
LOAD BALANCING 
• Programs and algorithms as graphs  
• Geometric Partitioning 
• Graph Partitioning  

• Recursive Graph Bisection partitioning  
• Recursive Spectral Bisection  
• Multilevel Graph partitioning  

• Hypergraph Partitioning  
• Space Filling Curves and Assimilation Based 

Load Balancing  
 



Requirements of Load Balancing Algorithm  

• Balanced work loads. 
• Must minimize largest imbalance when attempting to 

provide each processor with an equal share of work. 

• Must have low interprocessor communication costs. 
• Partitions with minimal communication costs are critical. 

• Scalable partitioning time and memory use. 
• Scalability is especially important for frequent dynamic 

partitioning. 

• Low data redistribution costs for dynamic 
partitioning. 



 
Dynamic Load Balancing  

Initialize 
Application 

Partition 
Data 

Redistribute 
Data 

Compute 
Solutions 
& Adapt 

Output 
& End 

Dynamic repartitioning (load balancing) in applications 
• Data partition is computed. 
• Data are distributed according to partition map. 
• Application computes and, perhaps, adapts. 
• Process repeats until the application is done. 

Ideal partition: 
• Processor idle time is minimized. 
• Inter-processor communication costs are kept low. 
• Cost to redistribute data is also kept low. 



Programs as Graphs 

• Individual lines of code may be expressed as 
graphs  
• y = ax +b ; z = cy/e; is  a graph connecting a,b,c,e,x,y 

and z the nodes of the graph are  the variables and 
the edges represent calculations. 

• The connections between functions (or different 
programs) may be represented as a graph. 

• Partitioning a graph is thus on approach to load 
balancing. This is NP-hard (Non-deterministic 
polynomial time hard) and so we have to use 
heuristics to solve approximate problems close 
to the actual problem. (no general solution in 
polynomial time) 
 



Graph Based View of Programs 
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Linear Algebra Applications are now 
written as Directed Acyclic Graphs  

Intel CnC: 
new language for  
graph based parallelism 
 

Plasma (Dongarra): 
DAG based  
Parallel linear algebra software 
 

Some new programming languages 
are based areound the idea of expressing 
the program as a graph 



Charm ++  Virtualization: Object-
based Parallelization 

User View 

System implementation 
User is only concerned with interaction between objects  

•Idea: Divide the computation into a large number of objects  
–Let the system map objects  to processors 

[Kale et al. Illinois] Code is expressed as Directed Acyclic Graph DAG 



Uintah Task Graphs 

Partial Ice 
task graph 

Fluid-flow solver  
 
Particle method 



Example Uintah Task from the ICE Algorithm 

Compute face-centered Velocities: 
 

 
 
 
 
 

Input variables                                           Output variables 
(include boundary conditions) 



Task Graph  for a Real Application  

 



• Recursive Coordinate Bisection:  Developed by 
Berger & Bokhari (1987) for Adaptive Mesh 
Refinement. 

• Idea:   
• Divide work into two  

equal parts using a  
cutting plane  
orthogonal to a  
coordinate axis. 

• Recursively cut the  
resulting  
subdomains. 

1st cut 

2nd 

2nd 

3rd 

3rd 3rd 

3rd 

Geometric Partitioning 



Geometric Repartitioning 

• Implicitly achieves low data redistribution costs. 

• For small changes in data, cuts move only 
slightly, resulting in little data redistribution. 

 
 
 

 



RCB Advantages and Disadvantages 
• Advantages: 

• Conceptually simple; fast and inexpensive. 
• All processors can inexpensively know entire partition 

(e.g., for global search in contact detection). 
• No connectivity info needed (e.g., particle methods). 
• Good on specialized geometries. 

Disadvantages: 
• No explicit control of communication costs. 
• Mediocre partition quality.  
• Can generate disconnected subdomains for complex 

geometries. 
• Need coordinate information. 



Applications of Geometric Methods 

Parallel Volume Rendering 

Crash Simulations 
and Contact Detection 

 

Adaptive Mesh Refinement 
Particle Simulations 



Graph Partitioning 

• Represent problem as a 
weighted graph. 

• Vertices = objects to be 
partitioned. 

• Edges = dependencies 
between two objects. 

• Weights = work load or 
amount of dependency.  

• Partition graph so that … 
• Parts have equal vertex 

weight. 
• Weight of edges cut by part 

boundaries is small. 

• Kernighan, Lin, Schweikert, Fiduccia, Mattheyes, Simon, 
Hendrickson, Leland, Kumar, Karypis, et al.  



 Graph partitioning is the main 
approach 

P0 P1 
Wij 
vj 

G 

N vertices represent computation 
m edges represent data dependencies 
 
Partition into P sets such that: 
• Equal # vertices per set 
• Low induced communication 
(more generally, weighted graphs … 
 

But how to model communication? 

vi 



Mistake: using just edge cuts 

 
• Generally believed that “Edge Cuts = Communication Cost”.  
• This assumption is behind the use of graph partitioning. 
• In reality: 

• Edge cuts are not equal to communication volume. 
• Communication volume is not equal to communication cost. 



Communication volume 

 
• Assume graph edges reflect data dependencies. 
• Correct accounting of communication volume is: 

• Number of vertices on boundary of partition. 

Edge cuts = 10. 
Communication volume: 
    8 (from left partition to right) 
    7 (from right partition to left) 



Why does  graph partitioning Work? 

Vast majority of applications are computational meshes. 
• Geometric properties ensure that good partitions exist. 

• Communication/Computation = n1/2 in 2D,  n2/3 in 3D. 
• Runtime is dominated by computation. 

 
• Vertices have bounded numbers of neighbors. 

• Error in edge cut metric is bounded. 
• Homogeneity ensures all processors have similar 

subdomains. 
• No processor has dramatically more communication. 

Other applications aren’t always so forgiving. 
 

There is a good degree of luck involved! 



Communication cost 

 
• Cost of single message involves volume and latency. 
• Cost of multiple messages involves congestion. 
• Cost within application depends only on slowest processor. 
• The model doesn’t optimize the right metrics 



Graph Partitioning: 
Advantages and Disadvantages 

• Advantages: 
• Highly successful model for mesh-based PDE problems. 
• Explicit control of communication volume gives higher 

partition quality than geometric methods. 
• Excellent software available. 

• Serial:   Chaco (SNL) 
  Jostle (U. Greenwich) 
  METIS (U. Minn.) 
  Scotch (U. Bordeaux)  

• Parallel:   Zoltan (SNL) 
  ParMETIS (U. Minn.) 
  PJostle (U. Greenwich)  

                              PT-Scotch (U. Bordeaux)  

• Disadvantages: 
• More expensive than geometric methods. 
• Edge-cut model only approximates communication 

volume. 



Multilevel KLFM   

• Until graph is small enough: 
 coarsen graph 
Partition graph: 
 

• Until graph = original graph: 
 uncoarsen graph 
 uncoarsen partition 
 locally refine partition 

Kernighan-Lin / Fiduccia-Mathews 



Performance of static partitioners 



Graph Repartitioning 
• Diffusive strategies (Cybenko, Hu,  

Blake, Walshaw, Schloegel, et al.)  
• Shift work from highly loaded  

processors to less loaded neighbors. 
• Local communication keeps data  

redistribution costs low. 
• Multilevel partitioners that account for data redistribution 

costs in refining partitions (Schloegel, Karypis)  
• Parameter weights application communication vs. 

redistribution communication. 
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Multilevel Graph Partitioning 

• 3 Phases 
Coarsen 
Partition 
Uncoarsen 



Multilevel Partitioning - High Level    Algorithm 

 
• Coarsen graph 

and expand 
partition using     
maximal 
matchings 

• Improve partition 
using 
Kernighan-Lin 
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(5) “V - cycle:” 

If G(N,E),  is too big to partition efficiently, we  
1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), 

and  
2) partition Gc instead and use partition of Gc to get a 

rough partitioning of G, and apply same idea 
recursively  

3) until coarse graph can be partitioned 
4)Expand back up to higher graph 
5) Improve partition  



Graph Coarsening Example 

Collapse adjacent vertices depending on “best” criteria 

Shading shows collapsed nodes 



Maximal Matching 
• Definition: A matching of a graph G(N,E) is 

a subset Em of E such that no two edges in 
Em share an endpoint 

• Definition: A maximal matching of a graph 
G(N,E) is a matching Em to which no more 
edges can be added and remain a 
matching 

• A simple greedy algorithm computes a 
maximal matching: 



Maximal Matching 

let Em be empty 
mark all nodes in N as unmatched 
for i = 1 to |N|      … visit the nodes in any order 
     if i has not been matched 
            if there is an edge e=(i,j)  where j is also 
unmatched,  
                  add e to Em 
                  mark i and j as matched 
             endif 
     endif 
endfor 



Maximal Matching - Example 



Example of Coarsening 



Expanding a partition of Gc to a partition of G 



Partitioning Phase 
Find  small edge-cut partition of the coarse 

graph into two sub-graphs of similar size 

Use: Spectral Bisection, Kernighan-Lin, Fiduccia-Mattheyses  etc 
 

Kernighan-Lin Algorithm  is iterative in nature 
Starts with an initial partition of the graph 
Searches for a subset of vertices from each part of the graph 
such that a node swop gives a partition with a smaller edge-cut 
Each search takes O(E log E) 
 
Fiduccia-Mattheyses Algorithm improves  original KL algorithm 
Reduces complexity to O(E) by using better data structures 
 



Fiduccia-Mattheyses:  Example (1) 

a 

h g 
f e 

d c 

b 
Red nodes are in Part1; 
Black nodes are in Part2. 

The initial partition into two 
parts is arbitrary.  In this 
case it cuts 8 edges. 

The initial node gains are 
shown in Red. 

0 

1 0 

2 

3 0 

1 -1 

Nodes tentatively moved (and cut size after each pair): 

none (8);   

Part 1 

Part 2 

Gain is difference in connectivity to black an red nodes 



Fiduccia-Mattheyses:  Example (2) 

a 

h g 
f e 

d c 

b The node in Part1 with 
largest gain is g. Move it to 
Part2 and recompute the 
gains of its neighbors. 

Tentatively moved nodes 
are hollow circles.  After a 
node is tentatively moved 
its gain doesn’t matter any 
more. 

-2 

1 0 

2 

-2 

1 -3 

Nodes tentatively moved (and cut size after each pair): 

none (8); g,  

Gain = reduction in edge cut due to swap 



Fiduccia-Mattheyses:  Example (4) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with largest gain is f.  
We tentatively move it to 
Part2 and recompute the 
gains of its neighbors. -2 

-1 -2 

-2 

  -1 

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f 



Fiduccia-Mattheyses:  Example (5) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part2 with largest gain is c.  
Move it to Part1 and 
recompute the gains of its 
neighbors. 

After this tentative swap, 
the cut size is 5. 

0 

-3 -2 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5);  



 Fiduccia-Mattheyses:  Example (3) 

a 

h g 
f e 

d c 

b The node in Part2 with 
largest gain is d.  Move it to 
Part1 and recompute the 
gains of its neighbors. 

After this first tentative 
swap, the cut size is 4. 

-2 

-1 -2 

0 

0 

  -1 

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4);  



 Fiduccia-Mattheyses:  Example (6) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with largest gain is b.  
Move it to Part2 and 
recompute the gains of its 
neighbors. 0 

-1 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b 



Fiduccia-Mattheyses:  Example (7) 

a 

h g 
f e 

d c 

b There is a tie for largest 
gain between the two 
unmoved nodes in Part2.  
We choose one (say e) 
and tentatively move it to 
Part1.  It has no unmoved 
neighbors so no gains are 
recomputed. 

After this tentative swap 
the cut size is 7. 

-1 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); 



Fiduccia-Mattheyses:  Example (8) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part1 with the largest gain 
(the only one) is a.  We 
tentatively move it to Part2.  
It has no unmoved 
neighbors so no gains are 
recomputed. 

0 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a 



Fiduccia-Mattheyses:  Example (9) 

a 

h g 
f e 

d c 

b The unmoved node in 
Part2 with the largest gain 
(the only one) is h.  We 
tentatively move it to Part1. 

The cut size after the final 
tentative swap is 8, the 
same as it was before any 
tentative moves. 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a, h (8) 



Fiduccia-Mattheyses:  Example (10) 

a 

h g 
f e 

d c 

b After every node has been 
moved,  look back at the 
sequence and see that the 
smallest cut was 4, after 
swapping g and d.  Make 
that swap permanent and 
undo all the later tentative 
swaps. 

This is the end of the first 
improvement step. 

  

Nodes tentatively moved (and cut size after each pair): 

none (8); g, d (4); f, c (5); b, e (7); a, h (8) 



Fiduccia-Mattheyses:  Example (11) 

a 

h g 
f e 

d c 

b Now recompute the gains 
and do another 
improvement step starting 
from the new size-4 cut.   

( not shown). 

The second improvement 
step doesn’t change the 
cut size, so the algorithm 
ends with a cut of size 4. 

  

keep doing improvement steps while cut size reduced  
 



Uncoarsening Phase 
fine coarse 

   partition   coarse fine 
 

Algorithms such as these are at the heart of modern partitioners 



Applications using Graph Partitioning 

x b A 

= 

Linear solvers & preconditioners 
(square, structurally symmetric systems)  

Finite Element  
Analysis 

Multiphysics  and 
multiphase simulations 



Hypergraph Partitioning 
• Alpert, Kahng, Hauck, Borriello, Çatalyürek, Aykanat, 

Karypis, et al. 

• Hypergraph model: 
• Vertices = objects to be partitioned. 
• Hyperedges = dependencies between two or more 

objects. 
• Partitioning goal: Assign equal vertex weight while 

minimizing hyperedge cut weight. 

A 

Graph Partitioning Model 

A 

Hypergraph Partitioning Model 



Hypergraph Applications 

Circuit Simulations 
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Linear programming 
 for sensor placement 

x b A 

= 

Linear solvers & preconditioners 
(no restrictions on matrix structure)  

Finite Element  
Analysis 

Multiphysics  and 
multiphase simulations 

Data Mining 



Hypergraph Partitioning: Advantages and Disadvantages 

• Advantages: 
• Communication volume reduced 30-38% on 

average over graph partitioning (Catalyurek & 
Aykanat). 

• 5-15% reduction for mesh-based applications. 
• More accurate communication model than graph 

partitioning. 
• Better representation of highly connected and/or  

non-homogeneous systems. 
• Greater applicability than graph model. 

• Can represent rectangular systems and non-
symmetric dependencies. 

• Disadvantages: 
• More expensive than graph partitioning. 



Hypergraph Repartitioning 

• Augment hypergraph with data redistribution 
costs. 

• Account for data’s current processor 
assignments. 

• Weight dependencies by their size and frequency 
of use. 

• Hypergraph partitioning then attempts to 
minimize total communication volume: 

      Data redistribution volume 
+ Application communication volume                 
   Total communication volume 

 

     
    

 



Load Balancing via Space Filling Curves 
 

• Improve Load Balance 
• Cost Estimation Algorithms can be based 

on measurements  
• Use load balancing algorithms based on 

patches and a new fast space filling curve 
algorithm 

• Space filling curve deals with a mesh 
representation of work. 

• A single line is passed through all the 
mesh. 

• Partitions of this line form the assignment 
of work to a processor 
 

In this case the graph  
connects the centroids 
of all adjacent cells 



Load Balancing Weight Estimation 

• Algorithmic Cost Models based on discretization 
method 
• Vary according to simulation+machine 
• Requires accurate information from the user  

• Time Series Analysis 
• Used to forecast time for execution on each patch 
• Automatically adjusts according to simulation and 

architecture with no user interaction 

Need to assign the same workload to each processor. 

Simple Exponential Smoothing:  
 Er,t: Estimated Time     Or,t: Observed Time    α: Decay Rate 

 
 

Er,t+1     =     α   Or,t        +       (1 - α)  Er,t  
 =     α   (Or,t -  Er,t)         +     Er,t 

 

Error in last prediction 
 



Time Series Analysis 

Simple Exponential Smoothing:  

Er,t: Estimated Time Or,t: Observed Time  α: Decay Rate 

Er,t+1     =     α   Or,t        +       (1 - α)  Er,t  

Compute on fixed intervals (regions) 
• Allows patches to change 

 

         =     α   (Or,t -  Er,t)         +     Er,t 

Error in last prediction 



Comparison between 
Forecast Cost Model  FCM 
& Algorithmic Cost Model 
Particles + Fluid code 
FULL SIMULATION 
 
 
 



SUMMARY 

• Many partitioning methods and good 
software available 

• Scalability is an issue and much work 
remains to be done to scale to the next 
generation of parallel machines 

• An old but valuable critique of graph 
partitioning follows 
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