The Fourier series

A large class of phenomena can be described as periodic in nature:
waves, sounds, light, radio, water waves etc.

It is natural to attempt to describe these phenomena by means of expansions in
periodic functions.

The Fourier series is an expansion of a function in terms of trigonometric
sines and cosines:

Suppose f(x) is defined over a finite range —-L <x <L, I.e. f(x) is periodic with
period 2L. The trigonometric functions are periodic with period 2L = 277, so it
Is natural to expand these functions in terms of trigonometric functions with an
argument [(x/2L) 27zn], n € N.:

f(x)= 1a0 +> a, cos(n—ﬂ X)+ > b, sin(n—ﬂ X)
2 m=1 L m=1 L

—f cos(— x)dx| b :-J‘ sm(— X)dx

Example for Fourier series

Let’s take the following function:

X ,-8<=x<=8
() = f(x£16n) , n€ N ; otherwise

- f(x) is even in x while sin(x) is odd => b,’s must be zero.

2 (L Nz 2L 4L
8, = J, Xeos(-—x)dx=— 7 [cos(nz) ~1] === ;ifnis odd
a, = 2 xcos(nl X)dx = 3"2 [cos(nz)—-1]=0 ;if nis even
L -0 L Nz

=>the expansionis: | f(X)= %(1— % Z iz COS(nTﬂ- X))
n=odd

Example for Fourier series(2)

source: f(x) =|x|, -8 <=x<=8

£ (x) _—(1—i 3 izcos(”T”x))

7T n=odd

Successive
/ approximations
of f(x)

Complex version of the Fourier expansion

The Euler identity: e'® =cos®+isin®

The inverse equations:

Sin@=5(”-e™) » cos@=3(e°+e™)

Using the formulas above and some properties of exponential function, the
Fourier series can also be written as an expansion in terms of complex

exponentials as:

.|: (X) _ che(inﬂ/L)x

N=—0o0

C

1 eL

_ —i(nz/L)x
=0 _Lf(x)e dx

Note: you can read the full explanation

http://mathworld.wolfram.com/FourierSeries.html

The Fourier transform

? | = N = —
Let’s define w 7%_ > dw_%-

The Fourier transform is a generalization of the complex Fourier series in the
limitas L —> oo onthe formula we got on the previous slide:

1

00 _ 1 L
f (X) _ che(lnﬂ'/L)X C

_ —i(nz/L)x
S G=or _Lf(x)e dx

N=—o0

U
0Ll

f (x)e " dx

The inverse Fourier transform

By placing the formula |2 | inthe formula |1 | we getthe inverse Fourier
transform formula:

00 _ 1 L
f (X) _ che(lnﬂ'/L)X C

_ —i(nz/L)x
S G=or _Lf(x)e dx

N=—0o0

g

o0-f

f (x)e"*dw

Note: you can read the full explanation

http://mathworld.wolfram.com/FourierTransform.html

The discrete Fourier transform

Motivation: computer applications of the Fourier transform require that all of
the definitions and properties of Fourier transforms be translated into analogous
statements appropriate to functions represented by a discrete set of sampling
points rather than by continuous functions.

Let f(x) be a function.

Let {f, =f(x)} be aset of N function values, X, =kAX k=0,1,..., N-1.
Let AX be the separation of the equidistant sampling points.

Assumption: N is even.

The discrete Fourier transform is:

N .
=> """ f,n=01..,N-1

The inverse discrete transform is:

f, = Z(ezﬂ”N " f k=01..,N-1

N+1

The discrete Fourier transform(2)

Let’s examine more closely the formula of the discrete Fourier transform:

A N
271N \nk
f.=> ™)™ f,n=01..,N-1
k=0
2
We know that VYN = N (it’s called n-th root of unity), so the

formula above can be rewritten as:

N A A
Z\Nﬂk 1:k’n 20,1,..., N-1 => 1:n = fn(Wn)

k=0

fn

Usage of the Fast Fourier Transform - motivation

n-1
Let A(X)=) ax"
k=0

n-1
B(x) = Zbk X be two polynomials.
k=0

We want to multiply them: C(x) = A(X)*B(x).

Two ways to do this:
2n—-2

]
1. C(x)= ZCjXJ’ where C, =kz(;akbj_k - takes time ®(n?)
=0 -

2. (a) calculate A(x) and B(x) values in 2n-1 distinct points Xy, ..., Xy

we get two vectors {(Xo, Yo),--+s(Xan-2s Yan-2) b {(X0:Z0) s+ :(Xon-2s Z 2n2) 35

(b) multiply these vectors: {(Xo, Y5Zg),---+(Xon-2: Yon2 Z 2n-2) }
(c) calculate the polynomial C(x) that passes through the result vector

(interpolation)
- takestime ®(nlogn) ifuse FFT

Uniqueness of C(x)

Theorem1: for any set {(Xo, Yo):---»(X Ynor)} ON N distinct points there is a unique
polynomial C(x) with degree less than n such that y; = C(x;) fori1=0,1,..., n-1.

n-1

: kK, . :
Proof: we can write y; = C(x;) = ch X, fori=0,1,..., n-1 as matrices
multiplication: k=0

]_ Lo ._?_Ta ._EE_]' 0 \ 0 \
1l = rf o I (o]
* —
1 T, T, - Lgi Cn-]7/ yn-l/

The matrix V(X, ,..., X,) I called a Vandermonde matrix.
Since all x,..., X, are distinct, a discriminate of V isn’t zero, so it is reversible.
=>we can calculate ¢, =V (Xy,...., X0) 1 Y- =

Discrete FFT and FFTinverse

We will use FFT to execute step (a) and FFTinv to execute step (c).

n-1
Let C(X) = ch X be a polynomial.
k=0

We want to execute a step (a): calculate C(x) in n distinct points X, ..., X, ;.
FFT uses special n points —w %, w.t, w2, ..., w "L

w, Is called the n-th (complex) root of unity.
That means that w "= 1.

“h

-

Figure 32.2 The values of w},)., ..., o) i

R
in the complex plane, where wg = ¢**'/8 %= %
1s the principal 8th root of unity.

-3

(1,

Properties of n-th root of unity

Let’s examine some properties of w,,:

1. There are exactly n n-th roots of unity: w %, w1, w2, ..., w"L.

Each one of them can be presented as e27z|/n

w, is called the principal n-th root of unity.

2. The inverse of w isw 1t=w "t w *w 1=w0o=1;
W, Wnl W”—l

3 W, dk—W Wy, dk — (eZM/dn)dk (e27z1/n)k _ Wnk-

4w "?=w,=-1:w 2 = W(n,z)*zn = (by property 3) w,= €

Properties of n-th root of unity(2)

5.1f n>0andniseven=>(w)2 = w_ %, k=0,1, ..., n-1:
27 /ny 2k 27/n/2y\k
)z = (87T = (8TTN)T =t

_ (Wnk+n/2) 2 = Wn2k+n — Wn2k Wnn — Wn2k — (Wnk) 2 = Wn/Zk .

n— _ n—1 . k n__ ny\k L k .
(Wj:)J:O: Z(Wﬁ)‘}:(wn) IZ(WH) 1:(1) 1_0 |

|
k k k o
J=0 J=0 T er -1 wi? —1 Wn -1

geometry series formula

DFFT preview

n-1
Let P.(X)= ch X* be a polynomial.
k=0

We want to execute a step (a): calculate p,(x) inw.%, w.t, w2, ..., w1,

Observation:

Let ¢c=(C,,C;,...,C,_,) beann-tuple of the coefficients of p (x).
Assume that n is power of 2
Let a=(c,,C,,...,C,,) and b=(c,Cs,...,C)

=>

p.(X) =p,(x*) +xp, (x?) , where p, is the polynomial that is

defined by the vector a, and P, Is the polynomial that is defined by the
vector b.

=> P (Wy) =P, (W,) + W, py (W)
Lett=n/2 => w! =w"2=-1.

=>

fori<n/2: p (W)=p,(W")+w p, (W)
fori>=n/2: p_(w')=p,(W")+w " p, (W) =p,(W")—wlp, (W)

DFFT algorithm

DFFT (€ =(Cy,Cyy--sCrry) W)
/I nis a power of 2 and w,"2=-1//
array C[O, ..., n—1] // for the answer
if n == 1 then C[0] < c[0]
else
t €< n/2
arrays a, b, A, B [0,...,t = 1] // intermediate arrays
fori < Otot-1do:
a[i] € c[2i]
b[i] € c[2i+ 1]
I/ recursive Fourier transform computation
A < DFFT (a, w,?)
B < DFFT (b, w.?)
// Fourier transform computation of the vector ¢
fori € Otot-1do:
temp =w,'
C[i] € A[i] + temp * BJi]
C[t+1i] <« AJi]-temp * BJ[i]
temp € temp * w,
return C // return the answer

Let n =8 and c = (255, 8, 0, 226, 37, 240, 3, 0).
Let F,

1) a = (255, 0, 37, 3), b=

DFFT algorithm - example

be a finite field => wy= 4 (43 mod 257 = 1).

(8, 226, 240, 0)

2) recursive call witht = 8/2 = 4 and wg* = 42 = 16:

3) C[0]
.
-
O[3

(ENSHENE

= [38, 170, 32, 9], B =

€38+ 217 =255
& 170 + 43* w, = 85
€32 + 22 * W= 127
€9+ 7* w3 =200

C
C
C
C

4]
5]
6]
/]

[217, 43, 22, 7]

& 38-217
& 170 — 43* w, = 255
€32 -22* w,2=194
€C9-7*wli=75

4) The final result is: C = (255, 85, 127, 200, 78, 255, 194, 75).

DFFT algorithm — execution time

We have log(n) recursive calls.

For each call:
- n multiplications wg*l € wg' * wy
- n multiplications of const *wg' ,i=0,1,...,n/2-1
- n/ 2 additions, n / 2 subtractions

=> @(n) arithmetical instructions, each costs ®(1)

=> | DFFT algorithm execution time is @(n log n)

DFFTinv algorithm - preview

We want to execute a step (c) calculate the polynomial C(x) that passes through
the result vector (interpolation)

n-1
We can write y;= C(w,') = Z:CkWnI fori1=0,1,..., n-1 as matrices multiplication:

k=0
11 1 | .
2 1
L w, w; W]
1l
1 owit w2l T Yn-1

The matrix Vj(Xy ,---, Xp.) IS called a Vandermonde matrix.

Since all X, ,..., ., are distinct, a discriminate of V;; isn’t zero, so it is reversible.
— — -1
=> we can calculate ¢; = Vj; (Xg -, Xp0) 7 Y5

DFFTinv algorithm — preview(2)

Theorem: let Vj; (Xg .-, X,) D€ the matrix as above.
Then the inverse matrix of V;; is V;;* = ntw, 1.

Proof: we already saw that V;;* exists.

V *V 1= Zvlkvkj =N 1ZW(' Dk
n-1

i if i=j,then w (-Dk=w 0=1 andso n_lzl= n*-n=1
k=0

H

n—
ii. else, then N7 W' *=n"*0=0 (by property 6)

0

;_
Il

DFFTinv algorithm

DFEFTIinv (C[O, ...,n=1],w,) :
/I nis a power of 2 and w,"?=-1//
array c[0, ..., n—=1] // for the answer

c & DFFT (C[O, ...,n=1],w.,™1) // remember that w, * = w "
fori € Oton-1do:

c[i] € nt*c[i]
return ¢ // return the answer

DFFTinv algorithm - example

Let n =8 and C = (255, 85, 127, 200, 78, 255, 194, 75).
Let F,., beafinite field => wg= 4 (48 mod 257 = 1).

1) wgt = wg"=193.

2) calculate DFFT(C, 193):
c =[241,64,0,9, 39, 121, 24, 0]

3) multiply ¢ by n't =225 (225 * 8 mod 257 = 1)
4) The final result is: ¢ = (255, 8, 0, 226, 37, 240, 3, 0).

DFFTinv algorithm — execution time

DFFT takes ®(nlogn) time.
n multiplications c[i] < n1* c[i]

=> @(N) arithmetical instructions, each costs @ (1)

=> | DFFTinv algorithm execution time is @(n |og n)

	The Fourier series
	Example for Fourier series
	Example for Fourier series(2)
	Complex version of the Fourier expansion
	The Fourier transform
	The inverse Fourier transform
	The discrete Fourier transform
	The discrete Fourier transform(2)
	Usage of the Fast Fourier Transform - motivation
	Uniqueness of C(x)
	Discrete FFT and FFTinverse
	Properties of n-th root of unity
	Properties of n-th root of unity(2)
	DFFT preview
	DFFT algorithm
	DFFT algorithm - example
	DFFT algorithm – execution time
	DFFTinv algorithm - preview
	DFFTinv algorithm – preview(2)
	DFFTinv algorithm
	DFFTinv algorithm - example
	DFFTinv algorithm – execution time

