OPEN MP and MPI on Kingspeak chpc cluster

Command to compile the code with openmp and mpi

/uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/bin/mpicc -o hem hemhotlz.c-I
/uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/include -
L/uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/lib -fopenmp -
L/uufs/kingspeak.peaks/sys/pkg/openmpi/1.6.5/include
Where hem is the executable file of hemhotlz.c program

Command and script to run the code

PBS script

```
#PBS -S /bin/bash
```

\#kingspeak has 16 core nodes (2 sockets, 8 cores each), so, you have to ask
\#PBS -I nodes=2:ppn=16,walltime=00:05:00
\#PBS -M u0877805@utah.edu
\#PBS -N myjob
\#PBS -A CS6230
\# \# Create scratch directory
\# mkdir -p /scratch/kingspeak/serial/\$USER/\$PBS_JOBID
\# \# Go to the scratch directory
\# cd /scratch/kingspeak/serial/\$USER/\$PBS_JOBID
\# \# Copy data files to the scratch directory
\# cp \$HOME/hem.
\#Then, you have to massage the host file to only include number of lines that's equal to number of MPI processes you want to run. Also, on node with 2 sockets 8 cores each I'd run 2 MPI processes
cat \$PBS_NODEFILE \| uniq > nodefile1
cat nodefile1 nodefile1 | sort > nodefile
\# \# Execute the parallel job using OpenMPIsource
/uufs/kingspeak.peaks/sys/pkg/openmpi/std_intel/etc/openmpi.sh
mpirun -np 1 -machinefile nodefile -bysocket -bind-to-socket -x OMP_NUM_THREADS=8 ./hem >>
output_kingspeak

Modify the hemholtz.c to see the number of open mp threads, in the current program omp_get_num_threads() will return 1 as it is not in parallel code

```
#ifdef _OPENMP
    #pragma omp parallel
    {
        int nthreads = omp_get_num_threads();
    fprintf(stdout,"Called % d thread(s)\n",myproc,nproc,ii,nthreads);
}
#else
    nthreads = 1;
#endif
```

//output of the program for $m=5$ and $n=5$,proc=2 ,threads=8
//15 iterations
HELMHOLTZ
C version

A program which solves the 2D Helmholtz equation.
This program includes Open MP directives, so that it can be run sequentially, or in parallel.

This program is being run in parallel.
The number of processors available:
OMP_GET_NUM_PROCS () = 16
The number of threads available:
OMP_GET_NUM_THREADS () = 1
Called 8 thread(s)
The region is $[-1,1] \times[-1,1]$.
The number of nodes in the X direction is $M=5$

The number of nodes in the Y direction is $\mathrm{N}=5$
Number of variables in linear system M * N = 25
The scalar coefficient in the Helmholtz equation is ALPHA $=0.250000$
The relaxation value is OMEGA $=1.100000$
The error tolerance is TOL $=0.000100$
The maximum number of Jacobi iterations is IT_MAX $=20$
Right hand side I 2 norm $=10.578621$
1 Residual RMS 0.026040
2 Residual RMS 0.017182
3 Residual RMS 0.011438
4 Residual RMS 0.007616
5 Residual RMS 0.005072
6 Residual RMS 0.003377
7 Residual RMS 0.002249
8 Residual RMS 0.001498
9 Residual RMS 0.000998
10 Residual RMS 0.000665
11 Residual RMS 0.000443
12 Residual RMS 0.000295
13 Residual RMS 0.000197
14 Residual RMS 0.000132
15 Residual RMS 0.000088
Total number of iterations 15

Computed U I2 norm : $\quad 2.120244$
Computed U_EXACT I2 norm : 2.125000
Error 12 norm: 0.004765
HELMHOLTZ
Normal end of execution.
16 April 2014 01:25:17 PM
//output for $\mathrm{m}=15 \mathrm{n}=15$ proc=2 threads=8
//21 iterations
16 April 2014 01:46:06 PM
HELMHOLTZ
C version
A program which solves the 2D Helmholtz equation.
This program includes Open MP directives, so that it can be run sequentially, or in parallel.

This program is being run in parallel.

The number of processors available:
OMP_GET_NUM_PROCS () = 16

The number of threads available:
OMP_GET_NUM_THREADS () = 1
Called 8 thread(s)

The region is $[-1,1] \times[-1,1]$.
The number of nodes in the X direction is $M=15$
The number of nodes in the Y direction is $N=15$
Number of variables in linear system $\mathrm{M}^{*} \mathrm{~N}=225$
The scalar coefficient in the Helmholtz equation is ALPHA $=0.250000$
The relaxation value is OMEGA $=1.100000$
The error tolerance is TOL $=0.000100$
The maximum number of Jacobi iterations is IT_MAX = 20
Right hand side 12 norm $=40.105565$
1 Residual RMS 0.000908
2 Residual RMS 0.000870
3 Residual RMS 0.000839
4 Residual RMS 0.000811
5 Residual RMS 0.000785
6 Residual RMS 0.000760
7 Residual RMS 0.000737
8 Residual RMS 0.000714
9 Residual RMS 0.000693
10 Residual RMS 0.000672
11 Residual RMS 0.000652
12 Residual RMS 0.000633
13 Residual RMS 0.000614
14 Residual RMS 0.000596
15 Residual RMS 0.000579
16 Residual RMS 0.000562
17 Residual RMS 0.000545
18 Residual RMS 0.000530
19 Residual RMS 0.000514
20 Residual RMS 0.000499

Total number of iterations 21

Computed U I2 norm : $\quad 3.333961$
Computed U_EXACT I2 norm : 7.466472
Error I2 norm: 4.143507

HELMHOLTZ
Normal end of execution.
16 April 2014 01:46:06 PM

