The Fourier series

A large class of phenomena can be described as periodic in nature: waves, sounds, light, radio, water waves etc.

It is natural to attempt to describe these phenomena by means of *expansions in periodic functions*.

The Fourier series is an expansion of a function in terms of trigonometric sines and cosines:

Suppose f(x) is defined over a finite range $-L \le x \le L$, i.e. f(x) is periodic with period 2*L*. The trigonometric functions are periodic with period $2L = 2\pi$, so it is natural to expand these functions in terms of trigonometric functions with an argument $[(x/2L) 2\pi n], n \in \mathbb{N}$:

$$\begin{aligned} f(x) &= \frac{1}{2}a_0 + \sum_{m=1}^{\infty} a_m \cos(\frac{n\pi}{L}x) + \sum_{m=1}^{\infty} b_m \sin(\frac{n\pi}{L}x) \\ a_n &= \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}x) dx \end{aligned} \qquad b_n &= \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi}{L}x) dx \end{aligned}$$

Example for Fourier series

Let's take the following function:

$$f(x) = \begin{cases} \frac{|x|}{f(x \pm 16n)}, & n \in \mathbb{N} \\ f(x \pm 16n) \\ n \in \mathbb{N} \end{cases}; \text{ otherwise} \\ -f(x) \text{ is even in x while } sin(x) \text{ is odd} => b_n\text{'s must be zero.} \\ a_n = \frac{2}{L} \int_0^L x \cos(\frac{n\pi}{L} x) dx = \frac{2L}{n^2 \pi^2} [\cos(n\pi) - 1] = -\frac{4L}{n^2 \pi^2} \\ = -\frac{4L}{n^2 \pi^2} ; \text{ if } n \text{ is odd} \\ a_n = \frac{2}{L} \int_0^L x \cos(\frac{n\pi}{L} x) dx = \frac{2L}{n^2 \pi^2} [\cos(n\pi) - 1] = 0 ; \text{ if } n \text{ is even} \end{cases}$$

=> the expansion is :

$$f(x) = \frac{L}{2} (1 - \frac{8}{\pi^2} \sum_{n=odd}^{\infty} \frac{1}{n^2} \cos(\frac{n\pi}{L} x))$$

Example for Fourier series(2)

Complex version of the Fourier expansion

The Euler identity: $e^{i\Theta} = \cos \Theta + i \sin \Theta$

The inverse equations:

$$\sin\Theta = \frac{1}{2i}(e^{i\Theta} - e^{-i\Theta}) \quad , \quad \cos\Theta = \frac{1}{2}(e^{i\Theta} + e^{-i\Theta})$$

Using the formulas above and some properties of exponential function, the Fourier series can also be written as an expansion in terms of complex exponentials as:

$$\frac{1}{\int_{n=-\infty}^{\infty} f(x) = \sum_{n=-\infty}^{\infty} c_n e^{(in\pi/L)x} , \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i(n\pi/L)x} dx$$

<u>Note</u>: you can read the full explanation <u>here</u>.

The Fourier transform

Let's define
$$w = n\pi/L \Rightarrow dw = \pi/L$$
.

The Fourier transform is a generalization of the complex Fourier series in the limit as $L \rightarrow \infty$ on the formula we got on the previous slide:

The inverse Fourier transform

By placing the formula **2** in the formula **1 transform** formula:

we get the inverse Fourier

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{(in\pi/L)x} , \quad c_n = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-i(n\pi/L)x} dx$$

$$\boxed{3} f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{iwx} dw$$

Note: you can read the full explanation here

The discrete Fourier transform

Motivation: computer applications of the Fourier transform require that all of the definitions and properties of Fourier transforms be translated into analogous statements appropriate to functions represented by a discrete set of sampling points rather than by continuous functions.

Let f(x) be a function.

Let $\{f_k = f(x_k)\}$ be a set of *N* function values, $x_k = k\Delta x$ k = 0, 1, ..., N-1. Let Δx be the separation of the equidistant sampling points. Assumption: *N* is even.

The discrete Fourier transform is:

$$\int_{n}^{\infty} = \sum_{k=0}^{N} (e^{2\pi i/N})^{nk} f_k, n = 0, 1, \dots, N-1$$

The inverse discrete transform is:

$$f_{k} = \frac{1}{N+1} \sum_{n=0}^{N} (e^{2\pi i/N})^{-nk} \hat{f}_{n}, k = 0, 1, ..., N-1$$

The discrete Fourier transform(2)

Let's examine more closely the formula of the discrete Fourier transform:

$$\hat{f}_n = \sum_{k=0}^N (e^{2\pi i/N})^{nk} f_k, n = 0, 1, \dots, N-1$$

We know that $w_N = \frac{2\pi i}{N}$ (it's called n-th root of unity), so the formula above can be rewritten as:

$$\hat{f}_n = \sum_{k=0}^N w_n^k f_k, n = 0, 1, ..., N - 1 \implies \hat{f}_n = \hat{f}_n(w_n)$$

Let
$$A(x) = \sum_{k=0}^{n-1} a_k x^k$$
, $B(x) = \sum_{k=0}^{n-1} b_k x^k$ be two polynomials.

We want to multiply them: C(x) = A(x) * B(x).

Two ways to do this:

1.
$$C(x) = \sum_{j=0}^{2n-2} c_j x^j$$
, where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$ - takes time $\Theta(n^2)$

2. (a) calculate A(x) and B(x) values in 2n-1 distinct points x₀, ..., x_{2n-2}; we get two vectors {(x₀, y₀),...,(x_{2n-2}, y_{2n-2})}, {(x₀, z₀),...,(x_{2n-2}, z_{2n-2})}; (b) multiply these vectors: {(x₀, y₀ z₀),...,(x_{2n-2}, y_{2n-2} z_{2n-2})} (c) calculate the polynomial C(x) that passes through the result vector (interpolation)

- takes time $\Theta(n \log n)$ if use FFT

Uniqueness of C(x)

<u>Theorem1</u>: for any set { $(x_0, y_0), ..., (x_{n-v}, y_{n-1})$ } on n distinct points there is a unique polynomial C(x) with degree less than n such that $y_i = C(x_i)$ for i = 0, 1, ..., n-1.

<u>Proof</u>: we can write $y_i = C(x_i) = \sum_{k=0}^{n-1} c_k x_i^k$ for i = 0, 1, ..., n-1 as matrices multiplication:

 $\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n\cdot 1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n\cdot 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n\cdot 1} & x_{n\cdot 1}^2 & \cdots & x_{n\cdot 1}^{n\cdot 1} \end{bmatrix} * \begin{pmatrix} c_0 \\ c_1 \\ \cdots \\ c_{n\cdot 1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \cdots \\ y_{n\cdot 1} \end{pmatrix}$

The matrix $V(x_0, ..., x_{n-1})$ is called a Vandermonde matrix. Since all $x_0, ..., x_{n-1}$ are distinct, a discriminate of V isn't zero, so it is reversible. => we can calculate $c_i = V(x_0, ..., x_{n-1})^{-1} y_i$.

Discrete FFT and FFT inverse

We will use FFT to execute step (a) and FFTinv to execute step (c).

Let
$$C(x) = \sum_{k=0}^{n-1} c_k x^k$$
 be a polynomial.

We want to execute a step (a): calculate C(x) in *n* distinct points $x_0, ..., x_{n-1}$. FFT uses special n points $-w_n^0, w_n^1, w_n^2, ..., w_n^{n-1}$.

 w_n is called the <u>n-th (complex) root of unity</u>. That means that $w_n^n = 1$.

Figure 32.2 The values of $\omega_8^0, \omega_8^1, \dots, \omega_8^7$ in the complex plane, where $\omega_8 = e^{2\pi i/8}$ is the principal 8th root of unity.

Properties of n-th root of unity

Let's examine some properties of w_n :

1. There are exactly n n-th roots of unity: w_n^0 , w_n^1 , w_n^2 , ..., w_n^{n-1} . Each one of them can be presented as $e^{2\pi i/n}$. w_n is called the principal n-th root of unity.

2. The inverse of
$$w_n$$
 is $w_n^{-1} = w_n^{n-1}$: $w_n * w_n^{-1} = w_n^0 = 1$;
 $w_n * w_n^{n-1} = w_n^n = 1$.
3. $w_{dn}^{dk} = w_n^k : w_{dn}^{dk} = (e^{2\pi i/dn})^{dk} = (e^{2\pi i/n})^k = w_n^k$.
4. $w_n^{n/2} = w_2 = -1 : w_n^{n/2} = w_{(n/2)*2}^{n/2} = (\text{by property 3}) w_2 = e^{2\pi i/2} = -1$.

Properties of n-th root of unity(2)

5. If
$$n > 0$$
 and n is even $\Rightarrow (w_n^k)^2 = w_{n/2}^k$, $k = 0, 1, ..., n-1$:
 $(w_n^k)^2 = (e^{2\pi i/n})^{2k} = (e^{2\pi i/n/2})^k = w_{n/2}^k$.
 $(w_n^{k+n/2})^2 = w_n^{2k+n} = w_n^{2k} w_n^n = w_n^{2k} = (w_n^k)^2 = w_{n/2}^k$.
6. $\sum_{j=0}^{n-1} (w_n^k)^j = 0$: $\sum_{j=0}^{n-1} (w_n^k)^j = \frac{(w_n^k)^n - 1}{w_n^k - 1} = \frac{(w_n^n)^k - 1}{w_n^k - 1} = \frac{(1)^k - 1}{w_n^k - 1} = 0$.
geometry series formula

DFFT preview

Let
$$p_c(x) = \sum_{k=0}^{n-1} c_k x^k$$
 be a polynomial.

We want to execute a step (a): calculate $p_c(x)$ in w_n^0 , w_n^1 , w_n^2 , ..., w_n^{n-1} .

Observation:

Let $c = (c_0, c_1, ..., c_{n-1})$ be an n-tuple of the coefficients of $p_c(x)$. Assume that *n* is power of 2

Let $a = (c_0, c_2, ..., c_{n-2})$ and $b = (c_1, c_3, ..., c_{n-1})$

=> $p_c(x) = p_a(x^2) + xp_b(x^2)$, where p_a is the polynomial that is defined by the vector a, and p_b is the polynomial that is defined by the vector b.

$$= p_{c}(w_{n}^{i}) = p_{a}(w_{n}^{2i}) + w_{n}^{i}p_{b}(w_{n}^{2i})$$
Let $t = n/2 \implies w_{n}^{t} = w_{n}^{n/2} = -1$.

$$= p_{c}(w_{n}^{i}) = p_{a}(w_{n}^{2i}) + w_{n}^{i}p_{b}(w_{n}^{2i})$$
for $i > = n/2$: $p_{c}(w_{n}^{i}) = p_{a}(w_{n}^{2i}) + w_{n}^{j+t}p_{b}(w_{n}^{2i}) = p_{a}(w_{n}^{2i}) - w_{n}^{j}p_{b}(w_{n}^{2i})$

DFFT algorithm

DFFT ($c = (c_0, c_1, ..., c_{n-1}), w_n$): // n is a power of 2 and $w_n^{n/2} = -1$ // array C[0, ..., n - 1] // for the answer if n = 1 then C[0] \leftarrow c[0] else $t \leftarrow n/2$ arrays a, b, A, B $[0, \dots, t-1]$ // intermediate arrays for $i \leftarrow 0$ to t - 1 do: $a[i] \leftarrow c[2i]$ $b[i] \leftarrow c[2i + 1]$ // recursive Fourier transform computation A \leftarrow DFFT (a, w_n^2) B \leftarrow DFFT (b, w_n^2) // Fourier transform computation of the vector c for $i \leftarrow 0$ to t - 1 do: temp = w_n^i $C[i] \leftarrow A[i] + temp * B[i]$ $C[t+i] \leftarrow A[i] - temp * B[i]$ temp \leftarrow temp * w_n return C // return the answer

DFFT algorithm - example

Let n = 8 and c = (255, 8, 0, 226, 37, 240, 3, 0). Let F_{257} be a finite field $\Rightarrow w_8 = 4$ (4⁸ mod 257 = 1).

1) a = (255, 0, 37, 3), b = (8, 226, 240, 0)

2) recursive call with t = 8/2 = 4 and $w_8^2 = 4^2 = 16$: A = [38, 170, 32, 9], B = [217, 43, 22, 7]

3) $C[0] \leftarrow 38 + 217 = 255$ $C[1] \leftarrow 170 + 43 * w_8 = 85$ $C[2] \leftarrow 32 + 22 * w_8^2 = 127$ $C[3] \leftarrow 9 + 7 * w_8^3 = 200$ $C[4] \leftarrow 38 - 217$ $C[5] \leftarrow 170 - 43 * w_8 = 255$ $C[6] \leftarrow 32 - 22 * w_8^2 = 194$ $C[7] \leftarrow 9 - 7 * w_8^3 = 75$

4) The final result is: C = (255, 85, 127, 200, 78, 255, 194, 75).

DFFT algorithm – execution time

We have log(n) recursive calls.

For each call:

- *n* multiplications $w_8^{i+1} \leftarrow w_8^i * w_8$
- *n* multiplications of const * w_8^i , i = 0, 1, ..., n/2 1
- n/2 additions, n/2 subtractions

 $\Rightarrow \Theta(n)$ arithmetical instructions, each costs $\Theta(1)$

 \Rightarrow DFFT algorithm execution time is $\Theta(n \log n)$

DFFTinv algorithm - preview

We want to execute a step (c) calculate the polynomial C(x) that passes through the result vector (interpolation)

We can write $y_i = C(w_n^i) = \sum_{k=0}^{n-1} c_k w_n^{ik}$ for i = 0, 1, ..., n-1 as matrices multiplication:

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & w_n & w_n^2 & \cdots & w_n^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & w_n^{n-1} & w_n^{2n-1} & \cdots & w^{n-1n-1} \end{bmatrix} * \begin{pmatrix} c_0 \\ c_1 \\ \cdots \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \cdots \\ y_{n-1} \end{pmatrix}$$

The matrix $V_{ij}(x_0, ..., x_{n-1})$ is called a Vandermonde matrix. Since all $x_0, ..., x_{n-1}$ are distinct, a discriminate of V_{ij} isn't zero, so it is reversible. => we can calculate $c_i = V_{ij}(x_0, ..., x_{n-1})^{-1} y_i$.

DFFTinv algorithm – preview(2)

<u>Theorem</u>: let V_{ij} ($x_0, ..., x_{n-1}$) be the matrix as above. Then the inverse matrix of V_{ij} is $V_{ij}^{-1} = n^{-1} w_n^{-ij}$.

<u>Proof</u>: we already saw that V_{ij}^{-1} exists.

$$V_{ij} * V_{ij}^{-1} = \sum_{k=0}^{n-1} V_{ik} V_{kj} = n^{-1} \sum_{k=0}^{n-1} w_n^{(i-j)k}$$

i. if $i = j$, then $w_n^{(i-j)k} = w_n^0 = 1$, and so $n^{-1} \sum_{k=0}^{n-1} 1 = n * -n = 1$
ii. else, then $n^{-1} \sum_{k=0}^{n-1} w_n^{(i-j)k} = n^{-1} * 0 = 0$ (by property 6)

So we get that $V_{ij} * V_{ij}^{-1} = I_n$.

DFFTinv algorithm

DFFTinv (C[0, ..., n – 1], w_n): // n is a power of 2 and $w_n^{n/2} = -1$ // array c[0, ..., n – 1] // for the answer c \leftarrow DFFT (C[0, ..., n – 1], w_n^{n-1}) // remember that $w_n^{-1} = w_n^{n-1}$ for i \leftarrow 0 to n – 1 do: c[i] \leftarrow n^{-1*} c[i] return c // return the answer

DFFTinv algorithm - example

Let n = 8 and C = (255, 85, 127, 200, 78, 255, 194, 75). Let F_{257} be a finite field $\Rightarrow w_8 = 4$ (4⁸ mod 257 = 1).

1) $w_8^{-1} = w_8^7 = 193$.

2) calculate DFFT(C, 193): c = [241, 64, 0, 9, 39, 121, 24, 0]

3) multiply c by $n^{-1} = 225 (225 * 8 \mod 257 = 1)$

4) The final result is: *c* = (255, 8, 0, 226, 37, 240, 3, 0).

DFFTinv algorithm – execution time

DFFT takes $\Theta(n \log n)$ time.

n multiplications c[i] $\leftarrow n^{-1} * c[i]$

 $\Rightarrow \Theta(n)$ arithmetical instructions, each costs $\Theta(1)$

 \Rightarrow DFFTinv algorithm execution time is $\Theta(n \log n)$