
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

1

Algorithms and Applications

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

2

Areas done in textbook:

 • Sorting Algorithms

 • Numerical Algorithms

 • Image Processing

 • Searching and Optimization

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

3

Sorting Algorithms

- rearranging a list of numbers into increasing (strictly
nondecreasing) order.

- Note that while it is interesting to devise algorithms that
only have a small number of elements per core we have
already seen with bucket sort that we need thousands of
elements per core.

Chapter 10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

4

Potential Speedup

O(nlogn) optimal for any sequential sorting algorithm without
using special properties of the numbers.

Best we can expect based upon a sequential sorting
algorithm using n processors is

Has been obtained but the constant hidden in the order
notation extremely large.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

5

Compare-and-Exchange Sorting Algorithms
Compare and Exchange

Form the basis of several, if not most, classical sequential
sorting algorithms.

Two numbers, say A and B, are compared. If A > B, A and B
are exchanged, i.e.:

 if (A > B) {
 temp = A;
 A = B;
 B = temp;
 }

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

6

Message-Passing Compare and Exchange

Version 1

P1 sends A to P2, which compares A and B and sends back B
to P1 if A is larger than B (otherwise it sends back A to P1):

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

7

Alternative Message Passing Method

Version 2

For P1 to send A to P2 and P2 to send B to P1. Then both
processes perform compare operations. P1 keeps the larger
of A and B and P2 keeps the smaller of A and B:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

8

Note on Precision of Duplicated
Computations

Previous code assumes that the if condition, A > B, will
return the same Boolean answer in both processors.

Different processors operating at different precision could
conceivably produce different answers if real numbers are
being compared.

This situation applies to anywhere computations are
duplicated in different processors to reduce message
passing, or to make the code SPMD.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

9

Data Partitioning
(Version 1)

p processors and n numbers. n/p numbers assigned to each
processor:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

10

Merging Two Sublists — Version 2

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

11

Bubble Sort

First, largest number moved to the end of list by a series of
compares and exchanges, starting at the opposite end.

Actions repeated with subsequent numbers, stopping just
before the previously positioned number.

In this way, the larger numbers move (“bubble”) toward one
end,

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

12

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

13

Time Complexity

Number of compare and exchange operations

Indicates a time complexity of O(n2) given that a single
compare-and- exchange operation has a constant
complexity, O(1).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

14

Parallel Bubble Sort

Iteration could start before previous iteration finished if does
not overtake previous bubbling action:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

15

Odd-Even (Transposition) Sort

Variation of bubble sort.

Operates in two alternating phases, even phase and odd
phase.

Even phase
Even-numbered processes exchange numbers with their
right neighbor.

Odd phase
Odd-numbered processes exchange numbers with their
right neighbor.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

16

Odd-Even Transposition Sort
Sorting eight numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

17

Mergesort

A classical sequential sorting algorithm using
divide-and-conquer approach. Unsorted list first
divided into half. Each half is again divided into
two. Continued until individual numbers are
obtained.

Then pairs of numbers combined (merged) into
sorted list of two numbers. Pairs of these lists of
four numbers are merged into sorted lists of eight
numbers. This is continued until the one fully sorted
list is obtained.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

18

Parallelizing Mergesort

Using tree allocation of processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

19

Analysis

Sequential

Sequential time complexity is O(nlogn).

Parallel

2 log n steps in the parallel version but each step may
need to perform more than one basic operation, depending
upon the number of numbers being processed - see text.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

20

Quicksort

Very popular sequential sorting algorithm that performs
well with average sequential time complexity of O(nlogn).

First list divided into two sublists. All numbers in one sublist
arranged to be smaller than all numbers in other sublist.

Achieved by first selecting one number, called a pivot,
against which every other number is compared. If the
number is less than the pivot, it is placed in one sublist.
Otherwise, it is placed in the other sublist.

Pivot could be any number in the list, but often first number
in list chosen. Pivot itself could be placed in one sublist, or
the pivot could be separated and placed in its final
position.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

21

Parallelizing Quicksort

Using tree allocation of processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

22

With the pivot being withheld in processes:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

23

Analysis

Fundamental problem with all tree constructions – initial
division done by a single processor, which will seriously limit
speed.

Tree in quicksort will not, in general, be perfectly balanced
Pivot selection very important to make quicksort operate
fast.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

24

Work Pool Implementation of Quicksort

First, work pool holds initial unsorted list. Given to first
processor which divides list into two parts. One part returned
to work pool to be given to another processor, while the other
part operated upon again.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

25

Neither Mergesort nor Quicksort parallelize very well as the
processor efficiency is low (see book for analysis).

Quicksort also can be very unbalanced. Can use load
balancing techniques.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

26

Batcher’s Parallel Sorting
Algorithms

 • Odd-even Mergesort

 • Bitonic Mergesort

Originally derived in terms of switching networks.

Both are well balanced and have parallel time complexity of
O(log2n) with n processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

27

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

28

Odd-Even Merging of Two Sorted Lists

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

29

Odd-Even Mergesort

Apply odd-even merging recursively
The initial sort lists can be of length 1,2,4,8,16 , …, n/2
log(n) steps

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

30

Bitonic Mergesort
Bitonic Sequence

A monotonic increasing sequence is a sequence of
increasing numbers.

A bitonic sequence has two sequences, one increasing
and one decreasing. e.g.

 a0 < a1 < a2, a3, …, ai-1 < ai > ai+1, …, an-2 > an-1

for some value of i (0 <= i < n).

A sequence is also bitonic if the preceding can be
achieved by shifting the numbers cyclically (left or right).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

31

Bitonic Sequences

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

32

“Special” Characteristic of Bitonic
Sequences

If we perform a compare-and-exchange operation on ai
with ai+n/2 for all i, where there are n numbers in the
sequence, get TWO bitonic sequences, where the
numbers in one sequence are all less than the numbers
in the other sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

33

Creating two bitonic sequences from one
bitonic sequence

Starting with the bitonic sequence

 3, 5, 8, 9, 7, 4, 2, 1
we get:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

34

Sorting a bitonic sequence

Compare-and-exchange moves smaller numbers of each
pair to left and larger numbers of pair to right. Given a bitonic
sequence, recursively performing operations will sort the list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

35

Sorting

To sort an unordered sequence, sequences are
merged into larger bitonic sequences, starting with
pairs of adjacent numbers.

By a compare-and-exchange operation, pairs of
adjacent numbers formed into increasing sequences
and decreasing sequences. Pairs form a bitonic
sequence of twice size of each original sequences.

By repeating this process, bitonic sequences of larger
and larger lengths obtained.

In the final step, a single bitonic sequence sorted into a
single increasing sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

36

Bitonic Mergesort

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

37

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

38

Phases

The six steps (for eight numbers) are divided into three
phases:

Phase 1 (Step 1) Convert pairs of numbers into increasing/
 decreasing sequences and into 4-bit
 bitonic sequences.

Phase 2 (Steps 2/3) Split each 4-bit bitonic sequence into two
 2-bit bitonic sequences, higher
 sequences at center.
 Sort each 4-bit bitonic sequence
increasing/ decreasing sequences and merge into 8-
bit bitonic sequence.

Phase 3 (Steps 4/5/6)Sort 8-bit bitonic sequence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

39

Number of Steps

In general, with n = 2k, there are k phases, each of 1, 2, 3,
…, k steps. Hence the total number of steps is given by

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

40

Sorting Conclusions so far

Computational time complexity using n processors

• Odd-even transposition sort - O(n)

• Parallel mergesort - O(n) but unbalanced processor load
and Communication

• Parallel quicksort - O(n) but unbalanced processor load,
and communication can generate to O(n2)

• Odd-even Mergesort and Bitonic Mergesort O(log2n)

Bitonic mergesort has been a popular choice for a parallel
sorting.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

41

Sorting on Specific Networks

Algorithms can take advantage of the underlying
interconnection network of the parallel computer.

Two network structures have received specific attention:
the mesh and hypercube because parallel computers
have been built with these networks.

Of less interest nowadays because underlying
architecture often hidden from user - We will describe a
couple of representative algorithms.

MPI features for mapping algorithms onto meshes, and
one can always use a mesh or hypercube algorithm even
if the underlying architecture is not the same.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

42

Mesh - Two-Dimensional Sorting

The layout of a sorted sequence on a mesh could be row by
row or snakelike. Snakelike:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

43

Shearsort

Alternate row and column sorting until list fully sorted. Row sorting
alternative directions to get snake-like sorting:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

44

Shearsort

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

45

Using Transposition

Causes the elements in each column to be in positions in a row.
Can be placed between the row operations and column operations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

46

Hypercube

Quicksort

Hypercube network has structural characteristics that offer
scope for implementing efficient divide-and-conquer sorting
algorithms, such as quicksort.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

47

Complete List Placed in One
Processor

Suppose a list of n numbers placed on one node of a d-
dimensional hypercube.

List can be divided into two parts according to the quicksort
algorithm by using a pivot determined by the processor, with
one part sent to the adjacent node in the highest dimension.

Then the two nodes can repeat the process.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

48

Example

3-dimensional hypercube with the numbers originally in node 000:

Finally, the parts sorted using a sequential algorithm, all in
parallel. If required, sorted parts can be returned to one processor
in a sequence that allows processor to concatenate sorted lists to
create final sorted list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

49

Hypercube quicksort algorithm
- numbers originally in node 000

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

50

There are other hypercube quicksort algorithms - see
textbook.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

51

Other Sorting Algorithms

We began by giving the lower bound for the time
complexity of a sequential sorting algorithm based upon
comparisons as O(nlogn).

Consequently, the time complexity of a parallel sorting
algorithm based upon comparisons is O((logn)/p) with p
processors or O(logn) with n processors.

There are sorting algorithms that can achieve better than
O(nlogn) sequential time complexity and are very attractive
candidates for parallelization but they often assume
special properties of the numbers being sorted.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

52

Rank Sort as basis of a parallel sorting algorithm

Does not achieve a sequential time of O(nlogn),
but can be parallelized easily, and leads us onto
linear sequential time algorithms which can be
parallelized to achieve O(logn) parallel time and
are attractive algorithms for clusters.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

53

Rank Sort

Number of numbers that are smaller than each selected
number counted. This count provides the position of
selected number in sorted list; that is, its “rank.”

• First a[0] is read and compared with each of the other

numbers, a[1] … a[n-1], recording the number of
numbers less than a[0].

• Suppose this number is x. This is the index of the
location in the final sorted list.

• The number a[0] is copied into the final sorted list b[0]
… b[n-1], at location b[x]. Actions repeated with the
other numbers.

Overall sequential sorting time complexity of O(n2) (not

exactly a good sequential sorting algorithm!).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

54

Sequential Code

for (i = 0; i < n; i++) { /* for each number */
 x = 0;
 for (j = 0; j < n; j++) /* count number less
than it */
 if (a[i] > a[j]) x++;
 b[x] = a[i]; /* copy number into correct
place */
}

This code will fail if duplicates exist in the sequence of
numbers. Easy to fix. (How?)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

55

Parallel Code
Using n Processors

One processor allocated to each number. Finds final index in
O(n) steps. With all processors operating in parallel, parallel
time complexity O(n).

In forall notation, the code would look like

 forall (i = 0; i < n; i++) { /* for each no in parallel*/
 x = 0;
 for (j = 0; j < n; j++) /* count number less than it */
 if (a[i] > a[j]) x++;
 b[x] = a[i]; /* copy no into correct place */
 }

Parallel time complexity, O(n), as good as any sorting algorithm
so far. Can do even better if we have more processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

56

Using n2 Processors

Comparing one number with the other numbers in list using
multiple processors:

n - 1 processors used to find rank of one number. With n
numbers, (n - 1)n processors or (almost) n2 processors
needed. Incrementing counter done sequentially and requires
maximum of n steps. Total number of steps = 1 + n.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

57

Reduction in Number of Steps

Tree to reduce number of steps involved in incrementing
counter:

O(logn) algorithm with n2 processors.
Processor efficiency relatively low.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

58

Parallel Rank Sort Conclusions

Easy to do as each number can be considered in isolation.

Rank sort can sort in:

 O(n) with n processors
or
 O(logn) using n2 processors.

In practical applications, using n2 processors prohibitive.

Theoretically possible to reduce time complexity to O(1) by
considering all increment operations as happening in parallel
since they are independent of each other.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

59

Message Passing Parallel Rank Sort
Master-Slave Approach

Requires shared access to list of numbers. Master process
responds to request for numbers from slaves. Algorithm
better for shared memory

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

60

Counting Sort

If the numbers to be sorted are integers, there is a way of
coding the rank sort algorithm to reduce the sequential time
complexity from O(n2) to O(n), called as Counting Sort.

As in the rank sort code suppose the unsorted numbers
stored in an array a[] and final sorted sequence is stored in
array b[]. Algorithm uses an additional array, say c[], having
one element for each possible value of the numbers.
Suppose the range of integers is from 1 to m. The array has
element c[1] through c[m] inclusive. Now, let us working
through the algorithm in stages.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

61

Stable Sort Algorithms

Algorithms that will place identical numbers in the same
order as in the original sequence.

Counting sort is naturally a stable sorting algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

62

First, c[] will be used to hold the histogram of the
sequence, that is, the number of each number. This can
be computed in O(m) time with code such as:

 for (i = 1; i <= m; i++)
 c[i] = 0;
 for (i = 1; i <= m; i++)
 c[a[i]]++;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

63

Next stage: The number of numbers less than each number
found by performing a prefix sum operation on array c[].

In the prefix sum calculation, given a list of numbers, x0, …,
xn-1, all the partial summations (i.e., x0; x0 + x1; x0 + x1 + x2; x0
+ x1 + x2 + x3; …) are computed.

Here, the prefix sum is computed using the histogram
originally held in c[] in O(m) time as described below:

for (i = 2; i <= m; i++)
 c[i] = c[i] + c[i-1];

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

64

Final stage: The numbers are placed in the sorted order in
O(n) time as described below:

 for (i = n; i >= 1; i--) {
 b[c[a[i]]] = a[i]
 c[a[i]]--; /* ensures stable sorting */
 }

Complete code has O(n + m) sequential time complexity. If m
is linearly related to n as it is in some applications, the code
has O(n) sequential time complexity.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

65

Counting sort

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

66

Parallelizing counting sort can use the parallel
version of the prefix sum calculation which requires
O(logn) time with n - 1 processors.

The final sorting stage can be achieved in O(n/p)
time with p processors or O(1) with n processors by
simply having the body of the loop done by
different processors.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

67

Radix Sort

Assumes numbers to sort are represented in a positional
digit representation such as binary and decimal numbers.
The digits represent values and position of each digit
indicates their relative weighting.

Radix sort starts at the least significant digit and sorts the
numbers according to their least significant digits. The
sequence is then sorted according to the next least
significant digit and so on until the most significant digit,
after which the sequence is sorted. For this to work, it is
necessary that the order of numbers with the same digit is
maintained, that is, one must use a stable sorting algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

68

Radix sort using decimal digits

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

69

Radix sort using binary digits

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

70

Radix sort can be parallelized by using a
parallel sorting algorithm in each phase of
sorting on bits or groups of bits.

Already mentioned parallelized counting sort
using prefix sum calculation, which leads to
O(logn) time with n - 1 processors and constant
b and r.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

71

Example of parallelizing radix sort
sorting on binary digits

Can use prefix-sum calculation for positioning each number at
each stage. When prefix sum calculation applied to a column
of bits, it gives number of 1’s up to each digit position because
all digits can only be 0 or 1 and prefix calculation will simply
add number of 1’s.
A second prefix calculation can also give the number of 0’s up
to each digit position by performing the prefix calculation on
the digits inverted (diminished prefix sum).
When digit considered being a 0, diminished prefix sum
calculation provides new position for number.
When digit considered being a 1, result of normal prefix sum
calculation plus largest diminished prefix calculation gives
final position for number.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

72

Sample Sort

Sample sort is an old idea (pre1970) as are many basic
sorting ideas. Has been discussed in the context of
quicksort and bucket sort.

In context of quicksort, sample sort takes a sample of s
numbers from the sequence of n numbers. The median
of this sample is used as the first pivot to divide the
sequence into two parts as required as the first step by
the quicksort algorithm rather than the usual first number
in the list.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

73

In context of bucket sort, objective of sample sort is
to divide the
ranges so that each bucket will have approximately
the same number of numbers.

Does this by using a sampling scheme which picks
out numbers from the sequence of n numbers as
splitters which define the range of numbers for each
bucket. If there are m buckets, m - 1 splitters are
needed.

Can be found by the following method. The numbers
to be sorted are first divided into n/m groups. Each
group is sorted and a sample of s equally spaced
numbers are chosen from each group. This creates
ms samples in total which are then sorted and m - 1
equally spaced numbers selected as splitters.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

74

Selecting splitters
- Sample sort version of bucket sort

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

75

Sorting Algorithms on Clusters

Factors for efficient implementation on clusters:

Using collective operations such broadcast, gather,
scatter, and reduce provided in message-passing
software such as MPI rather than non-uniform
communication patterns that require point-to-point
communication, because collective operations expected
to be implemented efficiently.

Distributed memory of a cluster does not favor algorithms
requiring access to widely separately numbers.
Algorithms that require only local operations are better,
although all sorting algorithms finally have to move
numbers in the worst case from one end of sequence to
other somehow.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

76

Cache memory -- better to have an algorithm that operate
upon a block of numbers that can be placed in the cache.
Will need to know the size and organization of the cache,
and this has to become part of thealgorithm as
parameters.

Clusters of SMP processors (SMP clusters) -- algorithms
need to take into account that the groups of processors in
each SMP system may operate in the shared memory
mode where the shared memory is only within each SMP
system, whereas each system may communicate with
other SMP systems in the cluster in a message-passing
mode. Again to take this into account requires parameters
such as number of processors within each SMP system
and size of the memory in each SMP system.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76

