The Fourier series

A large class of phenomena can be described as periodic in nature:
waves, sounds, light, radio, water waves etc.

It is natural to attempt to describe these phenomena by means of expansions in
periodic functions.

The Fourier series is an expansion of a function in terms of trigonometric
sines and cosines:

Suppose f(x) is defined over a finite range —-L <x <L, I.e. f(x) is periodic with
period 2L. The trigonometric functions are periodic with period 2L = 277, so it
Is natural to expand these functions in terms of trigonometric functions with an
argument [(x/2L) 27zn], n € N.:

f(x)= 1a0 +> a, cos(n—ﬂ X)+ > b, sin(n—ﬂ X)
2 m=1 L m=1 L

—f cos(— x)dx| b :-J‘ sm(— X)dx




Example for Fourier series

Let’s take the following function:

X ,-8<=x<=8
() = f(x£16n) , n€ N ; otherwise

- f(x) is even in x while sin(x) is odd => b,’s must be zero.

2 (L Nz 2L 4L
8, = J, Xeos(-—x)dx=— 7 [cos(nz) ~1] === ;ifnis odd
a, = 2 xcos(nl X)dx = 3"2 [cos(nz)—-1]=0 ;if nis even
L -0 L Nz

=>the expansionis: | f(X)= %(1— % Z iz COS(nTﬂ- X))
n=odd




Example for Fourier series(2)

source: f(x) =|x|, -8 <=x<=8

£ (x) _—(1—i 3 izcos(”T”x))

7T n=odd

Successive
/ approximations
of f(x)




Complex version of the Fourier expansion

The Euler identity: e'® =cos®+isin®

The inverse equations:

Sin@=5(”-e™) » cos@=3(e°+e™)

Using the formulas above and some properties of exponential function, the
Fourier series can also be written as an expansion in terms of complex

exponentials as:

.|: (X) _ che(inﬂ/L)x

N=—0o0

C

1 eL

_ —i(nz/L)x
=0 _Lf(x)e dx

Note: you can read the full explanation



http://mathworld.wolfram.com/FourierSeries.html

The Fourier transform

? | = N = —
Let’s define w 7%_ > dw_%-

The Fourier transform is a generalization of the complex Fourier series in the
limitas L —> oo onthe formula we got on the previous slide:

1

00 _ 1 L
f (X) _ che(lnﬂ'/L)X C

_ —i(nz/L)x
S G=or _Lf(x)e dx

N=—o0

U
0Ll

f (x)e " dx




The inverse Fourier transform

By placing the formula |2 | inthe formula |1 | we getthe inverse Fourier
transform formula:

00 _ 1 L
f (X) _ che(lnﬂ'/L)X C

_ —i(nz/L)x
S G=or _Lf(x)e dx

N=—0o0

g

o0-f

f (x)e"*dw

Note: you can read the full explanation


http://mathworld.wolfram.com/FourierTransform.html

The discrete Fourier transform

Motivation: computer applications of the Fourier transform require that all of
the definitions and properties of Fourier transforms be translated into analogous
statements appropriate to functions represented by a discrete set of sampling
points rather than by continuous functions.

Let f(x) be a function.

Let {f, =f(x)} be aset of N function values, X, =kAX k=0,1,..., N-1.
Let AX be the separation of the equidistant sampling points.

Assumption: N is even.

The discrete Fourier transform is:

N .
=> """ f,n=01..,N-1

The inverse discrete transform is:

f, = Z(ezﬂ”N " f k=01..,N-1

N+1




The discrete Fourier transform(2)

Let’s examine more closely the formula of the discrete Fourier transform:

A N
271N \nk
f.=> ™)™ f,n=01..,N-1
k=0
2
We know that VYN = N (it’s called n-th root of unity), so the

formula above can be rewritten as:

N A A
Z\Nﬂk 1:k’n 20,1,..., N-1 => 1:n = fn(Wn)

k=0

fn




Usage of the Fast Fourier Transform - motivation

n-1
Let A(X)=) ax"
k=0

n-1
B(x) = Zbk X be two polynomials.
k=0

We want to multiply them: C(x) = A(X)*B(x).

Two ways to do this:
2n—-2

]
1. C(x)= ZCjXJ’ where C, =kz(;akbj_k - takes time ®(n?)
=0 -

2. (a) calculate A(x) and B(x) values in 2n-1 distinct points Xy, ..., Xy

we get two vectors {(Xo, Yo),--+s(Xan-2s Yan-2) b {(X0:Z0) s+ :(Xon-2s Z 2n2) 35

(b) multiply these vectors: {(Xo, Y5Zg),---+(Xon-2: Yon2 Z 2n-2) }
(c) calculate the polynomial C(x) that passes through the result vector

(interpolation)
- takestime ®(nlogn) ifuse FFT



Uniqueness of C(x)

Theorem1: for any set {(Xo, Yo):---»(X Ynor)} ON N distinct points there is a unique
polynomial C(x) with degree less than n such that y; = C(x;) fori1=0,1,..., n-1.

n-1

: kK, . :
Proof: we can write y; = C(x;) = ch X, fori=0,1,..., n-1 as matrices
multiplication: k=0

]_ Lo ._?_Ta ._EE_]' 0 \ 0 \
1l = rf o I (o ]
* —
1 T, T, - Lgi Cn-]7/ yn-l/

The matrix V(X, ,..., X, ) I called a Vandermonde matrix.
Since all x,..., X, are distinct, a discriminate of V isn’t zero, so it is reversible.
=>we can calculate ¢, =V (Xy,...., X0 ) 1 Y- =



Discrete FFT and FFTinverse

We will use FFT to execute step (a) and FFTinv to execute step (c).

n-1
Let C(X) = ch X be a polynomial.
k=0

We want to execute a step (a): calculate C(x) in n distinct points X, ..., X, ;.
FFT uses special n points —w %, w.t, w2, ..., w "L

w, Is called the n-th (complex) root of unity.
That means that w "= 1.

“h

-

Figure 32.2 The values of w}, )., ..., o) i

R
in the complex plane, where wg = ¢**'/8 %= %
1s the principal 8th root of unity.

-3

(1,




Properties of n-th root of unity

Let’s examine some properties of w,,:

1. There are exactly n n-th roots of unity: w %, w1, w2, ..., w"L.

Each one of them can be presented as e27z|/n

w, is called the principal n-th root of unity.

2. The inverse of w isw 1t=w "t w *w 1=w0o=1;
W, Wnl W”—l

3 W, dk—W Wy, dk — (eZM/dn)dk (e27z1/n)k _ Wnk-

4w "?=w,=-1:w 2 = W(n,z)*zn = (by property 3) w,= €



Properties of n-th root of unity(2)

5.1f n>0andniseven=>(w )2 = w_ %, k=0,1, ..., n-1:
27 /ny 2k 27/n/2y\k
)z = (87T = (8TTN)T =t

_ (Wnk+n/2 ) 2 = Wn2k+n — Wn2k Wnn — Wn2k — (Wnk) 2 = Wn/Zk .

n— _ n—1 . k n__ ny\k L k .
(Wj:)J:O: Z(Wﬁ)‘}:(wn) IZ(WH) 1:(1) 1_0 |

|
k k k o
J=0 J=0 T er -1 wi? —1 Wn -1

geometry series formula




DFFT preview

n-1
Let P.(X)= ch X* be a polynomial.
k=0

We want to execute a step (a): calculate p,(x) inw.%, w.t, w2, ..., w1,

Observation:

Let ¢c=(C,,C;,...,C,_,) beann-tuple of the coefficients of p (x).
Assume that n is power of 2
Let a=(c,,C,,...,C,,) and b=(c,Cs,...,C )

=>

p.(X) =p,(x*) +xp, (x?) , where p, is the polynomial that is

defined by the vector a, and P, Is the polynomial that is defined by the
vector b.

=> P (Wy) =P, (W, ) + W, py (W)
Lett=n/2 => w! =w"2=-1.

=>

fori<n/2: p (W)=p,(W")+w p, (W)
fori>=n/2: p_(w')=p,(W")+w " p, (W) =p,(W")—wlp, (W)




DFFT algorithm

DFFT (€ =(Cy,Cyy--sCrry) W)
/I nis a power of 2 and w,"2=-1//
array C[O, ..., n—1] // for the answer
if n == 1 then C[0] < c[0]
else
t €< n/2
arrays a, b, A, B [0,...,t = 1] // intermediate arrays
fori < Otot-1do:
a[i] € c[2i]
b[i] € c[2i+ 1]
I/ recursive Fourier transform computation
A < DFFT (a, w,?)
B < DFFT (b, w.?)
// Fourier transform computation of the vector ¢
fori € Otot-1do:
temp =w,'
C[i] € A[i] + temp * BJi]
C[t+1i] <« AJi]-temp * BJ[i]
temp € temp * w,
return C // return the answer




Let n =8 and c = (255, 8, 0, 226, 37, 240, 3, 0).
Let F,

1) a = (255, 0, 37, 3), b=

DFFT algorithm - example

be a finite field => wy= 4 (43 mod 257 = 1).

(8, 226, 240, 0)

2) recursive call witht = 8/2 = 4 and wg* = 42 = 16:

3) C[0]
.
-
O[3

(ENSHENE

= [38, 170, 32, 9], B =

€38+ 217 =255
& 170 + 43* w, = 85
€32 + 22 * W= 127
€9+ 7* w3 =200

C
C
C
C

4]
5]
6]
/]

[217, 43, 22, 7]

& 38-217
& 170 — 43* w, = 255
€32 -22* w,2=194
€C9-7*wli=75

4) The final result is: C = (255, 85, 127, 200, 78, 255, 194, 75).



DFFT algorithm — execution time

We have log(n) recursive calls.

For each call:
- n multiplications wg*l € wg' * wy
- n multiplications of const *wg' ,i=0,1,...,n/2-1
- n/ 2 additions, n / 2 subtractions

=> @(n) arithmetical instructions, each costs ®(1)

=> | DFFT algorithm execution time is  @(n log n)




DFFTinv algorithm - preview

We want to execute a step (c) calculate the polynomial C(x) that passes through
the result vector (interpolation)

n-1
We can write y;= C(w,') = Z:CkWnI fori1=0,1,..., n-1 as matrices multiplication:

k=0
11 1 | .
2 1
L w, w; W ]
1l
1 owit w2l T Yn-1

The matrix Vj(Xy ,---, Xp. ) IS called a Vandermonde matrix.

Since all X, ,..., ., are distinct, a discriminate of V;; isn’t zero, so it is reversible.
— — -1
=> we can calculate ¢; = Vj; (Xg -, Xp0 ) 7 Y5



DFFTinv algorithm — preview(2)

Theorem: let Vj; (Xg .-, X, ) D€ the matrix as above.
Then the inverse matrix of V;; is V;;* = ntw, 1.

Proof: we already saw that V;;* exists.

V *V 1= Zvlkvkj =N 1ZW(' Dk
n-1

i if i=j,then w (-Dk=w 0=1 andso n_lzl= n*-n=1
k=0

H

n—
ii. else, then N7 W' *=n"*0=0 (by property 6)

0

;\_
Il



DFFTinv algorithm

DFEFTIinv (C[O, ...,n=1],w,) :
/I nis a power of 2 and w,"?=-1//
array c[0, ..., n—=1] // for the answer

c & DFFT (C[O, ...,n=1],w.,™1) // remember that w, * = w "
fori € Oton-1do:

c[i] € nt*c[i]
return ¢ // return the answer



DFFTinv algorithm - example

Let n =8 and C = (255, 85, 127, 200, 78, 255, 194, 75).
Let F,., beafinite field => wg= 4 (48 mod 257 = 1).

1) wgt = wg"=193.

2) calculate DFFT(C, 193):
c =[241,64,0,9, 39, 121, 24, 0]

3) multiply ¢ by n't =225 (225 * 8 mod 257 = 1)
4) The final result is: ¢ = (255, 8, 0, 226, 37, 240, 3, 0).



DFFTinv algorithm — execution time

DFFT takes ®(nlogn) time.
n multiplications c[i] < n1* c[i]

=> @(N) arithmetical instructions, each costs @ (1)

=> | DFFTinv algorithm execution time is @(n |og n)
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