
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.1

Message-Passing Computing

Chapter 2

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.2

Message-Passing Programming using
User-level Message-Passing Libraries

Two primary mechanisms needed:

1. A method of creating separate processes for

execution on different computers

2. A method of sending and receiving messages

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.3

Multiple program, multiple data (MPMD)
model

Source
fi le

Executable

Processor 0 Processor p - 1

Compile to suit
processor

Source
fi le

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.4

Single Program Multiple Data (SPMD) model
.

Source
fi le

Ex ecutab les

Processor 0 Processor p - 1

Compile to suit
processor

Basic MPI w a y

Different processes merged into one program. Control
statements select different parts for each processor to
execute. All executables started together - static process
creation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.5

Using SPMD Computational Model
 main (int argc, char *argv[])
 { MPI_Init(&argc, &argv);
 .
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /*find
process rank */

 if (myrank == 0)
 master();
 else
 slave();
 .
 MPI_Finalize(); }

where master() and slave() are to be executed by master
process and slave process, respectively.

 MPI Dot product code
 int main(argc,argv)
 int argc; char *argv[];
 {double sum, sum_local; double a[256], b[256];
 int n; numprocs, myid, my_first, my_last;
 n = 256;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 my_first = myid*n/numprocs;
 my_last = (myid+1) * n/numprocs;

 for (i =0; i < n; i++) {
 a[i] = i*0.5; b[i] = i*2.0; }
 sum = 0.0;
 for (i = my_first; i< my_last; i++) {
 sum_local =sum_local + a[i]*b[i]; }
 MPI_Allreduce(&sum_local,&sum, 1,MPI_DOUBLE, MPI_SUM,
 MPI_COMM_WORLD);
 if(myid == 0)printf (" sum= %f",sum);
 }

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.7

Multiple Program Multiple Data (MPMD) Model

Process 1

Process 2 spawn();

Time

Star t e x ecution
of process 2

Separate programs for each processor. One processor
executes master process. Other processes started from within
master process - dynamic process creation.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.8

Basic “point-to-point”
Send and Receive Routines

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Mo v ement
of data

Generic syntax (actual formats later)

Passing a message between processes using
send() and recv() library calls:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.9

Synchronous Message Passing

 Routines that actually return when message transfer
completed.

Synchronous send routine
• Waits until complete message can be accepted by the

receiving process before sending the message.
Synchronous receive routine

• Waits until the message it is expecting arrives.

 Synchronous routines intrinsically perform two actions:

They transfer data and they synchronize processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.10

Synchronous send() and recv() using 3-way
protocol

Process 1 Process 2

send();

recv();
Suspend

Time

process Ac kno wledgment

Message Both processes
contin ue

(a) When send() occurs bef ore recv()

Process 1 Process 2

recv();

send();
Suspend

Time

process

Ac kno wledgment

Message Both processes
contin ue

(b) When recv() occurs bef ore send()

Request to send

Request to send

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.11

Asynchronous Message Passing

• Routines that do not wait for actions to complete before
returning. Usually require local storage for messages.

• More than one version depending upon the actual
semantics for returning.

• In general, they do not synchronize processes but allow
processes to move forward sooner. Must be used with
care.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.12

MPI Definitions of Blocking and Non-
Blocking

• Blocking - return after their local actions complete,
though the message transfer may not have been
completed.

• Non-blocking - return immediately.

 Assumes that data storage used for transfer not modified
by subsequent statements prior to being used for
transfer, and it is left to the programmer to ensure this.

 These terms may have different interpretations in other
systems.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.13

How message-passing routines return
before message transfer completed

Process 1 Process 2

send();

recv();

Message b uff er

Read
message b uff er

Contin ue
process

Time

Message buffer needed between source and
destination to hold message:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.14

Asynchronous (blocking) routines
changing to synchronous routines

• Once local actions completed and message is safely
on its way, sending process can continue with
subsequent work.

• Buffers only of finite length and a point could be
reached when send routine held up because all
available buffer space exhausted.

• Then, send routine will wait until storage becomes re-
available - i.e then routine behaves as a synchronous
routine.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.15

Message Tag

• Used to differentiate between different types
of messages being sent.

• Message tag is carried within message.

• If special type matching is not required, a wild
card message tag is used, so that the recv()
will match with any send().

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.16

Message Tag Example

Process 1 Process 2

send(&x,2, 5);

recv(&y,1, 5);

x y

Mo v ement
of data

W aits f or a message from process 1 with a tag of 5

To send a message, x, with message tag 5 from
a source process, 1, to a destination process, 2,
and assign to y:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.17

“Group” message passing routines

Have routines that send message(s) to a group
of processes or receive message(s) from a
group of processes

Higher efficiency than separate point-to-point
routines although not absolutely necessary.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.18

Broadcast
Sending same message to all processes concerned with
problem.
Multicast - sending same message to defined group of
processes.

bcast();

buf

bcast();

data

bcast();

data data

Process 0 Process p - 1 Process 1

Action

Code

MPI f or m

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.19

Scatter

scatter();

buf

scatter();

data

scatter();

data data

Process 0 Process p - 1 Process 1

Action

Code

MPI f or m

Sending each element of an array in root process
to a separate process. Contents of ith location of
array sent to ith process.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.20

Gather

gather();

buf

gather();

data

gather();

data data

Process 0 Process p - 1 Process 1

Action

Code

MPI f or m

Having one process collect individual values
from set of processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.21

Reduce

reduce();

buf

reduce();

data

reduce();

data data

Process 0 Process p - 1 Process 1

+

Action

Code

MPI f or m

Gather operation combined with specified
arithmetic/logical operation.

Example: Values could be gathered and then
added together by root:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.22

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.23

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.24

MPI (Message Passing Interface)

• Message passing library standard developed by group
of academics and industrial partners to foster more
widespread use and portability.

• Defines routines, not implementation.
• Several free implementations exist.
• Examples of Different Implementations

– MPICH - developed by Argonne Nationa Labs (freeware)
MPI/LAM - developed by Indiana, OSC, Notre Dame
(freeware)
MPI/Pro - commerical product

– Apple's X Grid
OpenMPI - MPI-2 compliant, thread safe

• We use OpenMPI and MPICH have used MPI/LAM

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.25

MPI
Process Creation and Execution

• Purposely not defined - Will depend upon implementation.

• Only static process creation supported in MPI version 1. All
processes must be defined prior to execution and started
together. Dynamic Process creation in MPI-2

• Originally SPMD model of computation.
• MPMD also possible with static creation - each program to

be started together specified. But
SPMD with if (myrank) is equivalent to MPMD

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.26

Communicators

• Defines scope of a communication operation.

• Processes have ranks associated with communicator.

• Initially, all processes enrolled in a “universe” called
MPI_COMM_WORLD, and each process is given a
unique rank, a number from 0 to p - 1, with p
processes.

• Other communicators can be established for groups of
processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.27

Using SPMD Computational Model

main (int argc, char *argv[])
{
 MPI_Init(&argc, &argv);
 .
 .
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /*find process rank */

 if (myrank == 0)
 master();
 else
 slave();
 .
 MPI_Finalize();
}

where master() and slave() are to be executed by master
process and slave process, respectively.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.28

Unsafe message passing - Example

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…); (a) Intended beha vior

(b) P ossib le beha vior
lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

Destination

Source

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.29

MPI Solution “Communicators”

• Defines a communication domain - a set of processes that are allowed
to communicate between themselves.

• Communication domains of libraries can be separated from that of a
user program.

• Used in all point-to-point and collective MPI message-passing
communications.

• Many possibilities see e.g.
http://static.msi.umn.edu/tutorial/scicomp/general/MPI/communicator.html

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.30

Default Communicator
MPI_COMM_WORLD

• Exists as first communicator for all processes
existing in the application.

• A set of MPI routines exists for forming
communicators.

• Processes have a “rank” in a communicator.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.31

MPI Point-to-Point Communication

• Uses send and receive routines with
message tags (and communicator).

• Wild card message tags available

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.32

MPI Blocking Routines

• Return when “locally complete” - when location
used to hold message can be used again or
altered without affecting message being sent.

• Blocking send will send message and return -
does not mean that message has been
received, just that process free to move on
without adversely affecting message.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.33

Parameters of blocking send

MPI_Send(buf, count, datatype, dest, tag, comm)

Address of

Number of items

Datatype of

Rank of destination

Message tag

Comm unicator
send b uff er

to send

each item

process

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.34

Parameters of blocking receive

MPI_Recv(buf, count, datatype, src, tag, comm, status)
Address of

Maxim um n umber

Datatype of

Rank of source

Message tag

Comm unicator

receiv e b uff er

of items to receiv e

each item

process

Status
after oper ation

In C, status is a structure that contains three fields named MPI_SOURCE,
MPI_TAG, and MPI_ERROR; the structure may contain additional fields.
Thus, status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR
contain the source, tag, and error code, respectively, of the received
message.

See http://www.mpi-forum.org/docs/mpi-2.1/mpi21-report-bw/node45.htm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.35

Example

To send an integer x from process 0 to process 1,

MPI_Comm_rank(MPI_COMM_WORLD,&myrank); /* find rank */

if (myrank == 0) {
 int x;
 MPI_Send(&x, 1, MPI_INT, 1, msgtag, MPI_COMM_WORLD);
} else if (myrank == 1) {
 int x;
 MPI_Recv(&x, 1, MPI_INT,0,msgtag,MPI_COMM_WORLD,status);
}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.36

MPI Nonblocking Routines

• Nonblocking send - MPI_Isend() - will return
“immediately” even before source location is
safe to be altered.

• Nonblocking receive - MPI_Irecv() - will return
even if no message to accept.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.37

Nonblocking Routine Formats

MPI_Isend(buf,count,datatype,dest,tag,comm,request)

MPI_Irecv(buf,count,datatype,source,tag,comm, request)

Completion detected by MPI_Wait() and MPI_Test().

MPI_Wait() waits until operation completed and returns then.
MPI_Test() returns with flag set indicating whether operation completed

at that time.

Need to know whether particular operation completed.
Determined by accessing request parameter.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.38

Example

To send an integer x from process 0 to process 1
and allow process 0 to continue,

MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {
 int x;
 MPI_Isend(&x,1,MPI_INT, 1, msgtag, MPI_COMM_WORLD, req1);
 compute();
 MPI_Wait(req1, status);
} else if (myrank == 1) {
 int x;
 MPI_Recv(&x,1,MPI_INT,0,msgtag, MPI_COMM_WORLD, status);
}

#include <stdio.h> /* functions sprintf, printf and BUFSIZ defined there */
#include <mpi.h> /* all MPI functions defined there */
main(argc, argv)
int argc;
char *argv[];
{ int pool_size, my_rank;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &pool_size);
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 if (my_rank == 0) {
 MPI_Request request;
 MPI_Status status;
 sprintf (send_buffer, "Dear Task 1,\n\Please do not send any more messages.\n\
 Please send money instead.\n\ \tYours faithfully,\n\ \tTask 0\n\);
 MPI_Isend (send_buffer, strlen(send_buffer) + 1, MPI_CHAR, 1, 77, MPI_COMM_WORLD,
&request);
 printf("hello there user, I've just started this send\n\ and I'm having a good time relaxing.\n");
 MPI_Wait (&request, &status);
 printf("hello there user, it looks like the message has been sent.\n");
 if (request == MPI_REQUEST_NULL) {
 printf("\tthe send request is MPI_REQUEST_NULL now\n");
 } else { printf("\tthe send request still lingers\n"); }
 } Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.39

Example Use of Non-Blocking
Communication

else if (my_rank == 1) {
 char recv_buffer[BUFSIZ];
 int my_name_length, count;
 MPI_Request request;
 MPI_Status status;
 MPI_Irecv (recv_buffer, BUFSIZ, MPI_CHAR, 0, 77, MPI_COMM_WORLD, &request);
 printf("hello there user, I've just started this receive\n\
 and I'm having a good time relaxing.\n");
 MPI_Wait (&request, &status);
 MPI_Get_count (&status, MPI_CHAR, &count);
 printf("hello there user, it looks like %d characters \have just arrived:\n", count);
 printf("%s", recv_buffer);
 if (request == MPI_REQUEST_NULL) {
 printf("\tthe receive request is MPI_REQUEST_NULL now\n");
 } else { printf("\tthe receive request still lingers\n");
 }
 }
 MPI_Finalize();
}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.40

EXAMPLE OF EXECUTION

 1:hello there user, I've just started this receive
 1:and I'm having a good time relaxing.
 0:hello there user, I've just started this send
 0:and I'm having a good time relaxing.
 0:hello there user, it looks like the message has been sent.
 0: the send request is MPI_REQUEST_NULL now
 1:hello there user, it looks like 88 characters have just arrived:
 1:Dear Task 1,
 1:Please do not send any more messages.
 1:Please send money instead.
 1: Yours faithfully,
 1: Task 0
 1: the receive request is MPI_REQUEST_NULL now

Slid f P ll l P i T h i & A li ti U i N t k d W k t ti & P ll l C t 2 d Editi b B Wilki & M All © 2004 P Ed ti I All i ht d
2.41

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.42

Send Communication Modes

• Standard Mode Send - Not assumed that corresponding
receive routine has started. Amount of buffering not defined
by MPI. If buffering provided, send could complete before
receive reached.

• Buffered Mode - Send may start and return before a
matching receive. Necessary to specify buffer space via
routine MPI_Buffer_attach().

• Synchronous Mode - Send and receive can start before
each other but can only complete together.

• Ready Mode - Send can only start if matching receive
already reached, otherwise error. Use with care.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.43

• Each of the four modes can be applied to both
blocking and nonblocking send routines.

• Only the standard mode is available for the
blocking and nonblocking receive routines.

• Any type of send routine can be used with any
type of receive routine.

• Also implementation issues e.g. MPI buffer
sizes. Message-size > buffer size dictates
synchronization for example. Easier if
Message-size < buffer size

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.44

Collective Communication

Involves set of processes, defined by an intra-communicator.
Message tags not present. Principal collective operations:

• MPI_Bcast() - Broadcast from root to all other processes
• MPI_Gather() - Gather values for group of processes
• MPI_Scatter() - Scatters buffer in parts to group of processes
• MPI_Alltoall() - Sends data from all processes to all processes
• MPI_Reduce() - Combine values on all processes to single value
• MPI_Reduce_scatter() - Combine values and scatter results
• MPI_Scan() - Compute prefix reductions of data on processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.45

Example
To gather items from group of processes into process
0, using dynamically allocated memory in root
process:

int data[10]; /*data to be gathered from processes*/
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* find rank */
if (myrank == 0) {
 MPI_Comm_size(MPI_COMM_WORLD, &grp_size); /*find group size*/
 buf = (int *)malloc(grp_size*10*sizeof (int)); /*allocate
memory*/
}
MPI_Gather(data,10,MPI_INT,buf,grp_size*10,MPI_INT,0,MPI_COMM_WORLD) ;

MPI_Gather() gathers from all processes, including root.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.46

Barrier routine

• A means of synchronizing processes by
stopping each one until they all have reached
a specific “barrier” call.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.47

Sample MPI program

#include “mpi.h”
#include <stdio.h>
#include <math.h>
#define MAXSIZE 1000
void main(int argc, char *argv)
{
 int myid, numprocs;
 int data[MAXSIZE], i, x, low, high, myresult, result;
 char fn[255];
 char *fp;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 if (myid == 0) { /* Open input file and initialize data */
 strcpy(fn,getenv(“HOME”));
 strcat(fn,”/MPI/rand_data.txt”);
 if ((fp = fopen(fn,”r”)) == NULL) {
 printf(“Can’t open the input file: %s\n\n”, fn);
 exit(1);
 }
 for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, &data[i]);
 }
 MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD); /* broadcast data */
 x = n/nproc; /* Add my portion Of data */
 low = myid * x;
 high = low + x;
 for(i = low; i < high; i++)
 myresult += data[i];
 printf(“I got %d from %d\n”, myresult, myid); /* Compute global sum */
 MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
 if (myid == 0) printf(“The sum is %d.\n”, result);
 MPI_Finalize();
}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.48

Sample MPI program

#include “mpi.h”
#include <stdio.h>
#include <math.h>
#define MAXSIZE 1000
void main(int argc, char *argv)
{ int myid, numprocs;
 int data[MAXSIZE], i, x, low, high, myresult, result;
 char fn[255];
 char *fp;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 if (myid == 0) { /* Open input file and initialize data */
 strcpy(fn,getenv(“HOME”));
 strcat(fn,”/MPI/rand_data.txt”);
 if ((fp = fopen(fn,”r”)) == NULL) {
 printf(“Can’t open the input file: %s\n\n”, fn);

exit(1); }
 for(i = 0; i < MAXSIZE; i++) fscanf(fp,”%d”, data[i]);
 }

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.49

Sample MPI program

 MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);
/* broadcast data */

 x = n/nproc; /* Add my portion Of data */
 low = myid * x;
 high = low + x;
 for(i = low; i < high; i++)
 myresult += data[i];
 printf(“I got %d from %d\n”, myresult, myid); /*

Compute global sum */
 MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM,

0, MPI_COMM_WORLD);
 if (myid == 0) printf(“The sum is %d.\n”, result);
 MPI_Finalize();
}

MPI-2:

Intentionally, the MPI-1 specification did not address several "difficult" issues.
For reasons of expediency, these issues were deferred to a second
specification, called MPI-2 in 1997.
MPI-2 was a major revision to MPI-1 adding new functionality and corrections.
Key areas of new functionality in MPI-2:

– Dynamic Processes - extensions that remove the static process model of MPI.
Provides routines to create new processes after job startup.

– One-Sided Communications - provides routines for one directional
communications. Include shared memory operations (put/get) and remote
accumulate operations.

– Extended Collective Operations - allows for the application of collective
operations to inter-communicators

– External Interfaces - defines routines that allow developers to layer on top of
MPI, such as for debuggers and profilers.

– Additional Language Bindings - describes C++ bindings and discusses Fortran-
90 issues.

– Parallel I/O - describes MPI support for parallel I/O.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.50

• MPI-3:
• The MPI-3 standard was adopted in 2012, and contains significant

extensions to MPI-1 and MPI-2 functionality including:

– Nonblocking Collective Operations - permits tasks in a collective to

perform operations without blocking, possibly offering performance
improvements.

– New One-sided Communication Operations - to better handle
different memory models.

– Neighborhood Collectives - Extends the distributed graph and
Cartesian process topologies with additional communication power.

– Fortran 2008 Bindings - expanded from Fortran90 bindings
– MPIT Tool Interface - This new tool interface allows the MPI

implementation to expose certain internal variables, counters, and other
states to the user (most likely performance tools).

– Matched Probe - Fixes an old bug in MPI-2 where one could not probe
for messages in a multi-threaded environment.

• More Information on MPI-2 and MPI-3:
• MPI Standard documents: http://www.mpi-forum.org/docs/

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.51

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.52

Evaluating Parallel Programs

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.53

Sequential execution time, ts: Estimate by
counting computational steps of best sequential
algorithm.

Parallel execution time, tp: In addition to number
of computational steps, tcomp, need to estimate
communication overhead, tcomm:

tp = tcomp + tcomm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.54

Computational Time
Count number of computational steps.
When more than one process executed simultaneously,
count computational steps of most complex process.
Generally, function of n and p, i.e.

tcomp = f (n, p)

Often break down computation time into parts. Then

tcomp = tcomp1 + tcomp2 + tcomp3 + …

Analysis usually done assuming that all processors are
same and operating at same speed.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.55

Communication Time

Many factors, including network structure and
network contention. As a first approximation,
use

tcomm = tstartup + ntdata

tstartup is startup time, essentially time to send a
message with no data. Assumed to be constant.
tdata is transmission time to send one data word,
also assumed constant, and there are n data
words.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.56

Idealized Communication Time

Number of data items (n)

Star tup time

In reality the line is not so straight and the architecture of
the machine being used matters

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.57

Final communication time, tcomm
Summation of communication times of all
sequential messages from a process, i.e.

tcomm = tcomm1 + tcomm2 + tcomm3 + …

Communication patterns of all processes assumed
same and take place together so that only one
process need be considered.

Both tstartup and tdata, measured in units of one
computational step, so that can add tcomp and tcomm
together to obtain parallel execution time, tp.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.58

Benchmark Factors
With ts, tcomp, and tcomm, can establish speedup factor and
computation/communication ratio for a particular algorithm/implementation:

Both functions of number of processors, p, and number of data elements n
Factors give indication of scalability of parallel solution with increasing
number of processors and problem size.

Computation/communication ratio will highlight effect of communication
with increasing problem size and system size.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.59

Debugging/Evaluating Parallel
Programs Empirically

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.60

Visualization Tools

Programs can be watched as they are executed in a space-
time diagram (or process-time diagram)

Implementations of visualization tools are available for MPI.

 Process 1

Process 2

Process 3

Time Computing
W aiting
Message-passing system routine
Message

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.61

Evaluating Programs Empirically
Measuring Execution Time

To measure the execution time between point L1 and point L2
in the code, we might have a construction such as
 .
L1: time(&t1); /* start timer */
 .
 .
L2: time(&t2); /* stop timer */
 .
elapsed_time = difftime(t2, t1); /* elapsed_time = t2 - t1 */
printf(“Elapsed time = %5.2f seconds”, elapsed_time);

MPI provides the routine MPI_Wtime() for returning time (in
seconds).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.62

Parallel Programming Home Page

http://www.cs.uncc.edu/par_prog

Gives step-by-step instructions for compiling
and executing programs, and other information.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.63

Compiling/Executing MPI Programs
Preliminaries

• Set up paths

• Create required directory structure

• Create a file listing machines to be used
(required for LAM MPI if using more than one
computer)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.64

“hostfile” or “machines” file

For some implementations of MPI (e.g. LAM
MPI) before starting MPI for the first time, need
to create a “hostfile.”

Only necessary with MPICH if actually using
more than one computer (see later).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.65

Compiling/executing (SPMD) LAM MPI programs
For LAM MPI version 6.5.2. At a command line:

To start MPI:
First time: lamboot -v hostfile
Subsequently: lamboot

To compile MPI programs:
for C mpicc -o prog prog.c
for C++ mpiCC -o prog prog.cpp

To execute MPI program:
 mpirun -v -np no_procs prog

To remove processes for reboot
 lamclean -v

Terminate LAM
 lamhalt

If fails
 wipe -v lamhost

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.66

Compiling/executing MPICH programs

For MPICH. At a command line:

To start MPI: Nothing special.

To compile MPI programs:
for C mpicc -o prog prog.c
for C++ mpiCC -o prog prog.cpp

To execute MPI program:
 mpirun -v -np no_procs prog

verbose mode if desired

A positive integer

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.67

Executing MPICH program on
multiple computers

Create a file called say “machines”
containing the list of machines:

 coit-grid01.uncc.edu
 coit-grid02.uncc.edu
 coit-grid03.uncc.edu
 coit-grid04.uncc.edu

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd Edition, by B. Wilkinson & M. Allen, © 2004 Pearson Education Inc. All rights reserved. 2.68

mpirun -machinefile machines -np 4 prog

would run prog with four processes.

Each processes would execute on one of the
machines in the list. MPI would cycle through the list
of machines giving processes to machines.

One can also specify the number of processes on a
particular machine by adding that number after the
machine name.)

The “MPI standard” command mpiexec is now the replacement for mpirun
although mpirun exists.

	Message-Passing Computing
	Message-Passing Programming using User-level Message-Passing Libraries
	Multiple program, multiple data (MPMD) model
	Single Program Multiple Data (SPMD) model�.
	Using SPMD Computational Model
	Slide Number 6
	Multiple Program Multiple Data (MPMD) Model
	Basic “point-to-point”�Send and Receive Routines
	Synchronous Message Passing
	Synchronous send() and recv() using 3-way protocol
	Asynchronous Message Passing
	MPI Definitions of Blocking and Non-Blocking
	How message-passing routines return before message transfer completed��
	Asynchronous (blocking) routines changing to synchronous routines
	Message Tag
	Message Tag Example
	“Group” message passing routines
	Broadcast
	Scatter
	Gather
	Reduce
	Slide Number 22
	Slide Number 23
	MPI (Message Passing Interface)
	MPI�Process Creation and Execution
	Communicators
	Using SPMD Computational Model
	Unsafe message passing - Example
	MPI Solution “Communicators”
	Default Communicator MPI_COMM_WORLD
	MPI Point-to-Point Communication
	MPI Blocking Routines
	Parameters of blocking send
	Parameters of blocking receive
	Example
	MPI Nonblocking Routines
	Nonblocking Routine Formats
	Example
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Send Communication Modes
	Slide Number 43
	Collective Communication
	Example
	Barrier routine
	Sample MPI program
	Sample MPI program
	Sample MPI program
	Slide Number 50
	Slide Number 51
	Evaluating Parallel Programs
	Slide Number 53
	Computational Time
	Communication Time
	Idealized Communication Time
	Slide Number 57
	Benchmark Factors
	Debugging/Evaluating Parallel Programs Empirically�
	Visualization Tools��Programs can be watched as they are executed in a space-time diagram (or process-time diagram)�Implementations of visualization tools are available for MPI.���
	Evaluating Programs Empirically�Measuring Execution Time
	Parallel Programming Home Page
	Compiling/Executing MPI Programs�Preliminaries
	“hostfile” or “machines” file
	Compiling/executing (SPMD) LAM MPI programs
	Compiling/executing MPICH programs
	Executing MPICH program on multiple computers
	Slide Number 68

