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Uintah 

Overview 

Virtual 
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Industrial 
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 Parallel, adaptive multi-physics framework 

 Fluid-structure interaction problems 

 Patch-based AMR using: 

 particles and mesh-based fluid-solve 

Foam 
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Uintah - Scalability 

 256K cores – Jaguar XK6 

 95% weak scaling efficiency & 60% strong scaling efficiency 

 Multi-threaded MPI – shared memory model on-node1 

 Scalable, efficient, lock-free data structures 2 

Cores 

Patch-based domain decomposition 

Asynchronous 

task-based 

paradigm 

1. Q. Meng, M. Berzins, and J. Schmidt. ”Using Hybrid Parallelism to Improve Memory Use in the Uintah 

Framework”. In Proc. of the 2011 TeraGrid Conference (TG11), Salt Lake City, Utah, 2011. 

2. Q. Meng and M. Berzins. Scalable Large-scale Fluid-structure Interaction Solvers in the Uintah Framework 

via Hybrid Task-based Parallelism Algorithms. Concurrency and Computation: Practice and Experience 

2012, Submitted 



Uintah Task-Based Approach 

Task Graph 
Directed Acyclic Graph 

 

Asynchronous, out of order 
execution of tasks 

Multi-stage work queue design 
 

Task – basic unit of work 
Key idea 

C++ method with computation 
 

Allows Uintah to be generalized to 
support co-processors and 
accelerators 
 

No sweeping code changes 
 

 

4 patch, single level ICE task graph 



Emergence of Heterogeneous Systems 

Motivation - Accelerate Uintah Components 

Utilize all on-node computational resources 

Uintah’s asynchronous task-based approach well 

suited for Co-processors and Accelerator designs 

Natural progression: 

Accelerator & Co-processor Tasks 

 

TACC Stampede 

1000s of Xeon Phi Co-processors 
DOE Titan 

1000s of Nvidia Kepler GPUs 

Xeon Phi 

Multi-core CPU 

+ 

GPU 



Unified Heterogeneous Scheduler & Runtime 

GPU support on Keeneland and Titan 



The Emergence 

of the 

Intel Xeon Phi 



Intel Xeon Phi – What is it? 

 Co-processor  

 PCI Express card  

 Light weight Linux OS (busy box) 

 Dense, simplified processor  

 Many power-hungry operations removed  

 Wider vector unit  

 Wider hardware thread count  

 Many Integrated Core architecture, aka MIC  

 Knights Corner (code name)  

 Intel Xeon Phi Co-processor  (product name)  



Intel Xeon Phi – What is it? 

Leverage x86 architecture (CPU with many cores)  

 simpler x86 cores, allow more compute throughput  

 Leverage existing x86 programming models  

 Dedicate much of the silicon to FP ops  

 Cache coherent  

 Increase floating-point throughput  

 Strip expensive features  

 out-of-order execution  

 branch prediction  

 Wide SIMD registers for more throughput  

 Fast (GDDR5) memory on card  

 



Intel Xeon Phi 

George Chrysos, Intel, Hot Chips 24 (2012):  
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012  



George Chrysos, Intel, Hot Chips 24 (2012):  
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012  

Intel Xeon Phi 
4 Hardware 

threads/core 



George Chrysos, Intel, Hot Chips 24 (2012):  
http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012  

Intel Xeon Phi 



Programming for the 

Intel Xeon Phi 

and 

TACC Stampede System 



Programming Advantages 

• Intel’s MIC is based on x86 technology  

• x86 cores w/ caches and cache coherency  

• SIMD instruction set  
 

• Programming for MIC is similar to programming for CPUs  

• Familiar languages: C/C++ and Fortran  

• Familiar parallel programming models: OpenMP & MPI  

• MPI on host and on the coprocessor  

• Any code can run on MIC, not just kernels  
 

• Optimizing for MIC is similar to optimizing for CPUs  

• “Optimize once, run anywhere”  

•  Early MIC porting efforts for codes “in the field” are 

frequently doubling performance on Sandy Bridge.  



Xeon Phi Programming Models 

• Traditional Cluster  

• Pure MPI and MPI+X  

• X: OpenMP, TBB, Cilk+, OpenCL, …  
 

• Native Phi  

• Use Phi and run OpenMP or MPI programs directly  
 

• MPI tasks on Host and Phi  

• Treat the Phi (mostly) like another host  

• Pure MPI and MPI+X  
 

• MPI on Host, Offload to Xeon Phi  

• Targeted offload through OpenMP extensions  

• Automatically offload some library routines with MKL  



Xeon Phi Execution Models  



Xeon Phi Execution Models  

Host Only – Ignore Xeon Phi cards 

Native 
Compile with –mmic, MPI/OpenMP/Pthreads 

Single node only, can’t run multi-node jobs 

Need one MPI rank on a host CPU 

Offload 
MPI inter-node, OpenMP on-node 

Synchronous – no overlapping  

Asynchronous – overlapping with signal/wait 

Symmetric 
MPI internode, OpenMP / Pthreads on-node 

Use both host and co-processor simultaneously 



• $27.5M acquisition 

• 10 petaflops (PF) peak performance 

• 2+ PF Linux cluster 

• 6400 Dell DCS C8220X nodes 

• 2.7GHz Intel Xeon E5 (Sandy Bridge) 

• 102,400 total cores 

• 56Gb/s FDR Mellanox InfiniBand 

• 7+ PF Intel Xeon Phi  Coprocessor  (1.0GHz cores) 

• 500,000+ total cores 

• TACC has a special release: Intel Xeon Phi SE10P 

• 14+ PB disk, 150GB/s 

• 16 1TB shared memory nodes 

• 128 NVIDIA Tesla K20 GPUs 

NSF Stampede System 

Texas Advanced Computing Center 



Stampede Processor Specs 

Arch. Features Xeon E5 (Sandy Bridge) Xeon Phi SE10P  

Frequency 2.7GHz+turbo  1.0GHz +turbo  

Cores 8 61 

HW Threads/core 2 4 

Vector Size 256 bits, 4 doubles, 8 singles 512 bits, 8 doubles, 16 singles  

Inst. Pipeline Out of Order In order 

Registers 16 32 

Caches L1:32KB, L2:256KB, L3:20MB  L132KB, L2:512KB 

Memory 2 GB/core 128 MB/core  

Sustained Memory BW 75 GB/s  170 GB/s  

Sustain Peak FLOPS 1 thread/core 2 threads/core 

Instruction Set x86+ AVX x86+ new vector instructions 



Stampede Compute Node 

• Two Xeon E5 8-core CPUs  

• 16 cores  

• 32G RAM  
• Xeon Phi Coprocessor 

• 61 lightweight cores 8G RAM 

• Each core has 4 hardware threads 

• Runs micro Linux OS (BusyBox)  

PCIe X16 

 Comm layer & 

 Virtual IP Service For MIC 

CPUs and MIC 

appear as separate HOSTS 

(“symmetric”computing) 



TACC Facilities Footprint 

(Stampede & Ranger) Stampede:  

• 8000 ft2 

• 10 PF 

• 6.5 MW 

• InfiniBand (fat-tree) 

• ~75 Miles of InfiniBand Cables 

Ranger:  

(decomissioned) 

• 3000 ft2  

• 0.6 PF 

• 3 MW 

Capabilities: 20x 

Footprint: 2x 

Stampede footprint figure courtesy, Bill Barth, TACC 



Preliminary Experiences 

with the 

Uintah Framework 

on Intel Xeon Phi and 

Stampede 



Host-only Model 

Intel MPI issues beyond 

2048 cores (seg faults) 
 

MVAPICH2 required for 

larger core counts 

 

 Using Hypre with a conjugate gradient solver  

 Preconditioned with geometric multi-grid 

 Red Black Gauss Seidel relaxation - each patch 

Incompressible turbulent flow 



Uintah on Xeon Phi 

Native Model 
Compile with –mmic 

(cross compiling) 

 

Need to build all Uintah 
required 3p libraries  

libxml2 

libz 

 

Run Uintah natively on 
Xeon Phi within 1 day 

 

Single Xeon Phi Card 

 

2 MPI processes per Phi core , up to 120 processes 

2 threads per Phi core,  up to 120 threads 

Lock-free multi-threaded MPI  
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Unified Heterogeneous Scheduler & Runtime 

Offload Model 

Running CPU Task 
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MIC Kernels 
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Uintah on Xeon Phi Offload Model 

Use compiler directives (#pragma) 
Offload target: #pragma offload target(mic:0) 

OpenMP: #pragma omp parallel 
 

Find copy in/out variables 
 

 

Functions called in MIC must be defined with  
__attribute__((target(mic)))  
 

 

Hard for Uintah to use offload mode  
Rewrite highly templated C++ methods with simple C/C++ 
so they can be called on the Xeon Phi 

Have to use OpenMP: Uintah currently use MPI+ Pthreads 

Less effort than GPU port, but still significant work for 
complex code such as Uintah 

 



Uintah on Xeon Phi Symmetric Model 

Best fits current Uintah model 
 

Xeon Phi directly calls MPI 
 

Two MPI processes per node: 
  

Use Pthreads on both host CPU and Xeon Phi: 
1 MPI process on host – 16 threads 

1 MPI process on MIC – up to 120 threads 

 

Currently only Intel MPI supported 
    mpiexec.hydra -n 8 ./sus – nthreads 16 : -n 8./sus.mic –nthreads 120  

 

No major Uintah code changes 
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Symmetric Model Challenges 

Native debugging with gdb   
Built gdb for ourselves from source 

Weren’t aware of idb / idbc (need idb 
server/client setup) 

 

Different floating point accuracy on host 
and co-processor 

 

 

 

 

 

MPI message mismatch issue 
Any control logic based on result of FP 
calculation may choose different execution 
routes on Xeon Phi and host  

 

Size of MPI send/rcv buffers determined by FP 
result 

 

Caused Uintah MPI message mismatch 
(MSG_TRUNC) 

 
 

p=0.421874999999999944488848768742172978818416595458984375 

c=0.0026041666666666665221063770019327421323396265506744384765625 

b=p/c 

b=162

161           162            163          164 

b=162 

161           162            163          164 

Rank0: CPU 

b=162 

161           162            163          164 

Rank1: CPU 

161           162            163          164 

Host-only  

Model 

Symmetric  

Model 

MPI Size 

Mismatch 

b=161.99999999999999 

MPI OK Rank0: CPU 

Rank1: MIC 



Scaling Results on Xeon Phi 

Symmetric Model  

60 threads per MPI process,   2 MPI processes per  Xeon Phi card 

16 threads per MPI process,   1 MPI processes per  host CPU 
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Scaling results limited by development queue allowances for symmetric model 



Current and Future Work 

 Load Balancer 

 Cannot treat all MPI ranks uniformly 

Profile CPU and Xeon Phi separately 

 Need separate forecast model for each. 

 Address different cache sizes 

 New regridder to generate large patches 

for CPU and small patches for Xeon Phi 

 Explicitly use long vector 

 Asynchronous offload model 
 _Offload_signaled(mic_no, &c) 

 



Questions? 

http://www.uintah.utah.edu 


