
A Unified Approach to

Heterogeneous Architectures

Using the Uintah Framework

Qingyu Meng, Alan Humphrey
Martin Berzins

DOE for funding the CSAFE project (97-10), DOE NETL, DOE NNSA

NSF for funding via SDCI and PetaApps

Thanks to: TACC Team for early access to Stampede

 John Schmidt and J. Davison de St. Germain, SCI Institute

 Justin Luitjens and Steve Parker, Nvidia

Uintah

Overview

Virtual

Soldier

Shaped Charges

Industrial

Flares

Plume Fires

Explosions

 Parallel, adaptive multi-physics framework

 Fluid-structure interaction problems

 Patch-based AMR using:

 particles and mesh-based fluid-solve

Foam

Compaction

Sandstone

Compaction

Carbon Capture

Clean Coal Boiler

Uintah - Scalability

 256K cores – Jaguar XK6

 95% weak scaling efficiency & 60% strong scaling efficiency

 Multi-threaded MPI – shared memory model on-node1

 Scalable, efficient, lock-free data structures 2

Cores

Patch-based domain decomposition

Asynchronous

task-based

paradigm

1. Q. Meng, M. Berzins, and J. Schmidt. ”Using Hybrid Parallelism to Improve Memory Use in the Uintah

Framework”. In Proc. of the 2011 TeraGrid Conference (TG11), Salt Lake City, Utah, 2011.

2. Q. Meng and M. Berzins. Scalable Large-scale Fluid-structure Interaction Solvers in the Uintah Framework

via Hybrid Task-based Parallelism Algorithms. Concurrency and Computation: Practice and Experience

2012, Submitted

Uintah Task-Based Approach

Task Graph
Directed Acyclic Graph

Asynchronous, out of order
execution of tasks

Multi-stage work queue design

Task – basic unit of work
Key idea

C++ method with computation

Allows Uintah to be generalized to
support co-processors and
accelerators

No sweeping code changes

4 patch, single level ICE task graph

Emergence of Heterogeneous Systems

Motivation - Accelerate Uintah Components

Utilize all on-node computational resources

Uintah’s asynchronous task-based approach well

suited for Co-processors and Accelerator designs

Natural progression:

Accelerator & Co-processor Tasks

TACC Stampede

1000s of Xeon Phi Co-processors
DOE Titan

1000s of Nvidia Kepler GPUs

Xeon Phi

Multi-core CPU

+

GPU

Unified Heterogeneous Scheduler & Runtime

GPU support on Keeneland and Titan

The Emergence

of the

Intel Xeon Phi

Intel Xeon Phi – What is it?

 Co-processor

 PCI Express card

 Light weight Linux OS (busy box)

 Dense, simplified processor

 Many power-hungry operations removed

 Wider vector unit

 Wider hardware thread count

 Many Integrated Core architecture, aka MIC

 Knights Corner (code name)

 Intel Xeon Phi Co-processor (product name)

Intel Xeon Phi – What is it?

Leverage x86 architecture (CPU with many cores)

 simpler x86 cores, allow more compute throughput

 Leverage existing x86 programming models

 Dedicate much of the silicon to FP ops

 Cache coherent

 Increase floating-point throughput

 Strip expensive features

 out-of-order execution

 branch prediction

 Wide SIMD registers for more throughput

 Fast (GDDR5) memory on card

Intel Xeon Phi

George Chrysos, Intel, Hot Chips 24 (2012):
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

George Chrysos, Intel, Hot Chips 24 (2012):
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

Intel Xeon Phi
4 Hardware

threads/core

George Chrysos, Intel, Hot Chips 24 (2012):
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012

Intel Xeon Phi

Programming for the

Intel Xeon Phi

and

TACC Stampede System

Programming Advantages

• Intel’s MIC is based on x86 technology

• x86 cores w/ caches and cache coherency

• SIMD instruction set

• Programming for MIC is similar to programming for CPUs

• Familiar languages: C/C++ and Fortran

• Familiar parallel programming models: OpenMP & MPI

• MPI on host and on the coprocessor

• Any code can run on MIC, not just kernels

• Optimizing for MIC is similar to optimizing for CPUs

• “Optimize once, run anywhere”

• Early MIC porting efforts for codes “in the field” are

frequently doubling performance on Sandy Bridge.

Xeon Phi Programming Models

• Traditional Cluster

• Pure MPI and MPI+X

• X: OpenMP, TBB, Cilk+, OpenCL, …

• Native Phi

• Use Phi and run OpenMP or MPI programs directly

• MPI tasks on Host and Phi

• Treat the Phi (mostly) like another host

• Pure MPI and MPI+X

• MPI on Host, Offload to Xeon Phi

• Targeted offload through OpenMP extensions

• Automatically offload some library routines with MKL

Xeon Phi Execution Models

Xeon Phi Execution Models

Host Only – Ignore Xeon Phi cards

Native
Compile with –mmic, MPI/OpenMP/Pthreads

Single node only, can’t run multi-node jobs

Need one MPI rank on a host CPU

Offload
MPI inter-node, OpenMP on-node

Synchronous – no overlapping

Asynchronous – overlapping with signal/wait

Symmetric
MPI internode, OpenMP / Pthreads on-node

Use both host and co-processor simultaneously

• $27.5M acquisition

• 10 petaflops (PF) peak performance

• 2+ PF Linux cluster

• 6400 Dell DCS C8220X nodes

• 2.7GHz Intel Xeon E5 (Sandy Bridge)

• 102,400 total cores

• 56Gb/s FDR Mellanox InfiniBand

• 7+ PF Intel Xeon Phi Coprocessor (1.0GHz cores)

• 500,000+ total cores

• TACC has a special release: Intel Xeon Phi SE10P

• 14+ PB disk, 150GB/s

• 16 1TB shared memory nodes

• 128 NVIDIA Tesla K20 GPUs

NSF Stampede System

Texas Advanced Computing Center

Stampede Processor Specs

Arch. Features Xeon E5 (Sandy Bridge) Xeon Phi SE10P

Frequency 2.7GHz+turbo 1.0GHz +turbo

Cores 8 61

HW Threads/core 2 4

Vector Size 256 bits, 4 doubles, 8 singles 512 bits, 8 doubles, 16 singles

Inst. Pipeline Out of Order In order

Registers 16 32

Caches L1:32KB, L2:256KB, L3:20MB L132KB, L2:512KB

Memory 2 GB/core 128 MB/core

Sustained Memory BW 75 GB/s 170 GB/s

Sustain Peak FLOPS 1 thread/core 2 threads/core

Instruction Set x86+ AVX x86+ new vector instructions

Stampede Compute Node

• Two Xeon E5 8-core CPUs

• 16 cores

• 32G RAM
• Xeon Phi Coprocessor

• 61 lightweight cores 8G RAM

• Each core has 4 hardware threads

• Runs micro Linux OS (BusyBox)

PCIe X16

 Comm layer &

 Virtual IP Service For MIC

CPUs and MIC

appear as separate HOSTS

(“symmetric”computing)

TACC Facilities Footprint

(Stampede & Ranger) Stampede:

• 8000 ft2

• 10 PF

• 6.5 MW

• InfiniBand (fat-tree)

• ~75 Miles of InfiniBand Cables

Ranger:

(decomissioned)

• 3000 ft2

• 0.6 PF

• 3 MW

Capabilities: 20x

Footprint: 2x

Stampede footprint figure courtesy, Bill Barth, TACC

Preliminary Experiences

with the

Uintah Framework

on Intel Xeon Phi and

Stampede

Host-only Model

Intel MPI issues beyond

2048 cores (seg faults)

MVAPICH2 required for

larger core counts

 Using Hypre with a conjugate gradient solver

 Preconditioned with geometric multi-grid

 Red Black Gauss Seidel relaxation - each patch

Incompressible turbulent flow

Uintah on Xeon Phi

Native Model
Compile with –mmic

(cross compiling)

Need to build all Uintah
required 3p libraries

libxml2

libz

Run Uintah natively on
Xeon Phi within 1 day

Single Xeon Phi Card

2 MPI processes per Phi core , up to 120 processes

2 threads per Phi core, up to 120 threads

Lock-free multi-threaded MPI

1

2

4

8

16

32

64

128

1 4 16 64

T
Im

e
 P

e
r

T
im

e
s
te

p

Xeon Phi Threads/Processes

AMR MPMICE

MPI

pthread

pthread w/ lockfree dw

Unified Heterogeneous Scheduler & Runtime

Offload Model

Running CPU Task

N
e
tw

o
rk

Data

Warehouse

(variables)

PUT

GET

Running CPU Task

Running CPU Task

CPU Task Queues
Internal ready tasks

CPU Threads

Shared

Scheduler

Objects

(host MEM)

MPI Data

Ready

MPI sends

MPI recvs

Task

Graph

PUT

GET

Device

Data

Warehouse

H2D

copy

D2H

copy

Running Device Task

Device Task

Queues

Running Device Task
PUT

GET
C

o
m

p
le

te
d

 t

a
s
k
s

Signals

MIC Kernels

Device-enabled tasks

ready tasks Device ready tasks

Uintah on Xeon Phi Offload Model

Use compiler directives (#pragma)
Offload target: #pragma offload target(mic:0)

OpenMP: #pragma omp parallel

Find copy in/out variables

Functions called in MIC must be defined with
__attribute__((target(mic)))

Hard for Uintah to use offload mode
Rewrite highly templated C++ methods with simple C/C++
so they can be called on the Xeon Phi

Have to use OpenMP: Uintah currently use MPI+ Pthreads

Less effort than GPU port, but still significant work for
complex code such as Uintah

Uintah on Xeon Phi Symmetric Model

Best fits current Uintah model

Xeon Phi directly calls MPI

Two MPI processes per node:

Use Pthreads on both host CPU and Xeon Phi:
1 MPI process on host – 16 threads

1 MPI process on MIC – up to 120 threads

Currently only Intel MPI supported
 mpiexec.hydra -n 8 ./sus – nthreads 16 : -n 8./sus.mic –nthreads 120

No major Uintah code changes

Running Task

N
e
tw

o
rk

Host

Data

Warehouse

(variables

directory)

PUT

GET

Running Task

Runing Task
completed task

Task Queues

New tasks

completed task Host

Threads

Host

Memory

Ready task

sends

receives

Task

Graph

PUT

GET

Unified Heterogeneous Scheduler & Runtime (symmetric)

Running Task

D
e
v
ic

e
 V

irtu
a
l

N
e
tw

o
rk

Device

Data

Warehouse

(variables

directory)

PUT

GET

Running Task

Running Task
completed task

Task Queues

New tasks

completed task

Device

Threads

Device

Memory

Ready task

receives

Task

Graph

PUT

GET

P
C

I-E

Symmetric Model Challenges

Native debugging with gdb
Built gdb for ourselves from source

Weren’t aware of idb / idbc (need idb
server/client setup)

Different floating point accuracy on host
and co-processor

MPI message mismatch issue
Any control logic based on result of FP
calculation may choose different execution
routes on Xeon Phi and host

Size of MPI send/rcv buffers determined by FP
result

Caused Uintah MPI message mismatch
(MSG_TRUNC)

p=0.421874999999999944488848768742172978818416595458984375

c=0.0026041666666666665221063770019327421323396265506744384765625

b=p/c

b=162

161 162 163 164

b=162

161 162 163 164

Rank0: CPU

b=162

161 162 163 164

Rank1: CPU

161 162 163 164

Host-only

Model

Symmetric

Model

MPI Size

Mismatch

b=161.99999999999999

MPI OK Rank0: CPU

Rank1: MIC

Scaling Results on Xeon Phi

Symmetric Model

60 threads per MPI process, 2 MPI processes per Xeon Phi card

16 threads per MPI process, 1 MPI processes per host CPU

5

10

15

20

25

30

35

1 2 4 8 16

E
x
e
c
tu

io
n

 T
Im

e

Xeon Phi Cards

AMR MPMICE (multi Xeon Phi)

Scaling results limited by development queue allowances for symmetric model

Current and Future Work

 Load Balancer

 Cannot treat all MPI ranks uniformly

Profile CPU and Xeon Phi separately

 Need separate forecast model for each.

 Address different cache sizes

 New regridder to generate large patches

for CPU and small patches for Xeon Phi

 Explicitly use long vector

 Asynchronous offload model
 _Offload_signaled(mic_no, &c)

Questions?

http://www.uintah.utah.edu

