
 
 

                            Martin Berzins 
                       School of Computing  

CS6230 PARALLEL HIGH PERFORMANCE COMPUTING 
 
Professor Martin Berzins, Rm 4803 WEB email: mb@cs.utah.edu  
 
Lectures Monday Wednesday  8.05-9.25  WEB 122   
Also      some use of Friday 8.05– 9.25 WEB 122 
Practical Classes - Use CHPC (Telluride Cluster) , CADE LAB, 
perhaps Raven cluster  or National Supercomputer Resources  
Assessments (4)  60% Coursework+ 40% Mid Term and Final Exam 
Extra credit option – more later. 
Web site http://www.sci.utah.edu/~mb/Teaching 
 
Office hours – by arrangement by mailing me 



Center for high Performance Computing 
Telluride Cluster Overview 

• For dedicated use by one research group 
• 72 nodes, 576 processors 
• 2.333 (48 nodes) and 2.66 (24 nodes) GHz 

processors 
• 16 Gbytes memory per node 
• Inifiniband interconnect 

 Other machines available for development   
 
Turretarch 10-13  and 18-21 



Why Parallel Computing? 

•Atmosphere, Earth, Environment  
•Physics - applied, nuclear, particle, 
condensed matter, high pressure, fusion, 
photonics  
•Bioscience, Biotechnology, Genetics  
•Chemistry, Molecular Sciences  

•Geology, Seismology  
•Mechanical Engineering - from 
prosthetics to spacecraft  
•Electrical Engineering, Circuit Design, 
Microelectronics  
•Computer Science, Mathematics  

Science and Engineering: Historically, parallel computing has 
 been considered to be "the high end of computing", and has been used to model 
difficult problems in many areas of science and engineering:  



•Databases, data mining  
•Oil exploration  
•Web search engines, web based business 
services  
•Medical imaging and diagnosis  
•Pharmaceutical design  

•Financial and economic modeling  
•Management of national and multi-national 
corporations  
•Advanced graphics and virtual reality, 
particularly in the entertainment industry  
•Networked video/ multi-media technologies  

Industrial and Commercial: Today, commercial applications provide an 
 equal or greater driving force in the development of faster  
computers. These applications require the processing of large amounts  
of data in sophisticated ways. For example:  



Motivation: Determining The Structure of the HIV 
Capsid using Blue Waters 

• NSF Researchers have determined the precise chemical structure of the 
HIV capsid, a protein shell that protects the virus's genetic material and is 
a key to its ability to infect and debilitate the human body's defense 
mechanism. 

• The Capsid is  a target for the development of new antiretroviral drugs 
that suppress the HIV virus and stop the progression of AIDS [Schulten 
et al. Nature (5/30/13). 

• This required a 64M atom simulation on  NSF’s Blue Waters machine, 
one  of the world's most powerful computers, without which  scientists 
were unable to decipher in atomic-level detail the entire HIV capsid--an 
assemblage of more than 1,300 identical proteins forming a cone-shaped 
structure. The simulations that added the missing pieces to the puzzle.  

Three different renderings of the HIV 
capsid, with multiple colors. 
 



540K T in corner 5Gpa P in corner 

Deflagration wave moves at 
~400m/s  not  all explosive 
consumed. Detonation  wave 
moves 8500m/s all explosive 
consumed. 
Jaqueline Beckvermit (chem 
grad student) has 200M CPU 
hours to solve this problem in 
2014 

Spanish Fork Accident 
8/10/05 
Speeding truck with 
8000 explosive 
boosters each with  
2.5-5.5 lbs of explosive 
overturned and caught 
fire 
Experimental evidence 
suggests that  a 
transition from 
deflagration  
to detonation took 
place. Why? 
   
 

→

ProblemReducing Explosive Hazards  



Design of Alstom Clean coal 
Boilers  

Temperature field  

Prof. Phil Smith and Marti Berzins lead One of  3 PSAAP II centers in the 
US   $20M 5 years 



Problem 2. Design of Alstom 
Clean coal Boilers  

Temperature field  

Prof. Phil Smith and Marti Berzins lead One of  3 
PSAAP II centers in the US   $20M 5 years 



What is the  course about? 
Designing algorithms and writing programs that use multiple cores 
(processors) or multiple cores/accelerators to solve large and medium 
scale computational problems, .  
How do you make best use of a multicore architecture or 100s,  
1000s or 100,000s of processors to  ? 
          Solve larger problems efficiently WEAK SCALABILITY 
               (e.g. a problem twice as large is solved in the same time on 
                 twice as many cores) 
          Solve the same (larger) problem more quickly  
                                                                 STRONG SCALABILITY 
                (e.g. solve the same problem twice as quickly on a      
      computer twice as large) 
These approaches are  being used to address the computational 
challenges such as  those shown above. 
Students who took this class are now using some of the largest parallel machines 
With the Uintah framework (www.uintah.utah.edu)  
 



Louis Fry Richardson's Computation, 1917 
 

Courtesy John Burkhardt, Virginia Tech 

The idea isn’t new: Weather Modeling 

Richardson’s computers were people who 
each had a portion of the domain and who 
passed information to one an other. He 
proposed doing global weather modeling 
by seating his “computers” in the Albert 
Hall each of them computing a section of 
the globe.  



Why Parallel Computing?  

• If we can we will solve more complex and larger computational problems  
• The move to multicore architectures means that parallel computing 

techniques are needed to exploit existing and future hardware  
• Energy problems mean that clock speeds can’t easily increase. 
• Improved processes mean that chips with feature sizes of 45nm 32nm , 22nm 

and soon 17nm are both here and possible  
• More (but simpler cores) can be placed on a chip. 2, 4 and 8 . Intel 

accelerators have 60 cores.  
• At the same time larger and larger parallel machines are being built with 

many 100,000s of cores . 
• The combination of multicores accelerators and large scale parallelism 

makes  understanding parallel computing and algorithms more 
important  than ever before. 
 



Status of Moore’s Law - Not what you think 
Metal one half pitch 
(half dist. Spanned by wire 
width and space to next one 
on first metal chip layer ) 
 
Node name  
 
Transistor gate length  

Fundamental changes in 
technology are taking place, 3D 
transistors memory stacking  



What is a Core/Socket/Node?  
• A core is a single chip package that fits in a socket 
• ≥1 core (not much point in <1 core…) 

– Cores perform arithmetic and can have functional units,  
– Cores can be fast or slow, just as today 

• Shared resources 
– More cache 
– Other integration: AMD Northbridge on-chip crossbar switch, 

memory controllers, high-speed serial links, etc. 
• One system interface no matter how many cores 

– Number of signal pins doesn’t scale with number of cores 
• Nodes have sockets each of which has multiple cores and 

now often have accelerators such as GPUs 



AMD  and Intel Multi-Core Processor 2012 
8-core 

Sandybridge 
processor 

with shared 
level 3 cache 

  

Intel Xeon Phi Accelerator  2012 



Example of a Distributed Memory  
Parallel Computer 

All computers communicate by sending messages through the  
interconnection network: e.g.   MPI standard 

Processor 

Interconnection 
network 

Local 

Computers 

Messages 

memory 

Single source program written and each processor executes its  
personal copy of this program, although independently and with  
synchronization at certain points. 
 

Processor can 
now be 
multicore cpu 
with or without 
GPU and/or 
Intel Xeon Phi  
accelerator 



DoE ORNL’s Jaguar XT5 224K cores 1.75 petaflops 
 

NSF NICs (Oak Ridge) Kraken 
Cray XT5 112K cores 0.8 petaflops 
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Power is an Industry Wide Problem 

Google Plant in The Dalles, Oregon,  
from NYT, June 14, 2006 

30 billion watts and rising: balancing the internet's energy and 
infrastructure needs 



ORNL/UTK Computer Power Cost Projections 
2008-2012 

• Over the next 5 
years ORNL/UTK 
will deploy 2 large 
Petascale systems 

• Used15 MW 2008 
$10M 

• By 2012 close to 
50MW?  

• Power costs close to 
$10M today. 

• Cost estimates 
based on $0.07 per 
KwH 

Cost Per Year Power becomes the architectural 
driver for future large systems 

> $10M               > $20M        > $30M 



Did this happen?  



DOEs Titan draws 
12.7 MW, 2 MW 
more than Jaguar 
did, but it is almost 
ten times as fast in 
terms of floating 
point calculations 
by using both cpus 
and GPUs. 

Increasing Performance 
Does not always lead to a  
Corresponding Power 
Increase 



Programming Parallel Computers.  
Parallel Programming environments since the 90’s 

ABCPL 
ACE  
ACT++  
Active messages  
Adl 
Adsmith 
ADDAP 
AFAPI 
ALWAN 
AM 
AMDC 
AppLeS 
Amoeba  
ARTS 
Athapascan-0b 
Aurora 
Automap 
bb_threads  
Blaze 
BSP 
BlockComm  
C*.  
"C* in C  
C**  
CarlOS 
Cashmere 
C4 
CC++  
Chu 
Charlotte 
Charm 
Charm++ 
Cid 
Cilk 
CM-Fortran  
Converse 
Code 
COOL 

CORRELATE  
CPS  
CRL 
CSP 
Cthreads  
CUMULVS 
DAGGER 
DAPPLE  
Data Parallel C  
DC++  
DCE++  
DDD 
DICE. 
DIPC  
DOLIB 
DOME  
DOSMOS. 
DRL 
DSM-Threads 
Ease . 
ECO 
Eiffel  
Eilean  
Emerald  
EPL  
Excalibur 
Express 
Falcon 
Filaments 
FM 
FLASH 
The FORCE  
Fork 
Fortran-M 
FX 
GA  
GAMMA  
Glenda 

GLU 
GUARD 
HAsL. 
Haskell  
HPC++ 
JAVAR. 
HORUS 
HPC 
IMPACT 
ISIS. 
JAVAR 
JADE  
Java RMI 
javaPG 
JavaSpace 
JIDL 
Joyce 
Khoros 
Karma  
KOAN/Fortran-S 
LAM 
Lilac  
Linda 
JADA  
WWWinda 
ISETL-Linda  
ParLin  
Eilean  
P4-Linda 
Glenda  
POSYBL 
Objective-Linda 
LiPS 
Locust 
Lparx 
Lucid 
Maisie  
Manifold 

Mentat 
Legion 
Meta Chaos  
Midway 
Millipede 
CparPar 
Mirage 
MpC 
MOSIX 
Modula-P 
Modula-2* 
Multipol 
MPI 
MPC++ 
Munin 
Nano-Threads 
NESL 
NetClasses++  
Nexus 
Nimrod 
NOW 
Objective Linda 
Occam 
Omega 
OpenMP 
Orca 
OOF90 
P++ 
P3L 
p4-Linda 
Pablo 
PADE 
PADRE  
Panda  
Papers  
AFAPI. 
 Para++ 
Paradigm 

Parafrase2  
Paralation  
Parallel-C++  
Parallaxis 
ParC  
ParLib++ 
ParLin 
Parmacs 
Parti 
pC 
pC++ 
PCN 
PCP:  
PH 
PEACE 
PCU 
PET 
PETSc 
PENNY 
Phosphorus  
POET. 
Polaris  
POOMA 
POOL-T 
PRESTO 
P-RIO  
Prospero 
Proteus  
QPC++  
PVM 
PSI 
PSDM 
Quake 
Quark 
Quick Threads 
Sage++ 
SCANDAL 
 SAM 

pC++  
SCHEDULE 
SciTL  
POET  
SDDA. 
SHMEM  
SIMPLE 
Sina  
SISAL. 
distributed smalltalk  
SMI. 
SONiC 
Split-C. 
SR 
Sthreads  
Strand. 
SUIF. 
Synergy 
Telegrphos 
SuperPascal  
TCGMSG. 
Threads.h++. 
TreadMarks 
TRAPPER 
uC++  
UNITY  
UC  
V  
ViC*  
Visifold V-NUS  
VPE 
Win32 threads  
WinPar  
WWWinda  
 XENOOPS   
XPC 
Zounds 
ZPL 

Language acceptance is not a technical issue; it is a social and commercial issue too 



Domain Decomposition 
Done Well: Load Balanced 

• You have to spread something out. 
• These can theoretically be many types of 

abstractions: work, threads, tasks, processes, 
data,… 

• But what they will be is your data.  And then 
you will use MPI, and possibly OpenMP, to 
operate on that data. 

• A parallel algorithm can only be as fast as the 
slowest chunk. 

– Balance the number crunching 
– Might be dynamic 

• Communication will take time 
– Usually orders of magnitude difference 

between registers, cache, memory, 
network/remote memory, disk 

– Data locality and “neighborly-ness” matters 
very much. 

Parallel Programming Summary 

Split large 
Task into 
Equal smaller 
ones 



How do we program Parallel Computers today ? 
• Message Passing –  write programs that exist on each processor and pass 

messages to communicate data between the processors. 
• Threads –  write programs that involve setting up interacting execution 

streams of instructions that share data . 
• Open MP, OPENACC  write serial programs and then modify the 

programs by inserting directives to tell the compiler how to parallelize that 
part of the code. 

• Use a specialist parallel programming language such as UPC (Unified 
Parallel C) , CUDA  

• Maybe use a dataflow language like CnC: Concurrent collections 

Typically message passing is used to communicate between processors while 
Open MP or threads are used when processors ( or cores ?) share memory 
New languages are attractive - if only they would take off and persist! 

Example - Dot Product 

1

n

i i
i

Sum a b
=

= ∑



 
 

  
   Sequential Dot Product 
   int main(argc,argv) 
   int argc; 
   char *argv[]; 
   {double sum;  double a[256], b[256]; 
    int n;  
    n =256; 
    for (i =0; i < n; i++) { 
       a[i] = i*0.5; 
       b[i] = i*2.0;    } 
    sum = 0.0; 
    for (i = 1; i<n; i++) { 
       sum =sum + a[i]*b[i]; 
    } 
    printf (" sum= %f",sum); 
    } 



 
 

    Dot Product OPENMP version 
   int main(argc,argv) 
   int argc; 
   char *argv[]; 
   {double sum;  double a[256], b[256]; 
    int n;     n =256; 
#pragma omp parallel for private(i) shared(a,b) 
    for (i =0; i < n; i++) { 
       a[i] = i*0.5; 
       b[i] = i*2.0; 
    } 
    sum = 0.0; 
 #pragma omp for reduction (+:sum)  
    for (i = 1; i<n; i++) { 
       sum =sum + a[i]*b[i]; 
    } 
    printf (" sum= %f",sum); 
    } 



 
 

                                              MPI  VERSION 
   int main(argc,argv)                                                      
   int argc;    char *argv[]; 
   {double sum, sum_local;  double a[256], b[256]; 
    int n; numprocs, myid, my_first, my_last; 
    n = 256; 
 
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
    my_first = myid*n/numprocs; 
    my_last  = (myid+1) * n/numprocs; 
 
    for (i =0; i < n; i++) { 
       a[i] = i*0.5;    b[i] = i*2.0;            } 
    sum = 0.0; 
    for (i = my_first; i< my_last; i++) { 
       sum_local =sum_local  + a[i]*b[i];  } 
    MPI_Allreduce(&sum_local,&sum, 1,MPI_DOUBLE, MPI_SUM, 
                                MPI_COMM_WORLD); 
    if(myid == 0)printf (" sum= %f",sum); 
    } 
 



UPC demo program for the dot product of vectors x and y.  
We use upc_forall to compute partial sums and then use a upc_lock to  
protect the part where we reduce the individual partial sums to the total dot product.  
The other part of the demo is to show difference between the blocked and cyclic  
distribution. The arrays x_cyc and y_cyc are declared with block size 1 and 
 arrays x_blk and y_blk are declared with [* ]] block size.  
This can't change the results, but it does change the partial sums collected by each thread.  
 
<dotproduct.c>=  
//dotproduct.c -- simple dot product //Intro: upc_forall, locks, cyclic vs blocked  
#include <stdio.h> #include <upc.h>  
#define NperTHREAD 100  
#define SIZE (NperTHREAD * THREADS)  
#define BLOCK NperTHREAD  
 
shared float dot_cyc, dot_blk;  
shared float x_cyc[SIZE], y_cyc[SIZE];  
shared [*] float x_blk[SIZE], y_blk[SIZE];  
upc_lock_t *dotlock;  

http://www.upc.mtu.edu/tutorials/dotprod1.html#NWDBPm3W-1


main () 

{ int i; float mydot;  
dotlock = upc_all_lock_alloc();  
upc_lock_init( dotlock ); 
if(MYTHREAD == 0) dot_blk = dot_cyc = 0.0; upc_barrier(0); 
 // "affinity" is an int so it is (i mod THREADS)  
upc_forall( i=0; i< SIZE; i++; i ) 
   { x_cyc[i] = (float) i; y_cyc[i] = x_cyc[i]; 

      x_blk[i] = (float) i; y_blk[i] = x_blk[i]; }  
upc_barrier(1);  
mydot = 0.0;  
// "affinity" is found from affinity of x_cyc[i]  
upc_forall( i=0; i< SIZE; i++; &x_cyc[i] )  
       mydot += x_cyc[i] * y_cyc[i];  
 printf ("Process %2d holds %g (cyclic)\n", MYTHREAD, mydot);  
upc_lock(dotlock);  
    dot_cyc = dot_cyc + mydot;  
upc_unlock(dotlock);  

upc_barrier(2);  
 



 
if( MYTHREAD == 0 )  
    printf("Total (cyclic) is %g\n", dot_cyc);  
upc_barrier(3);  
mydot = 0.0;  
// "affinity" is found from affinity of x[i]  
 
upc_forall( i=0; i< SIZE; i++; &x_blk[i] )  
    mydot += x_blk[i] * y_blk[i];  
 
printf ("Process %2d holds %g (blocked)\n", MYTHREAD, mydot); 
upc_lock(dotlock);  
     dot_blk = dot_blk + mydot;  
upc_unlock(dotlock);  
upc_barrier(2);  
if( MYTHREAD == 0 )  
   printf("Total (blocked) is %g\n", dot_blk);  

}  



Message Passing 
• Pros 

– Flexible and very widely used, low level 
– Efficient what the machine does anyway 
– Implementations Solid excpet perhaps on latest machines  
– Algorithmic Support – much existing knowledge  
– Debugging Support – except on very large machines 

• Cons 
– Lower level means more detail for the coder 
– Debugging requires more attention to detail 
– Development usually requires a “start from scratch” approach 
– Domain decomposition and memory management must be explicit 

Has been around a longtime (~20 years inc. PVM) 
Dominant standard 
Will be around a longtime (on all new platforms/roadmaps) 
Lots of libraries 
Lots of algorithms 
Very scalable (500K+ cores right now) 
Portable 
Works with hybrid models accelerators  GPUs 

MPI 



Data Parallel 
Only one executable. 
Do computation on arrays of data 

using array operators. 
Do communications using array shift 

or rearrangement operators. 
Good for problems with static load 

balancing that are array-
oriented SIMD machines. 

Variants: 
 FORTRAN 90 
 CM FORTRAN 
 HPF 
 C* 
 GPU Langauges (CUDA) 

Pros: 
1. Scales transparently to 

different size machines 
2. Easy debugging, as there I 

sonly one copy of code 
executing in highly 
synchronized fashion 

 
Cons: 
1. Much wasted synchronization 
2. Sometimes difficult to balance 

load 
 



Threads 
Splits up tasks (as opposed to arrays 

in data parallel) such as loops 
amongst separate processors. 

Do communication as a side effect of 
data loop distribution. Not an big 
issue on shared memory 
machines.  Impossible on 
distributed memory. 

Common Implementations: 
 pthreads (Unix standard) 
 OpenMP 

Strengths: 
1. Doesn’t perturb data structures, 

so can be incrementally added 
to existing serial codes. 

Weaknesses: 
1. Serial code left behind will be 

problematic  
2. Can only be used at socket or 

shared memory machine. 



OpenMP Pros and Cons  
• Simple additions to  existing code 
 
• Standard and widely available (supported at compiler 

level)  e.g.  gcc intel  PGI IBM 
 

• Compiler directives are generally simple and easier to use 
than thread API’s 

• In general, only moderate speedups can be achieved.as 
OpenMP codes tend to have serial-only portions, 

• Can only really be run on a socket or in shared memory 
environments 

• High Startup costs 



Partitioned Global Address Space: (PGAS) 

Multiple threads share at least a 
part of a global address 
space. 

Can access local and remote data 
with same mechanisms. 

Can distinguish between local and 
remote data with some sort 
of typing. 

Variants: 
 Co-Array Fortran (CAF) 
 Unified Parallel C (UPC) 

Strengths: 
Looks like SMP on a distributed memory machine. 
* Currently translates code into an underlying message 

passing version for efficiency. 
Weaknesses: 
Immature and depends on * to be efficient. 
Can easily write lots of expensive remote memory access 

without paying attention. 
 

STILL EVOLVING 
AND NOT WIDELY 
USED but can do well => 



Frameworks 

• Charm++ 
– Object-oriented parallel 

extension to C++ 
– Run-time engine allows 

work to be “scheduled” on 
the computer. 

– Highly-dynamic, extreme 
load-balancing capabilities. 

– Completely asynchronous. 
– NAMD, a very popular MD 

simulation engine is written 
in Charm++ 
 
 

One of the more experimental approaches that is gaining some traction is to 
use a parallel framework that handles the load balancing and messaging 
while you “fill in” the science.  Charm++ is a popular example: 



Hybrid Coding 
• Problem: given the engineering constraint of a machine 

made up of a large collection of multi-core processors, how 
do we use message passing at the wide level while still 
taking advantage of the local shared memory? 

 
• Solution (at least one): Hybrid Coding. 

 
• As the most useful MP library is MPI, and the most useful 

SM library is OpenMP, the obvious mix is MPI and 
OpenMP. 
 

• But, one must design the MPI layer first, and them apply the 
OpenMP code at the node level.  The reverse is rarely a 
viable option. 

 
 



A Few Coding Hints 
• Minimize  Eliminate serial sections of code 

 
• Minimize communication overhead 

– Choose algorithms that emphasize nearest neighbor communication 
– Overlap computation and communication with asynchronous 

communication models if possible  
• Dynamic load balancing (at least be aware of issue) 
• Minimize I/O and learn how to use parallel I/O 

– Very expensive time wise, so use sparingly (and always binary) 
• Choose the right language for the job! 
• Plan out your code beforehand. 

– Because the above won’t just happen late in development 
– Transforming a serial code to parallel is rarely the best strategy 
– Consider stateless functions as a coding model 

 
 

 
 



Weak and Strong Scalability:  

Problem size n on p cores takes time T(n,p)  

Strong Scalability   ( , ) ( ,1) /T n p T n p=

Weak Scalability 
 
Solve a problem that is p times as large in the same time on  
p cores  

( , ) ( ,1)T np p T n=

Both weak and strong scalability  only if linear complexity 
[Tirado + Martin] 1998 ( ,1)T n nα=

Theorem  

Try to solve the same problem p times more quickly on p cores 



 
 Weak and Strong Scalability? 

Weak Scaling 
6 runs with 
Constant Problem 
Size per Core  
----------- 
should give constant 
time per time step 

Four Strong scaling runs ____ Fixed problem size time 
should be half when no       of cores is doubled  

Runs with Uintah on DOEs Titan Machine by Qingyu Meng 2012 



CHPC has a number of parallel machines including the Updraft and 
Ember systems system 

The class will use the Telluride cluster and some of the Turretarch 
nodes for development 

National Resources from NSFs XSEDE network may be available 
Cade lab for shared memory 

WHAT DO WE RUN OUR PARALLEL PROGRAMS ON? 

For Research we use the largest NSF and DOE  
(soon) DoD machines  currently use 3 of the top 8 fastest 
Machines in the world 



Course Topics and Structure  
 

• Introduction to parallel computing: machines, MPI, performance, etc   
• Embarrassingly parallel and synchronous parallel computing  
• Partitioning and efficiency  
• Sorting linear algebra and image processing in parallel 
• OpenMP OPENACC and threads 
• Advanced load balancing  
• Future of HPC architectures and software  

 
      Questions? 



COURSE TEXT(s) 
• Wilkinson B and Allen M,Parallel Programming: techniques and 

applications using networked workstations and parallel computers, 
Prentice Hall, 2005 ( Essential but low level)  
 

• B.Chapman G.Jost R Van der Pas. Using OpenMP.MIT Press. 2008 
(Useful) 
 

• MPI  Parallel Programming with MPI by Peter Pacheco  Morgan 
Kaufmann Publishers Inc.C and Fortran programs available from 
http://fawlty.cs.usfca.edu/mpi (Useful) 
 

• Designing and Building Parallel Programs by Ian Foster Addison-
Wesley (1995); A Good online general text. 



Message Passing Interface MPI  tutorials 
 

• Message passing system MPICH - see /usr/local/mpich portable version of MPI  
 

• http://www-unix.mcs.anl.gov/mpi/mpich/ 
 

• See course webpage - includes a guide on how to use the machines  
 

• http://www-unix.mcs.anl.gov/mpi/tutorial/ 
 

     http://www.mpi.nd.edu/mpi/tutorials/current/ 
 
     http://www.nas.nasa.gov/Groups/SciCon/Tutorials/MPIintro/ 
 
    http://www.epcc.ed.ac.uk/epcc-tec/documents/mpi-course/mpi-course.book_2.html 

 
 



Summary 

• Parallel computing makes it possible to solve problems of a size that 
was previously impossible in times that were hitherto impossible 

• Machines are both growing in size in terms of the numbers of cores 
and numbers of sockets. Power consumption is a real issue.  

• Scalability of such systems is challenging at both algorithmic and 
programming levels. 

• Programming for the near future will probably still consist of MPI 
but coupled to Openmp or some other multi-core programming or 
accelerator approach at socket level  

• Understanding scalable algorithms and programs is a key part of this 
class   
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	�if( MYTHREAD == 0 ) �    printf("Total (cyclic) is %g\n", dot_cyc); �upc_barrier(3); �mydot = 0.0; �// "affinity" is found from affinity of x[i] ��upc_forall( i=0; i< SIZE; i++; &x_blk[i] ) �    mydot += x_blk[i] * y_blk[i]; ��printf ("Process %2d holds %g (blocked)\n", MYTHREAD, mydot); upc_lock(dotlock); �     dot_blk = dot_blk + mydot; �upc_unlock(dotlock); �upc_barrier(2); �if( MYTHREAD == 0 ) �   printf("Total (blocked) is %g\n", dot_blk); �} 
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