
The Fourier series 

A large class of phenomena can be described as periodic in nature: 
                waves, sounds, light, radio, water waves etc. 

It is natural to attempt to describe these phenomena by means of expansions in 
periodic functions. 

is an expansion of a function in terms of trigonometric  The Fourier series
sines and cosines: 

Suppose f(x) is defined over a finite range –L     x     L, i.e. f(x) is periodic with 
, so it  2   =  L2. The trigonometric functions are periodic with period L2period 

is natural to expand these functions in terms of trigonometric functions with an 
argument [(x / 2L) 2    n],  n         : 
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Example for Fourier series 

Let’s take the following function: 

             |x|                              ; - 8 <= x <= 8 
             f(x    16n)  ,  n           ;  otherwise 

- f(x) is even in x while sin(x) is odd => bn’s must be zero.  

  
                                                                                                      ; if n is odd 

 
                                                                                                      ; if n is even 
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)2Example for Fourier series( 
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source: f(x) =|x|, -8 <= x <= 8 

Successive 
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of  f(x) 



Complex version of the Fourier expansion 

The Euler identity:  

The inverse equations: 

                                                            , 
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Using the formulas above  and some properties of exponential function, the 
Fourier series can also be written as an expansion in terms of complex 
exponentials as:   

∑
∞

−∞=

=
n

xLin
necxf )/()( π ∫−

−=
L

L

xLni
n dxexf

L
c )/()(

2
1 π

, 

.here: you can read the full explanation Note 

1 

http://mathworld.wolfram.com/FourierSeries.html


The Fourier transform 

Let’s define w =                     =>                                 . 

 
The Fourier transform is a generalization of the complex Fourier series in the 
limit as                    on the formula we got on the previous slide: ∞→L
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The inverse Fourier transform 

By placing the formula             in the formula            we get the inverse Fourier 
transform formula:     

∫
∞

∞−
= dwexfxf iwx)(

2
1)(

^

π
3 

1 2 

∑
∞

−∞=

=
n

xLin
necxf )/()( π ∫−

−=
L

L

xLni
n dxexf

L
c )/()(

2
1 π

, 
1 
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The discrete Fourier transform 
: computer applications of the Fourier transform require that all of Motivation

the definitions and properties of Fourier transforms be translated into analogous 
statements appropriate to functions represented by a discrete set of sampling 
points rather than by continuous functions. 

Let f(x) be a function. 
Let  {fk = f(xk)} be a set of N function values,                       k = 0, 1, …, N-1. 
Let            be the separation of the equidistant sampling points. 
Assumption: N is even. 

The discrete Fourier transform is:  

 

 

 
The inverse discrete transform is:  
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)2The discrete Fourier transform( 
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Let’s examine more closely the formula of the discrete Fourier transform:  

We know that                                    (it’s called n-th root of unity), so the 
formula above can be rewritten as: 
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motivation -ransform Tourier Fast FUsage of the  

Let                                                                  be two polynomials. ∑
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We want to multiply them: C(x) = A(x)*B(x). 

Two ways to do this: 
      
  1.                                   where                                 - takes  time 

 

  2.   (a) calculate A(x) and B(x) values in 2n-1 distinct points x0, …, x2n-2;  
          we get two vectors {(x0, y0),…,(x2n-2, y2n-2)}, {(x0,z0),…,(x2n-2, z 2n-2)}; 
        (b)  multiply these vectors:  {(x0, y0 z0),…,(x2n-2, y2n-2 z 2n-2)} 
        (c) calculate the polynomial C(x) that passes through the result vector             
             (interpolation)                    
                                             - takes time                          if use FFT 

,)(
22

0
∑
−

=

=
n

j

j
j xcxC )( 2nΘ∑

=
−=

j

k
kjkj bac

0

)log( nnΘ



C(x)Uniqueness of  

)} on n distinct points there is a unique 1-n, y\-nx),…,(0, y0x: for any set {(1Theorem
polynomial C(x) with degree less than n such that yi = C(xi) for i = 0,1,…, n-1. 

 
as matrices 1 -,…, n1,0=  i) =                 for ix= C(i y: we can write Proof

multiplication:  
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c0 
c1 
... 
cn-1 

= 

y0 
y1 
... 
yn-1 

* 

The matrix V(x0 ,..., xn-\ ) is called a Vandermonde matrix. 
Since all x0 ,..., xn-\ are distinct, a discriminate of V isn’t zero, so it is reversible. 
=> we can calculate ci = V (x0 ,..., xn-\ ) -1 yi . 



Discrete FFT and FFTinverse 

We will use FFT to execute step (a) and FFTinv to execute step (c). 

 
Let                                be a polynomial. 

 
We want to execute a step (a): calculate C(x) in n distinct points x0, …, xn-1. 
FFT uses special n points – wn

0, wn
1 , wn

2 , …, wn
n-1. 

.th (complex) root of unity-nis called the n w 
That means that wn

n = 1. 
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th root of unity-Properties of n 

Let’s examine some properties of wn : 

1. There are exactly n n-th roots of unity: wn
0, wn

1 , wn
2 , …, wn

n-1. 

Each one of them can be presented as               . 
 wn is called the principal n-th root of unity. 

2. The inverse of wn is wn
-1 = wn

n-1: wn * wn
-1 = wn

0 = 1; 
                                                        wn * wn

n-1 = wn
n = 1. 

3. wdn
dk = wn

k : wdn
dk  =                      =                      =  wn

k . 

4. wn
n/2 = w2 = -1 : wn

n/2  = w(n/2)*2
n/2   = (by property 3) w2 =                = -1. 
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)2th root of unity(-Properties of n 

5. If  n > 0 and n is even => (wn
k ) 2  =  wn/2

k , k = 0, 1, …, n–1: 

. (wn
k ) 2  =                          =                          = wn/2

k . 

. (wn
k+n/2 ) 2  =   wn

2k+n = wn
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2k  = (wn
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6.                            :                                                                                           .   
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DFFT preview 

Let                                be a polynomial. 

 
We want to execute a step (a): calculate pc(x) in wn

0, wn
1 , wn

2 , …, wn
n-1. 

: Observation 
Let                                      be an n-tuple of the coefficients of pc(x). 
Assume that n is power of 2 (if it isn’t, we force it to be by adding 0’s). 
Let                                        and                                           

=>                                                 , where          is the polynomial that is 
defined by the vector a, and          is the polynomial that is defined by the 
vector b.  

=> 

Let t = n/2   =>  wn
t  = wn

n/2 = -1 . 

=>   for i < n/2:  

        for i >= n/2:  
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DFFT algorithm 
DFFT (                                   , wn) : 
     // n is a power of 2 and wn

n/2 = -1 // 
     array C[0, …, n – 1]  // for the answer 
     if n = = 1 then C[0]  c[0] 
     else 
           t    n / 2 
           arrays a, b, A, B [0,…,t – 1] // intermediate arrays 
           for i   0 to t – 1 do: 
                   a[i]    c[2i] 
                   b[i]    c[2i + 1] 
           // recursive Fourier transform computation 
           A    DFFT (a, wn

2 ) 
           B    DFFT (b, wn

2 ) 
           // Fourier transform computation of the vector c 
           for i    0 to t – 1 do: 
                    temp = wn

i 

                               C[i]    A[i] + temp * B[i] 
                    C[t + i]    A[i] – temp * B[i]  
                     temp   temp * wn 

        return  C  // return the answer 

),...,,( 110 −= ncccc



example -DFFT algorithm  

Let n = 8 and c = (255, 8, 0, 226, 37, 240, 3, 0). 
Let   F257    be a finite field  =>  w8 =  4  (48 mod 257 = 1). 

1) a = (255, 0, 37, 3),  b = (8, 226, 240, 0) 

2) recursive call with t = 8 / 2 = 4 and w8
2 = 42 = 16:   

                A = [38, 170, 32, 9],  B = [217, 43, 22, 7] 

3)   C[0]  38 + 217 = 255                      C[4]  38 – 217 
      C[1]  170 + 43* w8 = 85                 C[5]  170 – 43* w8 = 255 
      C[2]  32 + 22 * w8

2= 127                C[6]  32 – 22 * w8
2= 194  

      C[3]  9 + 7 * w8
3 = 200                   C[7]  9 – 7 * w8

3 = 75 

4) The final result is: C = (255, 85, 127, 200, 78, 255, 194, 75). 



execution time –DFFT algorithm  

We have log(n) recursive calls. 

For each call: 
           - n multiplications w8

i+1     w8
i * w8 

           - n multiplications of const * w8
i , i = 0, 1, …, n / 2 - 1  

           - n / 2 additions, n / 2 subtractions 
 
=>                   arithmetical instructions, each costs  

 

 

=>    DFFT algorithm execution time is  
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preview -DFFTinv algorithm  

We can write yi =  C(wn
i) =                  for i = 0,1,…, n-1 as matrices multiplication:  ∑
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The matrix Vij(x0 ,..., xn-\ ) is called a Vandermonde matrix. 
Since all x0 ,..., xn-\ are distinct, a discriminate of Vij isn’t zero, so it is reversible. 
=> we can calculate ci = Vij (x0 ,..., xn-\ ) -1 yi . 

We want to execute a step (c) calculate the polynomial C(x) that passes through 
the result vector (interpolation)  



)2preview( –DFFTinv algorithm  

be the matrix as above.  ) \-nx ,...,0 x( ij:  let VTheorem 
Then the inverse matrix of Vij is Vij

-1 = n-1 wn
-ij . 

exists. 1-
ij: we already saw that VProof 

  
Vij * Vij

-1 =                                                            = > 

          
       i. if  i = j, then  wn

(i - j)k =  wn
0 = 1, and so 

      
      ii. else,  then                                                       (by property 6) 

 

So we get that Vij * Vij
-1 = In .  
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DFFTinv algorithm 

DFFTinv (C[0, …, n – 1] , wn) : 
     // n is a power of 2 and wn

n/2 = -1 // 
     array c[0, …, n – 1]  // for the answer 
     c   DFFT (C[0, …, n – 1] , wn

n-1 )  // remember that wn
-1 = wn

n-1 

        for i    0 to n – 1 do:  
               c[i]     n-1* c[i] 

        return  c  // return the answer 



example -DFFTinv algorithm  

Let n = 8 and C = (255, 85, 127, 200, 78, 255, 194, 75).  
Let   F257    be a finite field  =>  w8 =  4  (48 mod 257 = 1). 

1) w8
-1 = w8

7 = 193. 

2) calculate DFFT(C, 193):  
                 c = [241, 64, 0, 9, 39, 121, 24, 0] 

3) multiply c by n-1 = 225 (225 * 8  mod 257 = 1) 

4) The final result is: c = (255, 8, 0, 226, 37, 240, 3, 0). 



execution time –DFFTinv algorithm  

DFFT takes                           time . 
 
n multiplications c[i]   n-1 * c[i]  
            
=>                   arithmetical instructions, each costs  

 

 

=>    DFFTinv algorithm execution time is  
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