
The Fourier series

A large class of phenomena can be described as periodic in nature:
 waves, sounds, light, radio, water waves etc.

It is natural to attempt to describe these phenomena by means of expansions in
periodic functions.

is an expansion of a function in terms of trigonometric The Fourier series
sines and cosines:

Suppose f(x) is defined over a finite range –L x L, i.e. f(x) is periodic with
, so it 2 = L2. The trigonometric functions are periodic with period L2period

is natural to expand these functions in terms of trigonometric functions with an
argument [(x / 2L) 2 n], n :

≤ ≤
π

π ∈ Ν

)sin()cos(
2
1)(

11
0 x

L
nbx

L
naaxf

m
m

m
m

ππ ∑∑
∞

=

∞

=

++=

() dxx
L

nxf
L

a
L

Ln)cos(1 π
∫−= () dxx

L
nxf

L
b

L

Ln)sin(1 π
∫−=

Example for Fourier series

Let’s take the following function:

 |x| ; - 8 <= x <= 8
 f(x 16n) , n ; otherwise

- f(x) is even in x while sin(x) is odd => bn’s must be zero.

 ; if n is odd

 ; if n is even

± ∈ Ν{ f(x) =

22220

4]1)[cos(2)cos(2
π

π
π

π
n

Ln
n

Ldxx
L

nx
L

a
L

n −=−== ∫

0]1)[cos(2)cos(2
220

=−== ∫ π
π

π n
n

Ldxx
L

nx
L

a
L

n

=> the expansion is :))cos(181(
2

)(22 x
L

n
n

Lxf
oddn

π
π ∑

∞

=

−=

)2Example for Fourier series(

f(x)

x

y

n= 1

n= 3

n= 5))cos(181(
2

)(22 x
L

n
n

Lxf
oddn

π
π ∑

∞

=

−=

source: f(x) =|x|, -8 <= x <= 8

Successive
approximations
of f(x)

Complex version of the Fourier expansion

The Euler identity:

The inverse equations:

 ,

Θ+Θ=Θ sincos iei

)(sin 2
1 Θ−Θ −=Θ ii
i ee)(cos 2

1 Θ−Θ +=Θ ii ee

Using the formulas above and some properties of exponential function, the
Fourier series can also be written as an expansion in terms of complex
exponentials as:

∑
∞

−∞=

=
n

xLin
necxf)/()(π ∫−

−=
L

L

xLni
n dxexf

L
c)/()(

2
1 π

,

.here: you can read the full explanation Note

1

http://mathworld.wolfram.com/FourierSeries.html

The Fourier transform

Let’s define w = => .

The Fourier transform is a generalization of the complex Fourier series in the
limit as on the formula we got on the previous slide: ∞→L

L
nπ

Ldw π=

∑
∞

−∞=

=
n

xLin
necxf)/()(π ∫−

−=
L

L

xLni
n dxexf

L
c)/()(

2
1 π

,

∫
∞

∞−

−= dxexfxf iwx)(
2
1)(

^

π

1

2

The inverse Fourier transform

By placing the formula in the formula we get the inverse Fourier
transform formula:

∫
∞

∞−
= dwexfxf iwx)(

2
1)(

^

π
3

1 2

∑
∞

−∞=

=
n

xLin
necxf)/()(π ∫−

−=
L

L

xLni
n dxexf

L
c)/()(

2
1 π

,
1

here: you can read the full explanation Note

http://mathworld.wolfram.com/FourierTransform.html

The discrete Fourier transform
: computer applications of the Fourier transform require that all of Motivation

the definitions and properties of Fourier transforms be translated into analogous
statements appropriate to functions represented by a discrete set of sampling
points rather than by continuous functions.

Let f(x) be a function.
Let {fk = f(xk)} be a set of N function values, k = 0, 1, …, N-1.
Let be the separation of the equidistant sampling points.
Assumption: N is even.

The discrete Fourier transform is:

The inverse discrete transform is:

xkxk ∆=
x∆

1,...,1,0,)(
0

/2
^

−==∑
=

Nnfef
N

k
k

nkNi
n

π

1,...,1,0,)(
1

1
0

^
/2 −=

+
= ∑

=

− Nkfe
N

f
N

n
n

nkNi
k

π

)2The discrete Fourier transform(

1,...,1,0,)(
0

/2
^

−==∑
=

Nnfef
N

k
k

nkNi
n

π

Let’s examine more closely the formula of the discrete Fourier transform:

We know that (it’s called n-th root of unity), so the
formula above can be rewritten as:

N
iwN
π2

=

1,...,1,0,
0

^
−==∑

=

Nnfwf
N

k
k

k
nn)(

^^

nnn wff =

motivation -ransform Tourier Fast FUsage of the

Let be two polynomials. ∑
−

=

=
1

0
)(

n

k

k
k xaxA ∑

−

=

=
1

0
)(

n

k

k
k xbxB,

We want to multiply them: C(x) = A(x)*B(x).

Two ways to do this:

 1. where - takes time

 2. (a) calculate A(x) and B(x) values in 2n-1 distinct points x0, …, x2n-2;
 we get two vectors {(x0, y0),…,(x2n-2, y2n-2)}, {(x0,z0),…,(x2n-2, z 2n-2)};
 (b) multiply these vectors: {(x0, y0 z0),…,(x2n-2, y2n-2 z 2n-2)}
 (c) calculate the polynomial C(x) that passes through the result vector
 (interpolation)
 - takes time if use FFT

,)(
22

0
∑
−

=

=
n

j

j
j xcxC)(2nΘ∑

=
−=

j

k
kjkj bac

0

)log(nnΘ

C(x)Uniqueness of

)} on n distinct points there is a unique 1-n, y\-nx),…,(0, y0x: for any set {(1Theorem
polynomial C(x) with degree less than n such that yi = C(xi) for i = 0,1,…, n-1.

as matrices 1 -,…, n1,0= i) = for ix= C(i y: we can write Proof

multiplication:
∑
−

=

1

0

n

k

k
ik xc

c0
c1
...
cn-1

=

y0
y1
...
yn-1

*

The matrix V(x0 ,..., xn-\) is called a Vandermonde matrix.
Since all x0 ,..., xn-\ are distinct, a discriminate of V isn’t zero, so it is reversible.
=> we can calculate ci = V (x0 ,..., xn-\) -1 yi .

Discrete FFT and FFTinverse

We will use FFT to execute step (a) and FFTinv to execute step (c).

Let be a polynomial.

We want to execute a step (a): calculate C(x) in n distinct points x0, …, xn-1.
FFT uses special n points – wn

0, wn
1 , wn

2 , …, wn
n-1.

.th (complex) root of unity-nis called the n w
That means that wn

n = 1.

∑
−

=

=
1

0
)(

n

k

k
k xcxC

th root of unity-Properties of n

Let’s examine some properties of wn :

1. There are exactly n n-th roots of unity: wn
0, wn

1 , wn
2 , …, wn

n-1.

Each one of them can be presented as .
 wn is called the principal n-th root of unity.

2. The inverse of wn is wn
-1 = wn

n-1: wn * wn
-1 = wn

0 = 1;
 wn * wn

n-1 = wn
n = 1.

3. wdn
dk = wn

k : wdn
dk = = = wn

k .

4. wn
n/2 = w2 = -1 : wn

n/2 = w(n/2)*2
n/2 = (by property 3) w2 = = -1.

nie /2π

dkdnie)(/2π knie)(/2π

2/2 ie π

)2th root of unity(-Properties of n

5. If n > 0 and n is even => (wn
k) 2 = wn/2

k , k = 0, 1, …, n–1:

. (wn
k) 2 = = = wn/2

k .

. (wn
k+n/2) 2 = wn

2k+n = wn
2k wn

n = wn
2k = (wn

k) 2 = wn/2
k .

6. : .

knie 2/2)(π knie)(2//2π

geometry series formula

DFFT preview

Let be a polynomial.

We want to execute a step (a): calculate pc(x) in wn

0, wn
1 , wn

2 , …, wn
n-1.

: Observation
Let be an n-tuple of the coefficients of pc(x).
Assume that n is power of 2 (if it isn’t, we force it to be by adding 0’s).
Let and

=> , where is the polynomial that is
defined by the vector a, and is the polynomial that is defined by the
vector b.

=>

Let t = n/2 => wn
t = wn

n/2 = -1 .

=> for i < n/2:

 for i >= n/2:

∑
−

=

=
1

0
)(

n

k

k
kc xcxp

),...,,(110 −= ncccc

),...,,(220 −= nccca),...,,(131 −= ncccb

ap
bp
)()()(22 xxpxpxp bac +=

)()()(22 i
nb

i
n

i
na

i
nc wpwwpwp +=

)()()()()(2222 i
nb

j
n

i
na

i
nb

tj
n

i
na

i
nc wpwwpwpwwpwp −=+= +

)()()(22 i
nb

i
n

i
na

i
nc wpwwpwp +=

DFFT algorithm
DFFT (, wn) :
 // n is a power of 2 and wn

n/2 = -1 //
 array C[0, …, n – 1] // for the answer
 if n = = 1 then C[0]  c[0]
 else
 t  n / 2
 arrays a, b, A, B [0,…,t – 1] // intermediate arrays
 for i  0 to t – 1 do:
 a[i]  c[2i]
 b[i]  c[2i + 1]
 // recursive Fourier transform computation
 A  DFFT (a, wn

2)
 B  DFFT (b, wn

2)
 // Fourier transform computation of the vector c
 for i  0 to t – 1 do:
 temp = wn

i

 C[i]  A[i] + temp * B[i]
 C[t + i]  A[i] – temp * B[i]
 temp  temp * wn

 return C // return the answer

),...,,(110 −= ncccc

example -DFFT algorithm

Let n = 8 and c = (255, 8, 0, 226, 37, 240, 3, 0).
Let F257 be a finite field => w8 = 4 (48 mod 257 = 1).

1) a = (255, 0, 37, 3), b = (8, 226, 240, 0)

2) recursive call with t = 8 / 2 = 4 and w8
2 = 42 = 16:

 A = [38, 170, 32, 9], B = [217, 43, 22, 7]

3) C[0]  38 + 217 = 255 C[4]  38 – 217
 C[1]  170 + 43* w8 = 85 C[5]  170 – 43* w8 = 255
 C[2]  32 + 22 * w8

2= 127 C[6]  32 – 22 * w8
2= 194

 C[3]  9 + 7 * w8
3 = 200 C[7]  9 – 7 * w8

3 = 75

4) The final result is: C = (255, 85, 127, 200, 78, 255, 194, 75).

execution time –DFFT algorithm

We have log(n) recursive calls.

For each call:
 - n multiplications w8

i+1  w8
i * w8

 - n multiplications of const * w8
i , i = 0, 1, …, n / 2 - 1

 - n / 2 additions, n / 2 subtractions

=> arithmetical instructions, each costs

=> DFFT algorithm execution time is

)(nΘ)1(Θ

)log(nnΘ

preview -DFFTinv algorithm

We can write yi = C(wn
i) = for i = 0,1,…, n-1 as matrices multiplication: ∑

−

=

1

0

n

k

ik
nk wc

c0
c1
...
cn-1

=

y0
y1
...
yn-1

*

The matrix Vij(x0 ,..., xn-\) is called a Vandermonde matrix.
Since all x0 ,..., xn-\ are distinct, a discriminate of Vij isn’t zero, so it is reversible.
=> we can calculate ci = Vij (x0 ,..., xn-\) -1 yi .

We want to execute a step (c) calculate the polynomial C(x) that passes through
the result vector (interpolation)

)2preview(–DFFTinv algorithm

be the matrix as above.) \-nx ,...,0 x(ij: let VTheorem
Then the inverse matrix of Vij is Vij

-1 = n-1 wn
-ij .

exists. 1-
ij: we already saw that VProof

Vij * Vij

-1 = = >

 i. if i = j, then wn

(i - j)k = wn
0 = 1, and so

 ii. else, then (by property 6)

So we get that Vij * Vij
-1 = In .

∑∑
−

=

−−
−

=

=
1

0

)(1
1

0

n

k

kji
n

n

k
kjik wnVV

∑
−

=

− =−=
1

0

1 1*1
n

k
nnn

00*1
1

0

)(1 == −
−

=

−− ∑ nwn
n

k

kji
n

DFFTinv algorithm

DFFTinv (C[0, …, n – 1] , wn) :
 // n is a power of 2 and wn

n/2 = -1 //
 array c[0, …, n – 1] // for the answer
 c  DFFT (C[0, …, n – 1] , wn

n-1) // remember that wn
-1 = wn

n-1

 for i  0 to n – 1 do:
 c[i]  n-1* c[i]

 return c // return the answer

example -DFFTinv algorithm

Let n = 8 and C = (255, 85, 127, 200, 78, 255, 194, 75).
Let F257 be a finite field => w8 = 4 (48 mod 257 = 1).

1) w8
-1 = w8

7 = 193.

2) calculate DFFT(C, 193):
 c = [241, 64, 0, 9, 39, 121, 24, 0]

3) multiply c by n-1 = 225 (225 * 8 mod 257 = 1)

4) The final result is: c = (255, 8, 0, 226, 37, 240, 3, 0).

execution time –DFFTinv algorithm

DFFT takes time .

n multiplications c[i]  n-1 * c[i]

=> arithmetical instructions, each costs

=> DFFTinv algorithm execution time is

)(nΘ)1(Θ

)log(nnΘ

)log(nnΘ

	The Fourier series
	Example for Fourier series
	Example for Fourier series(2)
	Complex version of the Fourier expansion
	The Fourier transform
	The inverse Fourier transform
	The discrete Fourier transform
	The discrete Fourier transform(2)
	Usage of the Fast Fourier Transform - motivation
	Uniqueness of C(x)
	Discrete FFT and FFTinverse
	Properties of n-th root of unity
	Properties of n-th root of unity(2)
	DFFT preview
	DFFT algorithm
	DFFT algorithm - example
	DFFT algorithm – execution time
	DFFTinv algorithm - preview
	DFFTinv algorithm – preview(2)
	DFFTinv algorithm
	DFFTinv algorithm - example
	DFFTinv algorithm – execution time

