The Fourier series

A large class of phenomena can be described as periodic in nature: waves, sounds, light, radio, water waves etc.

It is natural to attempt to describe these phenomena by means of expansions in periodic functions.
The Fourier series is an expansion of a function in terms of trigonometric sines and cosines:

Suppose $f(x)$ is defined over a finite range $-L \leq x \leq L$, i.e. $\mathrm{f}(\mathrm{x})$ is periodic with period $2 L$. The trigonometric functions are periodic with period $2 L=2 \pi$, so it is natural to expand these functions in terms of trigonometric functions with an argument $[(x / 2 L) 2 \pi n], n \in \mathrm{~N}$:

$$
\begin{aligned}
& f(x)=\frac{1}{2} a_{0}+\sum_{m=1}^{\infty} a_{m} \cos \left(\frac{n \pi}{L} x\right)+\sum_{m=1}^{\infty} b_{m} \sin \left(\frac{n \pi}{L} x\right) \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
\end{aligned}
$$

Example for Fourier series

Let's take the following function:
$f(x)= \begin{cases}|x| & ;-8<=x<=8 \\ f(x \pm 16 n), n \in \mathrm{~N} & ; \text { otherwise }\end{cases}$

- $f(x)$ is even in x while $\sin (x)$ is odd $=>b_{n}$'s must be zero.
$a_{n}=\frac{2}{L} \int_{0}^{L} x \cos \left(\frac{n \pi}{L} x\right) d x=\frac{2 L}{n^{2} \pi^{2}}[\cos (n \pi)-1]=-\frac{4 L}{n^{2} \pi^{2}} \quad$; if n is odd
$a_{n}=\frac{2}{L} \int_{0}^{L} x \cos \left(\frac{n \pi}{L} x\right) d x=\frac{2 L}{n^{2} \pi^{2}}[\cos (n \pi)-1]=0$
; if n is even
=> the expansion is : $\quad f(x)=\frac{L}{2}\left(1-\frac{8}{\pi^{2}} \sum_{n=o d d}^{\infty} \frac{1}{n^{2}} \cos \left(\frac{n \pi}{L} x\right)\right)$

Example for Fourier series(2)

Complex version of the Fourier expansion

The Euler identity: $\quad e^{i \Theta}=\cos \Theta+i \sin \Theta$
The inverse equations:

$$
\sin \Theta=\frac{1}{2 i}\left(e^{i \Theta}-e^{-i \Theta}\right) \quad, \quad \cos \Theta=\frac{1}{2}\left(e^{i \Theta}+e^{-i \Theta}\right)
$$

Using the formulas above and some properties of exponential function, the Fourier series can also be written as an expansion in terms of complex exponentials as:

$$
1 \quad f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{(i n \pi / L) x}, \quad c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i(n \pi / L) x} d x
$$

Note: you can read the full explanation here.

The Fourier transform

Let's define $w=\boldsymbol{n} \pi / \boldsymbol{L} \Rightarrow \boldsymbol{d} \boldsymbol{w}=\pi / \boldsymbol{L}$.
The Fourier transform is a generalization of the complex Fourier series in the limit as $L \rightarrow \infty$ on the formula we got on the previous slide:
$1 \quad f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{(i n \pi / L) x} \quad, \quad c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i(n \pi / L) x} d x$

$$
2 \hat{f}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i w x} d x
$$

The inverse Fourier transform

By placing the formula
transform formula: transform formula:
$1 \quad f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{(i n \pi / L) x}, \quad c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i(n \pi / L) x} d x$ \square

$$
3(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(x) e^{i w x} d w
$$

Note: you can read the full explanation

The discrete Fourier transform

Motivation: computer applications of the Fourier transform require that all of the definitions and properties of Fourier transforms be translated into analogous statements appropriate to functions represented by a discrete set of sampling points rather than by continuous functions.

Let $f(x)$ be a function.
Let $\left\{f_{k}=f\left(x_{k}\right)\right\}$ be a set of N function values, $x_{k}=k \Delta x \quad k=0,1, \ldots, N-1$.
Let Δx be the separation of the equidistant sampling points.
Assumption: N is even.
The discrete Fourier transform is:

$$
\hat{f}_{n}=\sum_{k=0}^{N}\left(e^{2 \pi i / N}\right)^{n k} f_{k}, n=0,1, \ldots, N-1
$$

The inverse discrete transform is:

$$
f_{k}=\frac{1}{N+1} \sum_{n=0}^{N}\left(e^{2 \pi i / N}\right)^{-n k} \hat{f}_{n}, k=0,1, \ldots, N-1
$$

The discrete Fourier transform(2)

Let's examine more closely the formula of the discrete Fourier transform:

$$
\hat{f}_{n}=\sum_{k=0}^{N}\left(e^{2 \pi i / N}\right)^{n k} f_{k}, n=0,1, \ldots, N-1
$$

We know that $\boldsymbol{W}_{N}=\frac{2 \pi i}{N}$ (it's called n-th root of unity), so the formula above can be rewritten as:

$$
\hat{f}_{n}=\sum_{k=0}^{N} w_{n}^{k} f_{k}, n=0,1, \ldots, N-1 \longmapsto \hat{f_{n}}=\hat{f_{n}}\left(w_{n}\right)
$$

Usage of the Fast Fourier Transform - motivation

Let $\quad A(x)=\sum_{k=0}^{n-1} a_{k} x^{k}, B(x)=\sum_{k=0}^{n-1} b_{k} x^{k} \quad$ be two polynomials.
We want to multiply them: $C(x)=A(x) * B(x)$.
Two ways to do this:

1. $C(x)=\sum_{j=0}^{2 n-2} c_{j} x^{j}$, where $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k} \quad$-takes time $\Theta\left(n^{2}\right)$
2. (a) calculate $A(x)$ and $B(x)$ values in $2 n-1$ distinct points $x_{0}, \ldots, x_{2 n-2}$; we get two vectors $\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{2 n-2}, y_{2 n-2}\right)\right\},\left\{\left(x_{0}, z_{0}\right), \ldots,\left(x_{2 n-2}, z_{2 n-2}\right)\right\}$;
(b) multiply these vectors: $\left\{\left(x_{0}, y_{0} z_{0}\right), \ldots,\left(x_{2 n-2}, y_{2 n-2} z_{2 n-2}\right)\right\}$
(c) calculate the polynomial $C(x)$ that passes through the result vector (interpolation)

- takes time $\Theta(n \log n)$ if use FFT

Uniqueness of $C(x)$

Theorem1: for any set $\left\{\left(x_{0}, y_{0}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}$ on n distinct points there is a unique polynomial $C(x)$ with degree less than n such that $y_{i}=\mathrm{C}\left(x_{i}\right)$ for $i=0,1, \ldots, n-1$.

Proof: we can write $y_{i}=\mathrm{C}\left(x_{i}\right)=\sum_{k=0}^{n-1} c_{k} x_{i}^{k}$ for $i=0,1, \ldots, n-1$ as matrices
multiplication:

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n v-1}^{n-1}
\end{array}\right) *\left(\begin{array}{l}
c_{0} \\
c_{1} \\
\cdots \\
c_{n-1}
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
\cdots \\
y_{n-1}
\end{array}\right)
$$

The matrix $\mathrm{V}\left(x_{0}, \ldots, x_{n-1}\right)$ is called a Vandermonde matrix.
Since all x_{0}, \ldots, x_{n-1} are distinct, a discriminate of V isn't zero, so it is reversible.
$=>$ we can calculate $c_{i}=\mathrm{V}\left(x_{0}, \ldots, x_{n-1}\right)^{-1} y_{i}$.

Discrete FFT and FFTinverse

We will use FFT to execute step (a) and FFTinv to execute step (c).
Let $C(x)=\sum_{k=0}^{n-1} c_{k} x^{k}$ be a polynomial.
We want to execute a step (a): calculate $C(x)$ in n distinct points x_{0}, \ldots, x_{n-1}. FFT uses special n points $-w_{n}{ }^{0}, w_{n}{ }^{1}, w_{n}{ }^{2}, \ldots, w_{n}{ }^{n-1}$.
w_{n} is called the n-th (complex) root of unity. That means that $w_{n}{ }^{n}=1$.

Figure 32.2 The values of $\omega_{8}^{0}, \omega_{8}^{1}, \ldots, \omega_{8}^{7}$ in the complex plane, where $\omega_{8}=e^{2 \pi i / 8}$ is the principal 8th root of unity.

Properties of n-th root of unity

Let's examine some properties of w_{n} :

1. There are exactly $n \mathrm{n}$-th roots of unity: $w_{n}{ }^{0}, w_{n}{ }^{1}, w_{n}{ }^{2}, \ldots, w_{n}{ }^{n-1}$.

Each one of them can be presented as $e^{2 \pi i / n}$.
w_{n} is called the principal n-th root of unity.
2. The inverse of w_{n} is $w_{n}^{-1}=w_{n}^{n-1}: w_{n} * w_{n}^{-1}=w_{n}^{0}=1$;

$$
w_{n} * w_{n}^{n-1}=w_{n}{ }^{n}=1 .
$$

3. $w_{d n}{ }^{d k}=w_{n}{ }^{k}: w_{d n}{ }^{d k}=\left(e^{2 \pi i / d n}\right)^{d k}=\left(e^{2 \pi i / n}\right)^{k}=w_{n}{ }^{k}$.
4. $w_{n}{ }^{n / 2}=w_{2}=-1: w_{n}^{n / 2}=w_{(n / 2) * 2^{n / 2}}=($ by property 3$) w_{2}=e^{2 \pi i / 2}=-1$.

Properties of n-th root of unity(2)

5. If $\mathrm{n}>0$ and n is even $=>\left(w_{n}{ }^{k}\right)^{2}=w_{n / 2}{ }^{k}, k=0,1, \ldots, n-1$:
. $\left(w_{n}{ }^{k}\right)^{2}=\left(e^{2 \pi i / n}\right)^{2 k}=\left(e^{2 \pi i / n / 2}\right)^{k}=w_{n / 2}{ }^{k}$.
. $\left(w_{n}{ }^{k+n / 2}\right)^{2}=w_{n}{ }^{2 k+n}=w_{n}{ }^{2 k} w_{n}{ }^{n}=w_{n}{ }^{2 k}=\left(w_{n}{ }^{k}\right)^{2}=w_{n / 2}{ }^{k}$.
6. $\sum_{j=0}^{n-1}\left(w_{n}^{k}\right)^{j}=0$:

DFFT preview

Let $p_{c}(x)=\sum_{k=0}^{n-1} c_{k} x^{k}$ be a polynomial.
We want to execute a step (a): calculate $p_{c}(x)$ in $w_{n}{ }^{0}, w_{n}{ }^{1}, w_{n}{ }^{2}, \ldots, w_{n}{ }^{n-1}$.

Observation:

Let $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ be an n-tuple of the coefficients of $p_{c}(x)$.

Assume that n is power of 2

Let $a=\left(c_{0}, c_{2}, \ldots, c_{n-2}\right)$ and $b=\left(c_{1}, c_{3}, \ldots, c_{n-1}\right)$
$=>p_{c}(x)=p_{a}\left(x^{2}\right)+x p_{b}\left(x^{2}\right)$, where p_{a} is the polynomial that is defined by the vector a, and p_{b} is the polynomial that is defined by the vector b .

$$
\begin{aligned}
& \Rightarrow>p_{c}\left(w_{n}^{i}\right)=p_{a}\left(w_{n}^{2 i}\right)+w_{n}^{i} p_{b}\left(w_{n}^{2 i}\right) \\
& \text { Let } t=n / 2=>w_{n}^{t}=w_{n}^{n / 2}=-1 . \\
& \Rightarrow \text { for } i<n / 2: \quad p_{c}\left(w_{n}^{i}\right)=p_{a}\left(w_{n}^{2 i}\right)+w_{n}^{i} p_{b}\left(w_{n}^{2 i}\right) \\
& \text { for } i>=n / 2: p_{c}\left(w_{n}^{i}\right)=p_{a}\left(w_{n}^{2 i}\right)+w_{n}^{j+t} p_{b}\left(w_{n}^{2 i}\right)=p_{a}\left(w_{n}^{2 i}\right)-w_{n}^{j} p_{b}\left(w_{n}^{2 i}\right)
\end{aligned}
$$

DFFT algorithm

$\operatorname{DFFT}\left(c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right), w_{n}\right)$:
$/ / n$ is a power of 2 and $w_{n}^{n / 2}=-1 / /$
array $C[0, \ldots, n-1] / /$ for the answer
if $\mathrm{n}==1$ then $\mathrm{C}[0] \leftarrow \mathrm{c}[0]$
else
$\mathrm{t} \leqslant \mathrm{n} / 2$
arrays $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}[0, \ldots, \mathrm{t}-1] / /$ intermediate arrays
for $\mathrm{i} \leftarrow 0$ to $\mathrm{t}-1$ do:
$\mathrm{a}[\mathrm{i}] \leftarrow \mathrm{c}[2 \mathrm{i}]$
$\mathrm{b}[\mathrm{i}] \leftarrow \mathrm{c}[2 \mathrm{i}+1]$
// recursive Fourier transform computation
$\mathrm{A} \leftarrow \operatorname{DFFT}\left(\mathrm{a}, w_{n}{ }^{2}\right)$
$\mathrm{B} \leqslant \operatorname{DFFT}\left(\mathrm{b}, w_{n}{ }^{2}\right)$
// Fourier transform computation of the vector c for $\mathrm{i} \leftarrow 0$ to $\mathrm{t}-1$ do:
temp $=w_{n}{ }^{i}$
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{A}[\mathrm{i}]+$ temp * $\mathrm{B}[\mathrm{i}]$
$\mathrm{C}[\mathrm{t}+\mathrm{i}] \leftarrow \mathrm{A}[\mathrm{i}]-$ temp * $\mathrm{B}[\mathrm{i}]$
temp \leftarrow temp $* w_{n}$
return C // return the answer

DFFT algorithm - example

Let $\boldsymbol{n}=8$ and $\boldsymbol{c}=(255,8,0,226,37,240,3,0)$.
Let F_{257} be a finite field $=>w_{8}=4\left(4^{8} \bmod 257=1\right)$.

1) $a=(255,0,37,3), b=(8,226,240,0)$
2) recursive call with $t=8 / 2=4$ and $w_{8}{ }^{2}=4^{2}=16$:

$$
A=[38,170,32,9], B=[217,43,22,7]
$$

3) $C[0] \leftarrow 38+217=255$
$C[4] \leftarrow 38-217$
$C[1] \leftarrow 170+43^{*} w_{8}=85$
$C[5] \leftarrow 170-43^{*} w_{8}=255$
$C[2] \leftarrow 32+22 * w_{8}{ }^{2}=127 \quad C[6] \leftarrow 32-22 * w_{8}{ }^{2}=194$
$C[3] \leftarrow 9+7 * w_{8}{ }^{3}=200$
$C[7] \leftarrow 9-7 * w_{8}{ }^{3}=75$
4) The final result is: $C=(255,85,127,200,78,255,194,75)$.

DFFT algorithm - execution time

We have $\log (n)$ recursive calls.
For each call:

- n multiplications $w_{8}{ }^{i+1} \leftarrow w_{8}{ }^{i} * w_{8}$
- n multiplications of const $* w_{8}{ }^{i}, i=0,1, \ldots, n / 2-1$
- $n / 2$ additions, $n / 2$ subtractions
=> $\Theta(n)$ arithmetical instructions, each costs $\Theta(1)$
=> DFFT algorithm execution time is $\Theta(n \log n)$

DFFTinv algorithm - preview

We want to execute a step (c) calculate the polynomial $C(x)$ that passes through the result vector (interpolation)
We can write $y_{i}=\mathrm{C}\left(w_{n}{ }^{i}\right)=\sum_{k=0}^{n-1} c_{k} w_{n}{ }^{i k}$ for $i=0,1, \ldots, n-1$ as matrices multiplication:

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & w_{n} & w_{n}^{2} & \cdots & w_{n}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w_{n}^{n-1} & w_{n}^{2 n-1} & \cdots & w^{n-1 n-1}
\end{array}\right] *\left(\begin{array}{l}
c_{0} \\
c_{1} \\
\cdots \\
c_{n-1}
\end{array}\right)=\left(\begin{array}{l}
y_{0} \\
y_{1} \\
\cdots \\
y_{n-1}
\end{array}\right)
$$

The matrix $\mathrm{V}_{\mathrm{ij}}\left(x_{0}, \ldots, x_{n-1}\right)$ is called a Vandermonde matrix. Since all x_{0}, \ldots, x_{n-1} are distinct, a discriminate of V_{ij} isn't zero, so it is reversible. $=>$ we can calculate $c_{i}=\mathrm{V}_{\mathrm{ij}}\left(x_{0}, \ldots, x_{n-1}\right)^{-1} y_{i}$.

DFFTinv algorithm - preview(2)

Theorem: let $\mathrm{V}_{\mathrm{ij}}\left(x_{0}, \ldots, x_{n-1}\right)$ be the matrix as above.
Then the inverse matrix of V_{ij} is $\mathrm{V}_{\mathrm{ij}}^{-1}=n^{-1} w_{n}^{-i j}$.
Proof: we already saw that $\mathrm{V}_{\mathrm{ij}}{ }^{-1}$ exists.
$\mathrm{V}_{\mathrm{ij}} * \mathrm{~V}_{\mathrm{ij}}{ }^{-1}=\sum_{k=0}^{n-1} V_{i k} V_{k j}=n^{-1} \sum_{k=0}^{n-1} w_{n}^{(i-j) k}$
i. if $\mathrm{i}=\mathrm{j}$, then $w_{n}^{(i-j) k}=w_{n}{ }^{0}=1$, and so $n^{-1} \sum_{k=0}^{n-1} 1=n^{*}-n=1$
ii. else, then $\quad n^{-1} \sum_{k=0}^{n-1} w_{n}^{(i-j) k}=n^{-1} * 0=0$ (by property 6)

So we get that $V_{i j} * V_{i j}{ }^{-1}=I_{n}$.

DFFTinv algorithm

DFFTinv ($\mathrm{C}[0, \ldots, \mathrm{n}-1], w_{n}$) :
$/ / \mathrm{n}$ is a power of 2 and $w_{n}^{n / 2}=-1 / /$
array $\mathrm{c}[0, \ldots, \mathrm{n}-1] / /$ for the answer
$\mathrm{c} \leqslant \operatorname{DFFT}\left(\mathrm{C}[0, \ldots, \mathrm{n}-1], w_{n}^{n-1}\right) / /$ remember that $\mathrm{w}_{\mathrm{n}}{ }^{-1}=\mathrm{w}_{\mathrm{n}}^{\mathrm{n}-1}$
for $\mathrm{i} \leqslant 0$ to $\mathrm{n}-1$ do:
$\mathrm{c}[\mathrm{i}] \leqslant \mathrm{n}^{-1 *} \mathrm{c}[\mathrm{i}]$
return $\mathrm{c} / /$ return the answer

DFFTinv algorithm - example

Let $\boldsymbol{n}=8$ and $C=(255,85,127,200,78,255,194,75)$.
Let \boldsymbol{F}_{257} be a finite field $=>w_{8}=4\left(4^{8} \bmod 257=1\right)$.

1) $w_{8}^{-1}=w_{8}{ }^{7}=193$.
2) calculate $\operatorname{DFFT}(C, 193)$:

$$
c=[241,64,0,9,39,121,24,0]
$$

3) multiply c by $n^{-1}=225(225 * 8 \bmod 257=1)$
4) The final result is: $c=(255,8,0,226,37,240,3,0)$.

DFFTinv algorithm - execution time

DFFT takes $\Theta(n \log n)$ time.
n multiplications $\mathrm{c}[\mathrm{i}] \leqslant n^{-1} * \mathrm{c}[\mathrm{i}]$
=> $\Theta(n)$ arithmetical instructions, each costs $\Theta(1)$
$=>$ DFFTinv algorithm execution time is $\Theta(n \log n)$

