
LOAD BALANCING
• Programs and algorithms as graphs
• Geometric Partitioning
• Graph Partitioning

• Recursive Graph Bisection partitioning
• Recursive Spectral Bisection
• Multilevel Graph partitioning

• Hypergraph Partitioning
• Space Filling Curves and Assimilation Based

Load Balancing

Requirements of Load Balancing Algorithm

• Balanced work loads.
• Must minimize largest imbalance when attempting to

provide each processor with an equal share of work.

• Must have low interprocessor communication costs.
• Partitions with minimal communication costs are critical.

• Scalable partitioning time and memory use.
• Scalability is especially important for frequent dynamic

partitioning.

• Low data redistribution costs for dynamic
partitioning.

Dynamic Load Balancing

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

Dynamic repartitioning (load balancing) in applications
• Data partition is computed.
• Data are distributed according to partition map.
• Application computes and, perhaps, adapts.
• Process repeats until the application is done.

Ideal partition:
• Processor idle time is minimized.
• Inter-processor communication costs are kept low.
• Cost to redistribute data is also kept low.

Programs as Graphs

• Individual lines of code may be expressed as
graphs
• y = ax +b ; z = cy/e; is a graph connecting a,b,c,e,x,y

and z the nodes of the graph are the variables and
the edges represent calculations.

• The connections between functions (or different
programs) may be represented as a graph.

• Partitioning a graph is thus on approach to load
balancing. This is NP-hard (Non-deterministic
polynomial time hard) and so we have to use
heuristics to solve approximate problems close
to the actual problem. (no general solution in
polynomial time)

Graph Based View of Programs
1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

2:
3

2:
4

3:
3

3:
4

3:
3

Linear Algebra Applications are now
written as Directed Acyclic Graphs

Intel CnC:
new language for
graph based parallelism

Plasma (Dongarra):
DAG based
Parallel linear algebra software

Some new programming languages
are based areound the idea of expressing
the program as a graph

Charm ++ Virtualization: Object-
based Parallelization

User View

System implementation
User is only concerned with interaction between objects

•Idea: Divide the computation into a large number of objects
–Let the system map objects to processors

[Kale et al. Illinois] Code is expressed as Directed Acyclic Graph DAG

Uintah Task Graphs

Partial Ice
task graph

Fluid-flow solver

Particle method

Example Uintah Task from the ICE Algorithm

Compute face-centered Velocities:

Input variables Output variables
(include boundary conditions)

Task Graph for a Real Application

• Recursive Coordinate Bisection: Developed by
Berger & Bokhari (1987) for Adaptive Mesh
Refinement.

• Idea:
• Divide work into two

equal parts using a
cutting plane
orthogonal to a
coordinate axis.

• Recursively cut the
resulting
subdomains.

1st cut

2nd

2nd

3rd

3rd 3rd

3rd

Geometric Partitioning

Geometric Repartitioning

• Implicitly achieves low data redistribution costs.

• For small changes in data, cuts move only
slightly, resulting in little data redistribution.

RCB Advantages and Disadvantages
• Advantages:

• Conceptually simple; fast and inexpensive.
• All processors can inexpensively know entire partition

(e.g., for global search in contact detection).
• No connectivity info needed (e.g., particle methods).
• Good on specialized geometries.

Disadvantages:
• No explicit control of communication costs.
• Mediocre partition quality.
• Can generate disconnected subdomains for complex

geometries.
• Need coordinate information.

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Graph Partitioning

• Represent problem as a
weighted graph.

• Vertices = objects to be
partitioned.

• Edges = dependencies
between two objects.

• Weights = work load or
amount of dependency.

• Partition graph so that …
• Parts have equal vertex

weight.
• Weight of edges cut by part

boundaries is small.

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon,
Hendrickson, Leland, Kumar, Karypis, et al.

 Graph partitioning is the main
approach

P0 P1
Wij
vj

G

N vertices represent computation
m edges represent data dependencies

Partition into P sets such that:
• Equal # vertices per set
• Low induced communication
(more generally, weighted graphs …

But how to model communication?

vi

Mistake: using just edge cuts

• Generally believed that “Edge Cuts = Communication Cost”.
• This assumption is behind the use of graph partitioning.
• In reality:

• Edge cuts are not equal to communication volume.
• Communication volume is not equal to communication cost.

Communication volume

• Assume graph edges reflect data dependencies.
• Correct accounting of communication volume is:

• Number of vertices on boundary of partition.

Edge cuts = 10.
Communication volume:
 8 (from left partition to right)
 7 (from right partition to left)

Why does graph partitioning Work?

Vast majority of applications are computational meshes.
• Geometric properties ensure that good partitions exist.

• Communication/Computation = n1/2 in 2D, n2/3 in 3D.
• Runtime is dominated by computation.

• Vertices have bounded numbers of neighbors.

• Error in edge cut metric is bounded.
• Homogeneity ensures all processors have similar

subdomains.
• No processor has dramatically more communication.

Other applications aren’t always so forgiving.

There is a good degree of luck involved!

Communication cost

• Cost of single message involves volume and latency.
• Cost of multiple messages involves congestion.
• Cost within application depends only on slowest processor.
• The model doesn’t optimize the right metrics

Graph Partitioning:
Advantages and Disadvantages

• Advantages:
• Highly successful model for mesh-based PDE problems.
• Explicit control of communication volume gives higher

partition quality than geometric methods.
• Excellent software available.

• Serial: Chaco (SNL)
 Jostle (U. Greenwich)
 METIS (U. Minn.)
 Scotch (U. Bordeaux)

• Parallel: Zoltan (SNL)
 ParMETIS (U. Minn.)
 PJostle (U. Greenwich)

 PT-Scotch (U. Bordeaux)

• Disadvantages:
• More expensive than geometric methods.
• Edge-cut model only approximates communication

volume.

Multilevel KLFM

• Until graph is small enough:
 coarsen graph
Partition graph:

• Until graph = original graph:
 uncoarsen graph
 uncoarsen partition
 locally refine partition

Kernighan-Lin / Fiduccia-Mathews

Performance of static partitioners

Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
• Shift work from highly loaded

processors to less loaded neighbors.
• Local communication keeps data

redistribution costs low.
• Multilevel partitioners that account for data redistribution

costs in refining partitions (Schloegel, Karypis)
• Parameter weights application communication vs.

redistribution communication.

10
10 10

10

20
30

30

10

10

20

20
20

20

Partition

coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph

Multilevel Graph Partitioning

• 3 Phases
Coarsen
Partition
Uncoarsen

Multilevel Partitioning - High Level Algorithm

• Coarsen graph

and expand
partition using
maximal
matchings

• Improve partition
using
Kernighan-Lin

(1,2)

(1,2)

(1,2)

(3)

(4)

(4)

(4)

(5)

(5)

(5) “V - cycle:”

If G(N,E), is too big to partition efficiently, we
1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec),

and
2) partition Gc instead and use partition of Gc to get a

rough partitioning of G, and apply same idea
recursively

3) until coarse graph can be partitioned
4)Expand back up to higher graph
5) Improve partition

Graph Coarsening Example

Collapse adjacent vertices depending on “best” criteria

Shading shows collapsed nodes

Maximal Matching
• Definition: A matching of a graph G(N,E) is

a subset Em of E such that no two edges in
Em share an endpoint

• Definition: A maximal matching of a graph
G(N,E) is a matching Em to which no more
edges can be added and remain a
matching

• A simple greedy algorithm computes a
maximal matching:

Maximal Matching

let Em be empty
mark all nodes in N as unmatched
for i = 1 to |N| … visit the nodes in any order
 if i has not been matched
 if there is an edge e=(i,j) where j is also
unmatched,
 add e to Em
 mark i and j as matched
 endif
 endif
endfor

Maximal Matching - Example

Example of Coarsening

Expanding a partition of Gc to a partition of G

Partitioning Phase
Find small edge-cut partition of the coarse

graph into two sub-graphs of similar size

Use: Spectral Bisection, Kernighan-Lin, Fiduccia-Mattheyses etc

Kernighan-Lin Algorithm is iterative in nature
Starts with an initial partition of the graph
Searches for a subset of vertices from each part of the graph
such that a node swop gives a partition with a smaller edge-cut
Each search takes O(E log E)

Fiduccia-Mattheyses Algorithm improves original KL algorithm
Reduces complexity to O(E) by using better data structures

Fiduccia-Mattheyses: Example (1)

a

h g
f e

d c

b
Red nodes are in Part1;
Black nodes are in Part2.

The initial partition into two
parts is arbitrary. In this
case it cuts 8 edges.

The initial node gains are
shown in Red.

0

1 0

2

3 0

1 -1

Nodes tentatively moved (and cut size after each pair):

none (8);

Part 1

Part 2

Gain is difference in connectivity to black an red nodes

Fiduccia-Mattheyses: Example (2)

a

h g
f e

d c

b The node in Part1 with
largest gain is g. Move it to
Part2 and recompute the
gains of its neighbors.

Tentatively moved nodes
are hollow circles. After a
node is tentatively moved
its gain doesn’t matter any
more.

-2

1 0

2

-2

1 -3

Nodes tentatively moved (and cut size after each pair):

none (8); g,

Gain = reduction in edge cut due to swap

Fiduccia-Mattheyses: Example (4)

a

h g
f e

d c

b The unmoved node in
Part1 with largest gain is f.
We tentatively move it to
Part2 and recompute the
gains of its neighbors. -2

-1 -2

-2

 -1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f

Fiduccia-Mattheyses: Example (5)

a

h g
f e

d c

b The unmoved node in
Part2 with largest gain is c.
Move it to Part1 and
recompute the gains of its
neighbors.

After this tentative swap,
the cut size is 5.

0

-3 -2

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5);

 Fiduccia-Mattheyses: Example (3)

a

h g
f e

d c

b The node in Part2 with
largest gain is d. Move it to
Part1 and recompute the
gains of its neighbors.

After this first tentative
swap, the cut size is 4.

-2

-1 -2

0

0

 -1

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4);

 Fiduccia-Mattheyses: Example (6)

a

h g
f e

d c

b The unmoved node in
Part1 with largest gain is b.
Move it to Part2 and
recompute the gains of its
neighbors. 0

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b

Fiduccia-Mattheyses: Example (7)

a

h g
f e

d c

b There is a tie for largest
gain between the two
unmoved nodes in Part2.
We choose one (say e)
and tentatively move it to
Part1. It has no unmoved
neighbors so no gains are
recomputed.

After this tentative swap
the cut size is 7.

-1

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7);

Fiduccia-Mattheyses: Example (8)

a

h g
f e

d c

b The unmoved node in
Part1 with the largest gain
(the only one) is a. We
tentatively move it to Part2.
It has no unmoved
neighbors so no gains are
recomputed.

0

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a

Fiduccia-Mattheyses: Example (9)

a

h g
f e

d c

b The unmoved node in
Part2 with the largest gain
(the only one) is h. We
tentatively move it to Part1.

The cut size after the final
tentative swap is 8, the
same as it was before any
tentative moves.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Fiduccia-Mattheyses: Example (10)

a

h g
f e

d c

b After every node has been
moved, look back at the
sequence and see that the
smallest cut was 4, after
swapping g and d. Make
that swap permanent and
undo all the later tentative
swaps.

This is the end of the first
improvement step.

Nodes tentatively moved (and cut size after each pair):

none (8); g, d (4); f, c (5); b, e (7); a, h (8)

Fiduccia-Mattheyses: Example (11)

a

h g
f e

d c

b Now recompute the gains
and do another
improvement step starting
from the new size-4 cut.

(not shown).

The second improvement
step doesn’t change the
cut size, so the algorithm
ends with a cut of size 4.

keep doing improvement steps while cut size reduced

Uncoarsening Phase
fine coarse

 partition coarse fine

Algorithms such as these are at the heart of modern partitioners

Applications using Graph Partitioning

x b A

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Hypergraph Partitioning
• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat,

Karypis, et al.

• Hypergraph model:
• Vertices = objects to be partitioned.
• Hyperedges = dependencies between two or more

objects.
• Partitioning goal: Assign equal vertex weight while

minimizing hyperedge cut weight.

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02

C
1 2

L2

INDUCTOR

1 2
L1

INDUCTOR

1 2
R1

R

1 2
R2

R

1

2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x b A

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Hypergraph Partitioning: Advantages and Disadvantages

• Advantages:
• Communication volume reduced 30-38% on

average over graph partitioning (Catalyurek &
Aykanat).

• 5-15% reduction for mesh-based applications.
• More accurate communication model than graph

partitioning.
• Better representation of highly connected and/or

non-homogeneous systems.
• Greater applicability than graph model.

• Can represent rectangular systems and non-
symmetric dependencies.

• Disadvantages:
• More expensive than graph partitioning.

Hypergraph Repartitioning

• Augment hypergraph with data redistribution
costs.

• Account for data’s current processor
assignments.

• Weight dependencies by their size and frequency
of use.

• Hypergraph partitioning then attempts to
minimize total communication volume:

 Data redistribution volume
+ Application communication volume
 Total communication volume

Load Balancing via Space Filling Curves

• Improve Load Balance
• Cost Estimation Algorithms can be based

on measurements
• Use load balancing algorithms based on

patches and a new fast space filling curve
algorithm

• Space filling curve deals with a mesh
representation of work.

• A single line is passed through all the
mesh.

• Partitions of this line form the assignment
of work to a processor

In this case the graph
connects the centroids
of all adjacent cells

Load Balancing Weight Estimation

• Algorithmic Cost Models based on discretization
method
• Vary according to simulation+machine
• Requires accurate information from the user

• Time Series Analysis
• Used to forecast time for execution on each patch
• Automatically adjusts according to simulation and

architecture with no user interaction

Need to assign the same workload to each processor.

Simple Exponential Smoothing:
 Er,t: Estimated Time Or,t: Observed Time α: Decay Rate

Er,t+1 = α Or,t + (1 - α) Er,t
 = α (Or,t - Er,t) + Er,t

Error in last prediction

Time Series Analysis

Simple Exponential Smoothing:

Er,t: Estimated Time Or,t: Observed Time α: Decay Rate

Er,t+1 = α Or,t + (1 - α) Er,t

Compute on fixed intervals (regions)
• Allows patches to change

 = α (Or,t - Er,t) + Er,t

Error in last prediction

Comparison between
Forecast Cost Model FCM
& Algorithmic Cost Model
Particles + Fluid code
FULL SIMULATION

SUMMARY

• Many partitioning methods and good
software available

• Scalability is an issue and much work
remains to be done to scale to the next
generation of parallel machines

• An old but valuable critique of graph
partitioning follows

	LOAD BALANCING
	Requirements of Load Balancing Algorithm
	�Dynamic Load Balancing‏
	Programs as Graphs
	Graph Based View of Programs
	Charm ++ Virtualization: Object-based Parallelization
	Uintah Task Graphs
	Example Uintah Task from the ICE Algorithm
	Task Graph for a Real Application
	Geometric Partitioning
	Geometric Repartitioning
	RCB Advantages and Disadvantages
	Applications of Geometric Methods
	Graph Partitioning
	 Graph partitioning is the main approach
	Mistake: using just edge cuts
	Communication volume
	Why does graph partitioning Work?
	Communication cost
	Graph Partitioning:�Advantages and Disadvantages
	Multilevel KLFM
	Performance of static partitioners
	Graph Repartitioning
	Multilevel Graph Partitioning
	Multilevel Partitioning - High Level Algorithm
	Graph Coarsening Example
	Maximal Matching
	Maximal Matching
	Maximal Matching - Example
	Example of Coarsening
	Expanding a partition of Gc to a partition of G
	Partitioning Phase
	Fiduccia-Mattheyses: Example (1)
	Fiduccia-Mattheyses: Example (2)
	Fiduccia-Mattheyses: Example (4)
	Fiduccia-Mattheyses: Example (5)
	 Fiduccia-Mattheyses: Example (3)
	 Fiduccia-Mattheyses: Example (6)
	Fiduccia-Mattheyses: Example (7)
	Fiduccia-Mattheyses: Example (8)
	Fiduccia-Mattheyses: Example (9)
	Fiduccia-Mattheyses: Example (10)
	Fiduccia-Mattheyses: Example (11)
	Uncoarsening Phase
	Applications using Graph Partitioning
	Hypergraph Partitioning
	Hypergraph Applications
	Hypergraph Partitioning: Advantages and Disadvantages
	Hypergraph Repartitioning
	Load Balancing via Space Filling Curves
	Load Balancing Weight Estimation
	Time Series Analysis
	Slide Number 53
	SUMMARY

