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FFTW

A C library for computing the FFT
in one or more dimensions
includes parallel transforms

Fast
competitive with vendor-tuned libraries
FFTW’s performance is portable

Here today (since 3/97)
...with thousands of happy users

FFTW is:

http://theory.lcs.mit.edu/~fftw



FFTW

Always the fastest code
but is the fastest more often than any other
program

A new FFT algorithm per se
it is a new way of implementing known
algorithms

FFTW is Not:
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FFTW

Over 40 FFT codes

19 different machines

Both 1D and 3D transforms

Transform sizes not a power of 2

We Also Have Results From...



FFTW

The Runtime Planner
optimizes FFTW for your CPU, your cache
size, etcetera

The Codelets
composable blocks of optimized code
computer generated

The Executor
interprets the plan to compose the codelets
includes a few tricks of its own

But first, a review of the FFT...

Why is FFTW So Fast?



FFTW

Computes a DFT of size N = N1 * N2
first, does N1 transforms of size N2
then, multiplies by “twiddle factors”
finally, does N2 transforms of size N1

Performance is O(N lg N)

Base cases of recursion are optimized
small transforms

The Cooley-Tukey FFT Algorithm



FFTW

For a given N, there are many
factorizations

not clear a priori which is best

The planner tries them “all” and picks
the best one

uses actual runtime timing measurements
result is encoded in a “plan”

Uses dynamic programming to reduce
number of possible plans

remembers optimal sub-plans for small sizes

The Planner



FFTW

Example Plans

N=32768 on Alpha and Pentium II

Alpha:
RADIX 16: 32768 -> 16*2048
RADIX  8:  2048 -> 8*256
RADIX  8:   256 -> 8*32
SOLVE 32

Pentium II:
RADIX 64: 32768 -> 64*512
RADIX 16:   512 -> 16*32
SOLVE 32



FFTW

Generates highly-optimized transforms
of small sizes (“codelets”)

with and without twiddle factors
form the base cases of the FFT recursion

Written in the Caml-Light dialect of ML

Manipulates abstract syntax tree which
is unparsed to C

knows about complex arithmetic, etcetera

The Codelet Generator



FFTW

Long, unrolled code takes advantage of:
optimizing compilers

instruction scheduling, etcetera
large register sets

Applies tedious optimizations

Easy to experiment with different
algorithms

prime factor, split-radix, Rader
express the algorithm once, abstractly

various optimization hacks

You only have to get it right once

Advantages of Generating Codelets



FFTW

Here is a fragment that helps simplify
multiplications:

The Expression Simplifier

simplify_times = fun
         (Real a) (Real b) -> (Real (a *. b))
       | a (Real b) -> simplify_times (Real b) a
       | (Uminus a) b -> simplify (Uminus (Times (a,b)))
       | (Real a) (Times ((Real b), c)) ->
            simplify (Times ((Real (a *. b)), c))
       | (Real a) b -> if (almost_equal a 0.0) then (Real 0.0
                       else if (almost_equal a 1.0) then b
                       else if (almost_equal a (-1.0))then
                           simplify (Uminus b)
                       else Times ((Real a), b)
       | ...



FFTW

Quiz: which of the following is faster?

Tricky Optimizing Rules

a = 0.5 * b;
c = 0.5 * d;
e = 1.0 + a;
f = 1.0 - c;

a = 0.5 * b;
c = -0.5 * d;
e = 1.0 + a;
f = 1.0 + c;

Answer: the fragment on the left.

The number of floating-point constants
should be minimized.



FFTW

Executes the plan by
composing codelets

Explicit recursion
divide-and-conquer uses all levels
of the memory hierarchy

Novel storage for the twiddle
factors

store them in the order they are
used

The Executor
does not fit in cache

fits in cache



FFTW

Complexity is abstracted from the user:

FFTW is Easy to Use

COMPLEX A[n], B[n];
fftw_plan plan;

/* create the plan: */
plan = fftw_create_plan(n);

/* use the plan: */
fftw(plan,A);

/* re-use the plan: */
fftw(plan,B);



FFTW

All this for an FFT?

Modern architectures are invalidating
conventional wisdom about what is fast

no new wisdom is emerging

In the name of performance, designers
have sacrificed:

predictability
repeatability
composability

Hand-optimization of programs is
becoming impractical

Parting Thought: This is Ridiculous!


