
1 1

OpenMP: The "Easy" Path to
Shared Memory Computing

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson

Intel Corp.

timothy.g.mattson@intel.com

Copyright © 2012 Intel Corporation. All rights reserved

2 2

Disclaimer
READ THIS … it is very important

• The views expressed in this talk are those of the
speaker and not his employer.

• This was a team effort, but if I say anything really
stupid, it’s my fault … don’t blame my collaborators.

• A comment about performance data:
– Software and workloads used in performance tests may have been

optimized for performance only on Intel microprocessors. Performance tests,

such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to

any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when

combined with other products.

My scientific roots

• Quantum Mechanics (QM) changed my life.

– Before QM… I was a chemistry major with a

pre-med focus.

– After QM… I dropped pre-med; determined to do

whatever it took to understand quantum physics.

3

Interference patterns … 1 electron at

a time passing through 2 slits

VAX 11/750, ~1980,

• I received a Ph.D. for work on quantum

reactive scattering. To do this I had to …

– Be a physicist to create useful but solvable model

problems.

– Be a mathematician to turn complex differential

equations into solvable algebraic equations.

– Be a computer scientist to map algorithms onto

our primitive computers (VAX at 0.12 MFLOPS …

compared to an iPhone today at 126 MFLOPS).

3rd party names are the property of their owners.

My career: The intersection of math,

science and computer engineering

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer

9000 CPUs

 one megawatt of electricity.

1600 square feet of floor space.

Intel’s 80 core teraScale Chip

1 CPU

97 watt

275 mm2

First TeraScale* computer: 1997 First TeraScale% chip: 2007

10 years

later

Source: Intel

%Single Precision TFLOPS running stencil

*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

 Over the years I’ve worked on a number of parallel
programming “languages”.

Professional goal: solve the many core challenge

A harsh assessment …
– We have turned to multi-core chips not because of the success of our

parallel software but because of our failure to continually increase CPU
frequency.

 Result: a fundamental and dangerous mismatch
 Parallel hardware is ubiquitous … Parallel software is rare

 The Many Core challenge …
 Parallel software must become as common as parallel hardware.

STRAND88 MPI
3rd party names are the property of their owners.

 Over the years I’ve worked on a number of parallel
programming “languages”.

Professional goal: solve the many core challenge

A harsh assessment …
– We have turned to multi-core chips not because of the success of our

parallel software but because of our failure to continually increase CPU
frequency.

 Result: a fundamental and dangerous mismatch
 Parallel hardware is ubiquitous … Parallel software is rare

 The Many Core challenge …
 Parallel software must become as common as parallel hardware.

STRAND88 MPI

3rd party names are the property of their owners.

Let’s take a closer look at one of the

most successful Parallel Programming

Languages in use today ….

Assumptions

• You know about parallel

architectures … multicore

chips have made them

very common.

7

• You know about threads

and cache coherent

shared address spaces

IntelTM CoreTM i7 processor (Nehalem)

Cache 0 Cache 1

DRAM

Core 0 Core 1

8

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications … created in 1997

A set of compiler directives and library routines
for parallel application programmers

Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

Standardized years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

9

OpenMP Execution Model:

Fork-Join pattern:
Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions

Master

Thread

in green

A Nested

Parallel

region

Sequential Parts

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment

variables

Application

End User

Shared Address Space

Proc3 Proc2 Proc1 ProcN

11

Example: Hello world

• Write a multithreaded program where each thread prints

“hello world”.

void main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

12

Example: Hello world Solution

• Tell the compiler to pack code into a function, fork the threads,

and join when done …

#include “omp.h”

void main()

{

#pragma omp parallel

 {

 int ID = omp_get_thread_num();

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

 }

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default

number of threads

Runtime library function to

return a thread ID. End of the Parallel region

13

OpenMP core syntax

• Most of the constructs in OpenMP are compiler
directives.

#pragma omp construct [clause [clause]…]

–Example

#pragma omp parallel num_threads(4)

• Function prototypes and types in the file:
#include <omp.h>

• Most OpenMP* constructs apply to a “structured
block”.
–Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.

– It’s OK to have an exit() within the structured block.

A simple running example: Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

PI Program: Serial version

#define NUMSTEPS = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 x = 0.5 * step;

 for (i=0;i<= NUMSTEPS; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

16

#include <omp.h>

static long num_steps = 100000; double step;

Int main ()

{ double pi; step = 1.0/(double) num_steps;

#pragma omp parallel num_threads(4)

 {

 int i, id,nthrds; double x, sum;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 #pragma omp critical

 pi += sum * step;

 }

}

A “simple” pi program

This is a common

trick in SPMD*

programs to create

a cyclic distribution

of loop iterations

*SPMD = Single Program Multiple Data

Results*: pi program critical section

17

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads SPMD

critical

1 1.87

2 1.00

3 0.68

4 0.53

18

Loop worksharing Constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

 int id, i, Nthrds, istart, iend;

 id = omp_get_thread_num();

 Nthrds = omp_get_num_threads();

 istart = id * N / Nthrds;

 iend = (id+1) * N / Nthrds;

 if (id == Nthrds-1)iend = N;

 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel

#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel

region

OpenMP parallel

region and a

worksharing for

construct

19

Reduction
• OpenMP reduction clause:

reduction (op : list)

• Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy.

– Local copies are reduced into a single value and combined with

the original global value.

• The variables in “list” must be shared in the enclosing

parallel region.

 double ave=0.0, A[MAX]; int i;

 #pragma omp parallel for reduction (+:ave)

 for (i=0;i< MAX; i++) {

 ave + = A[i];

 }

 ave = ave/MAX;

20

Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Note: we created a

parallel program without

changing any executable

code and by adding 2

simple lines of text!

i private by

default

Results*: pi with a loop and a reduction

21

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

• Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads SPMD

critical

PI Loop

1 1.87 1.91

2 1.00 1.02

3 0.68 0.80

4 0.53 0.68

22

OpenMP Release History

OpenMP

Fortran 1.1

OpenMP

C/C++ 1.0

OpenMP

Fortran 2.0

OpenMP

C/C++ 2.0

1998

2000 1999

2002

OpenMP

Fortran 1.0

1997

OpenMP

2.5

2005

A single

specification

for Fortran, C

and C++

OpenMP

3.0

Tasking,

other new

features

2008

OpenMP

3.1

2011

A few more

features and

bug fixes

What’s next for OpenMP? Support for Heterogeneous systems

23 23

It’s a Heterogeneous world

GMCH GPU

ICH

CPU
CPU

DRAM

GMCH = graphics memory control hub, ICH = Input/output control hub

• A modern platform
Includes:

–One or more CPUs

–One or more GPUs

–DSP processors

–… other?

OpenCL lets Programmers write a single portable

program that uses ALL resources in the heterogeneous

platform

24

Intel® Xeon PHITM coprocessor … to be launched at SC12

26

Example: Pi program … MIC Offload model

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) nsteps;

#pragma offload target (mic) in(nsteps, step) inout (sum, pi)

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Intel has defined an offload API for manycore coprocessors

The OpenMP group is working a much more expansive set of directives for

heterogeneous programming … which Intel compilers will support in early

2013. Attend the OpenMP BOF to learn more (Tues, 5:30 PM, room 355A)

27 27

Accelerators/coprocessors will go
away … they are a temporary fad

GMCH
GPU

ICH

CPU
CPU

DRAM

GMCH = graphics memory control hub, ICH = Input/output control hub SOC = system on a chip

• A modern platform
includes:

– CPU(s)

– GPU(s)

– DSP processors

– … other?

• And System on a Chip (SOC)
trends are putting this all onto
one chip

The future belongs to heterogeneous, many core SOC
as the standard building block of computing

Is the next great industry shake-up in progress?

28 Source: http://www.thephonelocker.com/articles/27249/device-diversity-is-your-new-normal-part-2/

29

Conclusion
• OpenMP is one of the simplest APIs available for

programming shared memory machines.

• We provided enough of OpenMP to get you started, but there
is much we didn’t cover:

– tasks

– Additional work-share
constructs

– Detailed control over the data
environment

– …. And much more

• Heterogeneous computing
is the latest development …
and the new Intel® Xeon
PHITM coprocessor will be
an interesting new player as
a hybrid CPU-like many
core device.

