balancer

Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

Task Graph Based Languages/frameworks
1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

Charm++: Object-based Virtualization

Intel CnC:
new language for
graph based parallelism

Plasma
(Dongarra):
DAG based
Parallel linear
algebra
software

Uintah Taskgraph
based PDE Solver

V. Sarkar
L. (S). Kale
S Parker
K. Knobe
J. Dongarra
etc

Wasatch Taskgraph

19

Why does Dynamic Execution of
Directed Acyclic Graphs Work Well?

Fork-Join – parallel BLAS (Dongarra)

DAG-based – dynamic scheduling

Time

Time
saved

• Eliminate spurious
synchronizations points e.g.

• Have multiple task-graphs per
multicore (+ gpu) node –
provides excess parallelism -
slackness

• Overlap communication with
computation by executing
tasks as they become
available – avoid waiting (use
out-of order execution).

• Load balance complex
workloads by having a
sufficiently rich mix of tasks
per multicore node that load
balancing is done per node

DATA FLOW APPROACH - SPECIFY
ORDER OF EXECUTION ONLY

DARPA Exascale Software Study
• DARPA public report by (Vivek Sarkar et al.)
• Silver model for exascale software which must:

• Have abstraction for high degree of concurrency for
directed dynamic graph structured calculations.

• Enable latency hiding by overlapping computation
and communications

• Minimize synchronization and other overheads
• Support adaptive resource scheduling
• Unified approach to heterogeneous procesing

• Silver model is a graph-based asynchronous-task work
queue model.

• Some instances of this type of approach in use now.
CnC, Charm++, Plasma, Uintah Very disruptive
technology - forces us to rethink programming model

Specific Programming Challenges

• Explicit management of resources
• This data on that processor+this work on that processor

• Analogy: memory management
• We declare arrays, and malloc dynamic memory chunks
• Do not specify memory addresses

• As usual, indirection is the key
• Programmer:

• This data, partitioned into these pieces
• This work divided that way

• System: automatic mapping of data and work to processors

 Must rethink the design of our software-Another disruptive technology
Similar to what happened with cluster computing and message passing
Rethink and rewrite the applications, algorithms, and software

Concurrent Collections CnC

• A new language for expressing graph based
parallelism [Knobe] Intel

• Separates out specification of task-graph
from its execution.

• Combines ideas from tuple-space (Linda)
streaming and data flow languages.

• Implemented by HP, Intel Rice GaTech on
distributed and shared memory

• Static/dynamic distribution scheduling

Parallel Scalability Metrics

Data structures and algorithms cannot depend on P – the number of
processors- everything must be local and linear wrt processors

ISOEFFICIENCY: How fast does the problem size have to grow
as the number of processors grows to maintain constant efficiency.

ISOTIME: How does the number of processors and/or problem size
have to change to deliver a solution in constant time.

ISOMEMORY: How does the memory usage change with problem
size and processor numbers

Weak scalability: constant time with constant load per/core- needs
isomemory and isoefficiency and isotime

Strong scalability: fixed problem size time reduced according to
number of cores – needs all of above and very low overheads!

Uintah Parallel Computing Framework
• Uintah uses NSF (Ranger Kraken) DOE parallel computers, typical run

– 2K to 98K cores 107 cells, 107 particles

• Uintah [1998-2005] - far-sighted design by Steve Parker:
 Solution of broad class of fluid-structure interaction problems
 Patch-based AMR using particles and mesh-based fluid solver

 Automated task-graph generation for scheduling parallelism
 Automated load balancing
 Asynchronous communication
 User only writes “serial” code for a hexahedral patch

• Uintah has “legacy” code aspects –original design sound
• MANY COMPONENTS OF THE CODE HAVE BEEN REWRITTEN

 How do we apply Uintah to model Developing Detonations?
 How do we start to think about scaling to petascale and beyond?

Directed Acyclic Graphs

• Each task defines its computation
with required inputs and outputs

• Uintah uses this information to
create a task graph of
computation (nodes) +
communication (along edges)

• Similar to Charm++ TBlas, CnC
DAG approach increasingly
popular for efficient parallelism
with irregular communications

• Slow static execution replaced by
asynchronous and out-of-order
execution by keeping MULTIPLE
VERSIONS of TASK INPUTS

ICE is a cell-
centered
finite volume
method for
Navier Stokes
equations

MPM is a novel
method that uses
particles and nodes

• Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.

• Unstructured Points (for Solids) are
Particles

Uintah Methods Patch and Variables

ARCHES is a
combustion
code using
several
different
radiation
models and
linear solvers

• Structured Grid + Unstructured Points
• Patch-based Domain Decomposition
• Adaptive Mesh Refinement

• Dynamic Load Balancing

• Profiling + Forecasting Model
• Parallel Space Filling Curves

Fluid Structure Interaction Example:
AMR MPMICE

A PBX explosive flow pushing a piece of its metal container

Flow velocity and particle volume Computational grids and particles

Grid Variables: Fixed number per patch, relative easy to balance
Particle Variables: Variable number per patch, hard to load balance

Click

THE PARTICLES AND AMR CAUSE
SIGNIFICANT AND UNPREDICTABLE LOAD

IMBALANCES
Particle number at two locations
vs time

Time per patch at two locations
vs time

Scalability on Titan CPUs

One flow with particles moving
3-level AMR MPM ICE 70% efficiency
At 256K cores vs 16K cores

OLD

Scaling Breakdown

Distributed Controller

• Poor scalability up to 98K cores
(Kraken, NICS)

• Issues:
• Out of memory with 98K cores
• AMR MPMICE scaling, Load

Imbalance
• Solution: New runtime system with

Hybrid thread/MPI

Unified Heterogeneous Scheduler & Runtime

Running CPU Task

N
etw

ork

Data
Warehouse

(variables)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared
Scheduler

Objects

MPI Data
Ready

MPI sends

MPI recvs

Task
Graph

PUT

GET

GPU
Data

Warehouse

H2D
strea
m

D2H
stream

Running GPU Task

GPU Task
Queues

Running GPU Task PUT

GET
co

m
pl

et
ed

 ta
sk

s

stream
events

GPU Kernels

GPU-enabled tasks

ready tasks GPU ready tasks

One MPI process and warehouse per multi-
core/gpu node – 10% of memory

DARPA Exascale Hardware Study
• DARPA public report (Peter Kogge et al.)
• Describes Challenges in going to Exascale at national

level and petascale at University level.
• Exascale machine Aggressive Strawman:

• 742 cores per socket, 12 sockets per node, 32 nodes per rack
• 166,113,024 cores, 223,872 sockets
• 4 flops per cycle per core @1.5Ghz, 1.029 PFlops
• Power 67MW! DoE aims for just 25MW

• Novel technologies considered e.g. t
• On chip optics (ongoing e.g. HP)
• Phase change or Holographic memory

• Extraordinary concurrency is the only game in town
• Power, fault tolerance, programmability are key

IMPLICATION IS PETASCALE AT LOCAL LEVEL – terascale laptops!

Extrapolating to Exaflop/s in 2018

Source: David Turek, IBM

?!?!

CRAY CASCADE – Next generation

• Cray Cascade supercomputer
• Sustained application performance

codes: 236 Tflop/s Aggregate memory:
333 TB

• 5,200 computes nodes with 64 GB
memory per node

• Cray Aries high-speed interconnect
(0.25 μs to 3.7 μs MPI latency,
~8GB/sec MPI bandwidth)

• Prototype 100pF machine

 Dragonfly
Network

Echelon design incorporates a large number (~1024) of stream cores and a
smaller (~8) number of latency-optimized CPU-like cores on a single chip,
sharing a common memory system.

Eight stream cores will form a streaming multiprocessor (SM) and 128 of SMs
will forum the large pool of throughput-optimized processing elements.

Such a chip could deliver 20 TeraFLOPS with double precision and a number of
them will form a 2.6 PetaFLOPS rack. At present Nvidia Fermi (GF110) chip 512
with stream processors operating at 1544MHz can deliver 0.79TFLOPS of DP
compute performance.

Considerint the 25 times difference in performance, it is highly likely that the

Echelon will employ post-Maxwell (~2013 ~ 2014) Nvidia GPU design.

In order to keep power consumption of such a chip relatively low, stream

processors have to process a double-precision floating point operation using
just 10 picojoules of power, down from 200 picojoules on Nvidia's current
Fermi chips,

Current AMD INTEL processors use 200 nanojoules per flop a thousand times as

much

Sketch of Nvidia Echelon research system

NVIDIAs Exascale Vision

 Node

 Petaflop
Chip Cabinet

IBM Stacked Chip

Examples of the technology to be used

(i) Stacked chips
(ii) On chip optical routing
(iii) Very large numbers of cores per chip
(iv) Extra memory for fault tolerance etc

We do not know what exascale machines will look like.
China’s Tianhe 2 is an interesting addition

Summary

• Petascale computing is here
• Rapid developments with GPUs
• Much new technology being developed
• New architecture and software models

needed for 100M cores
• This is a great time to work in HPC!

	�
	�
	Slide Number 3
	Predictive Computational Science [Oden Karniadakis]
	�
	Slide Number 6
	Why worry about Parallel Computing ?
	Collision or Convergence?
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	The Challenge?
	One solution?
	Slide Number 17
	Task Graph Based Languages/frameworks
	Why does Dynamic Execution of �Directed Acyclic Graphs Work Well?
	DARPA Exascale Software Study
	Specific Programming Challenges
	Concurrent Collections CnC
	Slide Number 23
	Parallel Scalability Metrics
	Uintah Parallel Computing Framework
	Directed Acyclic Graphs
	Uintah Methods Patch and Variables
	Fluid Structure Interaction Example: �AMR MPMICE
	THE PARTICLES AND AMR CAUSE SIGNIFICANT AND UNPREDICTABLE LOAD IMBALANCES
	Scalability on Titan CPUs
	Unified Heterogeneous Scheduler & Runtime
	DARPA Exascale Hardware Study
	Extrapolating to Exaflop/s in 2018
	CRAY CASCADE – Next generation
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Summary�

