FFTW: An Adaptive Software Architecture for the FFT

Steven G. Johnson Condensed Matter Theory MIT Physics Department

Matteo Frigo

Supercomputing Technologies Group MIT Laboratory for Computer Science

The Fastest Fourier Transform in the West

Steven G. Johnson Condensed Matter Theory MIT Physics Department

Matteo Frigo Supercomputing Technologies Group MIT Laboratory for Computer Science

FFTW is:

• A C library for computing the FFT

- in one or more dimensions
- includes parallel transforms
- Fast
 - competitive with vendor-tuned libraries
 - FFTW's performance is portable

• Here today (since 3/97)

- ...with thousands of happy users
- http://theory.lcs.mit.edu/~fftw

FFTW is Not:

• Always the fastest code

but is the fastest more often than any other program

• A new FFT algorithm per se

it is a new way of implementing known algorithms

FFT Benchmark on a 167MHz UltraSPARC-I (xolas)

Transform Size

250 FFTW Ooura - Green Bergland -D- GSL -O- Krukar $-\Delta$ Mayer (simple) 150 Speed in "MFLOPS" = ^{120.} Singleton (f2c) \rightarrow FFTPACK (f2c) Temperton (f2c) Ø Ø 8 O O ⊠ 00 -0 O Δ 0 16384 32768 65536 524288 1048576 2097152 32 64 128 256 512 1024 2048 4096 8192 131072 262144 ∞ 16 \sim 4

FFT Benchmark on a 300MHz Pentium II

Transform Size

We Also Have Results From...

- Over 40 FFT codes
- 19 different machines
- Both 1D and 3D transforms
- Transform sizes not a power of 2

Why is FFTW So Fast?

• The Runtime Planner

- optimizes FFTW for your CPU, your cache size, etcetera
- The Codelets
 - composable blocks of optimized code
 - computer generated

• The Executor

- interprets the plan to compose the codelets
- includes a few tricks of its own

• But first, a review of the FFT...

The Cooley-Tukey FFT Algorithm

- Computes a DFT of size N = N1 * N2
 - first, does N1 transforms of size N2
 - then, multiplies by "twiddle factors"
 - finally, does N2 transforms of size N1
- Performance is O(N lg N)
- Base cases of recursion are optimized small transforms

The Planner

• For a given N, there are many factorizations

not clear a priori which is best

- The planner tries them "all" and picks the best one
 - uses actual runtime timing measurements
 - result is encoded in a "plan"
- Uses dynamic programming to reduce number of possible plans
 - remembers optimal sub-plans for small sizes

Example Plans

• N=32768 on Alpha and Pentium II

Alpha: RADIX 16: 32768 -> 16*2048 RADIX 8: 2048 -> 8*256 RADIX 8: 256 -> 8*32 SOLVE 32

Pentium II: RADIX 64: 32768 -> 64*512 RADIX 16: 512 -> 16*32 SOLVE 32

The Codelet Generator

- Generates highly-optimized transforms of small sizes ("codelets")
 - with and without twiddle factors
 - form the base cases of the FFT recursion
- Written in the Caml-Light dialect of ML
- Manipulates abstract syntax tree which is unparsed to C
 - knows about complex arithmetic, etcetera

Advantages of Generating Codelets

• Long, unrolled code takes advantage of:

- optimizing compilers
 - instruction scheduling, etcetera
- large register sets
- Applies tedious optimizations
- Easy to experiment with different algorithms
 - prime factor, split-radix, Rader
 - express the algorithm once, abstractly
 - various optimization hacks
- You only have to get it right once

The Expression Simplifier

Here is a fragment that helps simplify

• Here is a fragment that helps simplify multiplications:

```
simplify_times = fun
    (Real a) (Real b) -> (Real (a *. b))
    a (Real b) -> simplify_times (Real b) a
    (Uminus a) b -> simplify (Uminus (Times (a,b)))
    (Real a) (Times ((Real b), c)) ->
        simplify (Times ((Real (a *. b)), c))
    (Real a) b -> if (almost_equal a 0.0) then (Real 0.0
        else if (almost_equal a 1.0) then b
        else if (almost_equal a (-1.0))then
            simplify (Uminus b)
        else Times ((Real a), b)
    ...
```


Tricky Optimizing Rules

• Quiz: which of the following is faster?

а	=	0.5	*	bi	а	=	0.5 * b;
С	=	0.5	*	d;	С	=	-0.5 * d;
е	=	1.0	+	a;	е	=	1.0 + a;
f	=	1.0	—	Ci	f	=	1.0 + c;

Answer: the fragment on the left.

The number of floating-point constants should be minimized.

The Executor

- Executes the plan by composing codelets
- Explicit recursion
 - divide-and-conquer uses all levels of the memory hierarchy
- Novel storage for the twiddle factors
 - store them in the order they are used

fits in cache

FFTW is Easy to Use

• Complexity is abstracted from the user:

```
COMPLEX A[n], B[n];
fftw_plan plan;
```

```
/* create the plan: */
plan = fftw_create_plan(n);
```

```
/* use the plan: */
fftw(plan,A);
```

```
/* re-use the plan: */
fftw(plan,B);
```


Parting Thought: This is Ridiculous!

- All this for an FFT?
- Modern architectures are invalidating conventional wisdom about what is fast
 no new wisdom is emerging
- In the name of performance, designers have sacrificed:
 - predictability
 - repeatability
 - composability

• Hand-optimization of programs is becoming impractical