

 Martin Berzins
 School of Computing

CS6230 PARALLEL HIGH PERFORMANCE COMPUTING

Professor Martin Berzins, Rm 4803 WEB email: mb@cs.utah.edu

Lectures Monday Wednesday 8.05-9.25 WEB 122
Also some use of Friday 8.05– 9.25 WEB 122
Practical Classes - Use CHPC (Telluride Cluster) , CADE LAB,
perhaps Raven cluster or National Supercomputer Resources
Assessments (4) 60% Coursework+ 40% Mid Term and Final Exam
Extra credit option – more later.
Web site http://www.sci.utah.edu/~mb/Teaching

Office hours – by arrangement by mailing me

Center for high Performance Computing
Telluride Cluster Overview

• For dedicated use by one research group
• 72 nodes, 576 processors
• 2.333 (48 nodes) and 2.66 (24 nodes) GHz

processors
• 16 Gbytes memory per node
• Inifiniband interconnect

 Other machines available for development

Turretarch 10-13 and 18-21

Why Parallel Computing?

•Atmosphere, Earth, Environment
•Physics - applied, nuclear, particle,
condensed matter, high pressure, fusion,
photonics
•Bioscience, Biotechnology, Genetics
•Chemistry, Molecular Sciences

•Geology, Seismology
•Mechanical Engineering - from
prosthetics to spacecraft
•Electrical Engineering, Circuit Design,
Microelectronics
•Computer Science, Mathematics

Science and Engineering: Historically, parallel computing has
 been considered to be "the high end of computing", and has been used to model
difficult problems in many areas of science and engineering:

•Databases, data mining
•Oil exploration
•Web search engines, web based business
services
•Medical imaging and diagnosis
•Pharmaceutical design

•Financial and economic modeling
•Management of national and multi-national
corporations
•Advanced graphics and virtual reality,
particularly in the entertainment industry
•Networked video/ multi-media technologies

Industrial and Commercial: Today, commercial applications provide an
 equal or greater driving force in the development of faster
computers. These applications require the processing of large amounts
of data in sophisticated ways. For example:

Motivation: Determining The Structure of the HIV
Capsid using Blue Waters

• NSF Researchers have determined the precise chemical structure of the
HIV capsid, a protein shell that protects the virus's genetic material and is
a key to its ability to infect and debilitate the human body's defense
mechanism.

• The Capsid is a target for the development of new antiretroviral drugs
that suppress the HIV virus and stop the progression of AIDS [Schulten
et al. Nature (5/30/13).

• This required a 64M atom simulation on NSF’s Blue Waters machine,
one of the world's most powerful computers, without which scientists
were unable to decipher in atomic-level detail the entire HIV capsid--an
assemblage of more than 1,300 identical proteins forming a cone-shaped
structure. The simulations that added the missing pieces to the puzzle.

Three different renderings of the HIV
capsid, with multiple colors.

540K T in corner 5Gpa P in corner

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.
Jaqueline Beckvermit (chem
grad student) has 200M CPU
hours to solve this problem in
2014

Spanish Fork Accident
8/10/05
Speeding truck with
8000 explosive
boosters each with
2.5-5.5 lbs of explosive
overturned and caught
fire
Experimental evidence
suggests that a
transition from
deflagration
to detonation took
place. Why?

→

ProblemReducing Explosive Hazards

Design of Alstom Clean coal
Boilers

Temperature field

Prof. Phil Smith and Marti Berzins lead One of 3 PSAAP II centers in the
US $20M 5 years

Problem 2. Design of Alstom
Clean coal Boilers

Temperature field

Prof. Phil Smith and Marti Berzins lead One of 3
PSAAP II centers in the US $20M 5 years

What is the course about?
Designing algorithms and writing programs that use multiple cores
(processors) or multiple cores/accelerators to solve large and medium
scale computational problems, .
How do you make best use of a multicore architecture or 100s,
1000s or 100,000s of processors to ?
 Solve larger problems efficiently WEAK SCALABILITY
 (e.g. a problem twice as large is solved in the same time on
 twice as many cores)
 Solve the same (larger) problem more quickly
 STRONG SCALABILITY
 (e.g. solve the same problem twice as quickly on a
 computer twice as large)
These approaches are being used to address the computational
challenges such as those shown above.
Students who took this class are now using some of the largest parallel machines
With the Uintah framework (www.uintah.utah.edu)

Louis Fry Richardson's Computation, 1917

Courtesy John Burkhardt, Virginia Tech

The idea isn’t new: Weather Modeling

Richardson’s computers were people who
each had a portion of the domain and who
passed information to one an other. He
proposed doing global weather modeling
by seating his “computers” in the Albert
Hall each of them computing a section of
the globe.

Why Parallel Computing?

• If we can we will solve more complex and larger computational problems
• The move to multicore architectures means that parallel computing

techniques are needed to exploit existing and future hardware
• Energy problems mean that clock speeds can’t easily increase.
• Improved processes mean that chips with feature sizes of 45nm 32nm , 22nm

and soon 17nm are both here and possible
• More (but simpler cores) can be placed on a chip. 2, 4 and 8 . Intel

accelerators have 60 cores.
• At the same time larger and larger parallel machines are being built with

many 100,000s of cores .
• The combination of multicores accelerators and large scale parallelism

makes understanding parallel computing and algorithms more
important than ever before.

Status of Moore’s Law - Not what you think
Metal one half pitch
(half dist. Spanned by wire
width and space to next one
on first metal chip layer)

Node name

Transistor gate length

Fundamental changes in
technology are taking place, 3D
transistors memory stacking

What is a Core/Socket/Node?
• A core is a single chip package that fits in a socket
• ≥1 core (not much point in <1 core…)

– Cores perform arithmetic and can have functional units,
– Cores can be fast or slow, just as today

• Shared resources
– More cache
– Other integration: AMD Northbridge on-chip crossbar switch,

memory controllers, high-speed serial links, etc.
• One system interface no matter how many cores

– Number of signal pins doesn’t scale with number of cores
• Nodes have sockets each of which has multiple cores and

now often have accelerators such as GPUs

AMD and Intel Multi-Core Processor 2012
8-core

Sandybridge
processor

with shared
level 3 cache

Intel Xeon Phi Accelerator 2012

Example of a Distributed Memory
Parallel Computer

All computers communicate by sending messages through the
interconnection network: e.g. MPI standard

Processor

Interconnection
network

Local

Computers

Messages

memory

Single source program written and each processor executes its
personal copy of this program, although independently and with
synchronization at certain points.

Processor can
now be
multicore cpu
with or without
GPU and/or
Intel Xeon Phi
accelerator

DoE ORNL’s Jaguar XT5 224K cores 1.75 petaflops

NSF NICs (Oak Ridge) Kraken
Cray XT5 112K cores 0.8 petaflops

17

Power is an Industry Wide Problem

Google Plant in The Dalles, Oregon,
from NYT, June 14, 2006

30 billion watts and rising: balancing the internet's energy and
infrastructure needs

ORNL/UTK Computer Power Cost Projections
2008-2012

• Over the next 5
years ORNL/UTK
will deploy 2 large
Petascale systems

• Used15 MW 2008
$10M

• By 2012 close to
50MW?

• Power costs close to
$10M today.

• Cost estimates
based on $0.07 per
KwH

Cost Per Year Power becomes the architectural
driver for future large systems

> $10M > $20M > $30M

Did this happen?

DOEs Titan draws
12.7 MW, 2 MW
more than Jaguar
did, but it is almost
ten times as fast in
terms of floating
point calculations
by using both cpus
and GPUs.

Increasing Performance
Does not always lead to a
Corresponding Power
Increase

Programming Parallel Computers.
Parallel Programming environments since the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
 SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
 XENOOPS
XPC
Zounds
ZPL

Language acceptance is not a technical issue; it is a social and commercial issue too

Domain Decomposition
Done Well: Load Balanced

• You have to spread something out.
• These can theoretically be many types of

abstractions: work, threads, tasks, processes,
data,…

• But what they will be is your data. And then
you will use MPI, and possibly OpenMP, to
operate on that data.

• A parallel algorithm can only be as fast as the
slowest chunk.

– Balance the number crunching
– Might be dynamic

• Communication will take time
– Usually orders of magnitude difference

between registers, cache, memory,
network/remote memory, disk

– Data locality and “neighborly-ness” matters
very much.

Parallel Programming Summary

Split large
Task into
Equal smaller
ones

How do we program Parallel Computers today ?
• Message Passing – write programs that exist on each processor and pass

messages to communicate data between the processors.
• Threads – write programs that involve setting up interacting execution

streams of instructions that share data .
• Open MP, OPENACC write serial programs and then modify the

programs by inserting directives to tell the compiler how to parallelize that
part of the code.

• Use a specialist parallel programming language such as UPC (Unified
Parallel C) , CUDA

• Maybe use a dataflow language like CnC: Concurrent collections

Typically message passing is used to communicate between processors while
Open MP or threads are used when processors (or cores ?) share memory
New languages are attractive - if only they would take off and persist!

Example - Dot Product

1

n

i i
i

Sum a b
=

= ∑

 Sequential Dot Product
 int main(argc,argv)
 int argc;
 char *argv[];
 {double sum; double a[256], b[256];
 int n;
 n =256;
 for (i =0; i < n; i++) {
 a[i] = i*0.5;
 b[i] = i*2.0; }
 sum = 0.0;
 for (i = 1; i<n; i++) {
 sum =sum + a[i]*b[i];
 }
 printf (" sum= %f",sum);
 }

 Dot Product OPENMP version
 int main(argc,argv)
 int argc;
 char *argv[];
 {double sum; double a[256], b[256];
 int n; n =256;
#pragma omp parallel for private(i) shared(a,b)
 for (i =0; i < n; i++) {
 a[i] = i*0.5;
 b[i] = i*2.0;
 }
 sum = 0.0;
 #pragma omp for reduction (+:sum)
 for (i = 1; i<n; i++) {
 sum =sum + a[i]*b[i];
 }
 printf (" sum= %f",sum);
 }

 MPI VERSION
 int main(argc,argv)
 int argc; char *argv[];
 {double sum, sum_local; double a[256], b[256];
 int n; numprocs, myid, my_first, my_last;
 n = 256;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 my_first = myid*n/numprocs;
 my_last = (myid+1) * n/numprocs;

 for (i =0; i < n; i++) {
 a[i] = i*0.5; b[i] = i*2.0; }
 sum = 0.0;
 for (i = my_first; i< my_last; i++) {
 sum_local =sum_local + a[i]*b[i]; }
 MPI_Allreduce(&sum_local,&sum, 1,MPI_DOUBLE, MPI_SUM,
 MPI_COMM_WORLD);
 if(myid == 0)printf (" sum= %f",sum);
 }

UPC demo program for the dot product of vectors x and y.
We use upc_forall to compute partial sums and then use a upc_lock to
protect the part where we reduce the individual partial sums to the total dot product.
The other part of the demo is to show difference between the blocked and cyclic
distribution. The arrays x_cyc and y_cyc are declared with block size 1 and
 arrays x_blk and y_blk are declared with [*]] block size.
This can't change the results, but it does change the partial sums collected by each thread.

<dotproduct.c>=
//dotproduct.c -- simple dot product //Intro: upc_forall, locks, cyclic vs blocked
#include <stdio.h> #include <upc.h>
#define NperTHREAD 100
#define SIZE (NperTHREAD * THREADS)
#define BLOCK NperTHREAD

shared float dot_cyc, dot_blk;
shared float x_cyc[SIZE], y_cyc[SIZE];
shared [*] float x_blk[SIZE], y_blk[SIZE];
upc_lock_t *dotlock;

http://www.upc.mtu.edu/tutorials/dotprod1.html#NWDBPm3W-1

main ()

{ int i; float mydot;
dotlock = upc_all_lock_alloc();
upc_lock_init(dotlock);
if(MYTHREAD == 0) dot_blk = dot_cyc = 0.0; upc_barrier(0);
 // "affinity" is an int so it is (i mod THREADS)
upc_forall(i=0; i< SIZE; i++; i)
 { x_cyc[i] = (float) i; y_cyc[i] = x_cyc[i];

 x_blk[i] = (float) i; y_blk[i] = x_blk[i]; }
upc_barrier(1);
mydot = 0.0;
// "affinity" is found from affinity of x_cyc[i]
upc_forall(i=0; i< SIZE; i++; &x_cyc[i])
 mydot += x_cyc[i] * y_cyc[i];
 printf ("Process %2d holds %g (cyclic)\n", MYTHREAD, mydot);
upc_lock(dotlock);
 dot_cyc = dot_cyc + mydot;
upc_unlock(dotlock);

upc_barrier(2);

if(MYTHREAD == 0)
 printf("Total (cyclic) is %g\n", dot_cyc);
upc_barrier(3);
mydot = 0.0;
// "affinity" is found from affinity of x[i]

upc_forall(i=0; i< SIZE; i++; &x_blk[i])
 mydot += x_blk[i] * y_blk[i];

printf ("Process %2d holds %g (blocked)\n", MYTHREAD, mydot);
upc_lock(dotlock);
 dot_blk = dot_blk + mydot;
upc_unlock(dotlock);
upc_barrier(2);
if(MYTHREAD == 0)
 printf("Total (blocked) is %g\n", dot_blk);

}

Message Passing
• Pros

– Flexible and very widely used, low level
– Efficient what the machine does anyway
– Implementations Solid excpet perhaps on latest machines
– Algorithmic Support – much existing knowledge
– Debugging Support – except on very large machines

• Cons
– Lower level means more detail for the coder
– Debugging requires more attention to detail
– Development usually requires a “start from scratch” approach
– Domain decomposition and memory management must be explicit

Has been around a longtime (~20 years inc. PVM)
Dominant standard
Will be around a longtime (on all new platforms/roadmaps)
Lots of libraries
Lots of algorithms
Very scalable (500K+ cores right now)
Portable
Works with hybrid models accelerators GPUs

MPI

Data Parallel
Only one executable.
Do computation on arrays of data

using array operators.
Do communications using array shift

or rearrangement operators.
Good for problems with static load

balancing that are array-
oriented SIMD machines.

Variants:
 FORTRAN 90
 CM FORTRAN
 HPF
 C*
 GPU Langauges (CUDA)

Pros:
1. Scales transparently to

different size machines
2. Easy debugging, as there I

sonly one copy of code
executing in highly
synchronized fashion

Cons:
1. Much wasted synchronization
2. Sometimes difficult to balance

load

Threads
Splits up tasks (as opposed to arrays

in data parallel) such as loops
amongst separate processors.

Do communication as a side effect of
data loop distribution. Not an big
issue on shared memory
machines. Impossible on
distributed memory.

Common Implementations:
 pthreads (Unix standard)
 OpenMP

Strengths:
1. Doesn’t perturb data structures,

so can be incrementally added
to existing serial codes.

Weaknesses:
1. Serial code left behind will be

problematic
2. Can only be used at socket or

shared memory machine.

OpenMP Pros and Cons
• Simple additions to existing code

• Standard and widely available (supported at compiler

level) e.g. gcc intel PGI IBM

• Compiler directives are generally simple and easier to use
than thread API’s

• In general, only moderate speedups can be achieved.as
OpenMP codes tend to have serial-only portions,

• Can only really be run on a socket or in shared memory
environments

• High Startup costs

Partitioned Global Address Space: (PGAS)

Multiple threads share at least a
part of a global address
space.

Can access local and remote data
with same mechanisms.

Can distinguish between local and
remote data with some sort
of typing.

Variants:
 Co-Array Fortran (CAF)
 Unified Parallel C (UPC)

Strengths:
Looks like SMP on a distributed memory machine.
* Currently translates code into an underlying message

passing version for efficiency.
Weaknesses:
Immature and depends on * to be efficient.
Can easily write lots of expensive remote memory access

without paying attention.

STILL EVOLVING
AND NOT WIDELY
USED but can do well =>

Frameworks

• Charm++
– Object-oriented parallel

extension to C++
– Run-time engine allows

work to be “scheduled” on
the computer.

– Highly-dynamic, extreme
load-balancing capabilities.

– Completely asynchronous.
– NAMD, a very popular MD

simulation engine is written
in Charm++

One of the more experimental approaches that is gaining some traction is to
use a parallel framework that handles the load balancing and messaging
while you “fill in” the science. Charm++ is a popular example:

Hybrid Coding
• Problem: given the engineering constraint of a machine

made up of a large collection of multi-core processors, how
do we use message passing at the wide level while still
taking advantage of the local shared memory?

• Solution (at least one): Hybrid Coding.

• As the most useful MP library is MPI, and the most useful

SM library is OpenMP, the obvious mix is MPI and
OpenMP.

• But, one must design the MPI layer first, and them apply the
OpenMP code at the node level. The reverse is rarely a
viable option.

A Few Coding Hints
• Minimize Eliminate serial sections of code

• Minimize communication overhead

– Choose algorithms that emphasize nearest neighbor communication
– Overlap computation and communication with asynchronous

communication models if possible
• Dynamic load balancing (at least be aware of issue)
• Minimize I/O and learn how to use parallel I/O

– Very expensive time wise, so use sparingly (and always binary)
• Choose the right language for the job!
• Plan out your code beforehand.

– Because the above won’t just happen late in development
– Transforming a serial code to parallel is rarely the best strategy
– Consider stateless functions as a coding model

Weak and Strong Scalability:

Problem size n on p cores takes time T(n,p)

Strong Scalability (,) (,1) /T n p T n p=

Weak Scalability

Solve a problem that is p times as large in the same time on
p cores

(,) (,1)T np p T n=

Both weak and strong scalability only if linear complexity
[Tirado + Martin] 1998 (,1)T n nα=

Theorem

Try to solve the same problem p times more quickly on p cores

 Weak and Strong Scalability?

Weak Scaling
6 runs with
Constant Problem
Size per Core

should give constant
time per time step

Four Strong scaling runs ____ Fixed problem size time
should be half when no of cores is doubled

Runs with Uintah on DOEs Titan Machine by Qingyu Meng 2012

CHPC has a number of parallel machines including the Updraft and
Ember systems system

The class will use the Telluride cluster and some of the Turretarch
nodes for development

National Resources from NSFs XSEDE network may be available
Cade lab for shared memory

WHAT DO WE RUN OUR PARALLEL PROGRAMS ON?

For Research we use the largest NSF and DOE
(soon) DoD machines currently use 3 of the top 8 fastest
Machines in the world

Course Topics and Structure

• Introduction to parallel computing: machines, MPI, performance, etc
• Embarrassingly parallel and synchronous parallel computing
• Partitioning and efficiency
• Sorting linear algebra and image processing in parallel
• OpenMP OPENACC and threads
• Advanced load balancing
• Future of HPC architectures and software

 Questions?

COURSE TEXT(s)
• Wilkinson B and Allen M,Parallel Programming: techniques and

applications using networked workstations and parallel computers,
Prentice Hall, 2005 (Essential but low level)

• B.Chapman G.Jost R Van der Pas. Using OpenMP.MIT Press. 2008
(Useful)

• MPI Parallel Programming with MPI by Peter Pacheco Morgan
Kaufmann Publishers Inc.C and Fortran programs available from
http://fawlty.cs.usfca.edu/mpi (Useful)

• Designing and Building Parallel Programs by Ian Foster Addison-
Wesley (1995); A Good online general text.

Message Passing Interface MPI tutorials

• Message passing system MPICH - see /usr/local/mpich portable version of MPI

• http://www-unix.mcs.anl.gov/mpi/mpich/

• See course webpage - includes a guide on how to use the machines

• http://www-unix.mcs.anl.gov/mpi/tutorial/

 http://www.mpi.nd.edu/mpi/tutorials/current/

 http://www.nas.nasa.gov/Groups/SciCon/Tutorials/MPIintro/

 http://www.epcc.ed.ac.uk/epcc-tec/documents/mpi-course/mpi-course.book_2.html

Summary

• Parallel computing makes it possible to solve problems of a size that
was previously impossible in times that were hitherto impossible

• Machines are both growing in size in terms of the numbers of cores
and numbers of sockets. Power consumption is a real issue.

• Scalability of such systems is challenging at both algorithmic and
programming levels.

• Programming for the near future will probably still consist of MPI
but coupled to Openmp or some other multi-core programming or
accelerator approach at socket level

• Understanding scalable algorithms and programs is a key part of this
class

	�
	Center for high Performance Computing Telluride Cluster Overview
	Why Parallel Computing?
	Industrial and Commercial: Today, commercial applications provide an� equal or greater driving force in the development of faster �computers. These applications require the processing of large amounts �of data in sophisticated ways. For example:
	Motivation: Determining The Structure of the HIV Capsid using Blue Waters
	Slide Number 6
	Design of Alstom Clean coal Boilers
	Problem 2. Design of Alstom Clean coal Boilers
	What is the course about?
	Louis Fry Richardson's Computation, 1917�
	Why Parallel Computing?
	Status of Moore’s Law - Not what you think
	What is a Core/Socket/Node?
	AMD and Intel Multi-Core Processor 2012
	Example of a Distributed Memory Parallel Computer
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Programming Parallel Computers. �Parallel Programming environments since the 90’s
	Domain Decomposition Done Well: Load Balanced
	How do we program Parallel Computers today ?
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	main ()�{ int i; float mydot; �dotlock = upc_all_lock_alloc(); �upc_lock_init(dotlock);�if(MYTHREAD == 0) dot_blk = dot_cyc = 0.0; upc_barrier(0);� // "affinity" is an int so it is (i mod THREADS) �upc_forall(i=0; i< SIZE; i++; i)� { x_cyc[i] = (float) i; y_cyc[i] = x_cyc[i];� x_blk[i] = (float) i; y_blk[i] = x_blk[i]; } �upc_barrier(1); �mydot = 0.0; �// "affinity" is found from affinity of x_cyc[i] �upc_forall(i=0; i< SIZE; i++; &x_cyc[i]) � mydot += x_cyc[i] * y_cyc[i]; � printf ("Process %2d holds %g (cyclic)\n", MYTHREAD, mydot); �upc_lock(dotlock); � dot_cyc = dot_cyc + mydot; �upc_unlock(dotlock); �upc_barrier(2); �
	�if(MYTHREAD == 0) � printf("Total (cyclic) is %g\n", dot_cyc); �upc_barrier(3); �mydot = 0.0; �// "affinity" is found from affinity of x[i] ��upc_forall(i=0; i< SIZE; i++; &x_blk[i]) � mydot += x_blk[i] * y_blk[i]; ��printf ("Process %2d holds %g (blocked)\n", MYTHREAD, mydot); upc_lock(dotlock); � dot_blk = dot_blk + mydot; �upc_unlock(dotlock); �upc_barrier(2); �if(MYTHREAD == 0) � printf("Total (blocked) is %g\n", dot_blk); �}
	Message Passing
	Data Parallel
	Threads
	OpenMP Pros and Cons
	Partitioned Global Address Space: (PGAS)
	Frameworks
	Hybrid Coding
	A Few Coding Hints
	Weak and Strong Scalability: �Problem size n on p cores takes time T(n,p)
	� Weak and Strong Scalability?
	Slide Number 40
	Course Topics and Structure
	COURSE TEXT(s)
	Message Passing Interface MPI tutorials
	Summary

