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Chapter 4 

Partitioning 
 and Divide-and-Conquer Strategies 
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Partitioning 
Partitioning simply divides the problem into parts. 

Divide and Conquer 
Characterized by dividing problem into sub-problems of 
same form as larger problem. Further divisions into still 
smaller sub-problems, usually done by recursion. 

Recursive divide and conquer amenable to parallelization 
because separate processes can be used for divided parts. 
Also usually data is naturally localized. 
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Partitioning/Divide and Conquer 
 Examples 

Many possibilities. 

• Operations on sequences of number such as 
simply adding them together 
 
• Several sorting algorithms can often be 
partitioned or constructed in a recursive fashion 
 
• Numerical integration 
 
• N-body problem 
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Numerical integration using rectangles 
Each region calculated using an approximation given by 
rectangles: 
Aligning the rectangles: 
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Numerical integration using 
trapezoidal method 

May not be better! 
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Adaptive Quadrature 
Solution adapts to shape of curve. Use three areas, A, B, 
and C. Computation terminated when largest of A and B 
sufficiently close to sum of remain two areas . 
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Adaptive quadrature with 
false termination. 

Some care might be needed in choosing when to terminate. 

Might cause us to terminate early, as two large regions are 
the same (i.e., C = 0). 
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/********************************************************************************* 
pi_calc.cpp calculates value of pi and compares with actual  
value (to 25digits) of pi to give error. Integrates function f(x)=4/(1+x^2). 
July 6, 2001 K. Spry CSCI3145 
**********************************************************************************/ 
#include <math.h> //include files 
#include <iostream.h> 
#include "mpi.h“ 
 
void printit();                                                             //function prototypes 
int main(int argc, char *argv[]) 
{ 
double actual_pi = 3.141592653589793238462643; 
                                                                               //for comparison later 
int n, rank, num_proc, i; 
double temp_pi, calc_pi, int_size, part_sum, x; 
char response = 'y', resp1 = 'y'; 
MPI::Init(argc, argv);                                             //initiate MPI 
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num_proc = MPI::COMM_WORLD.Get_size(); 
rank = MPI::COMM_WORLD.Get_rank(); 
if (rank == 0) printit();             /* I am root node, print out welcome */ 
 
while (response == 'y') { 
 if (resp1 == 'y') { 
 if (rank == 0) {            /*I am root node*/ 
 cout <<"__________________________________" <<endl; 
 cout <<"\nEnter the number of intervals: (0 will exit)" << endl; 
 cin >> n;} 
} else n = 0; 
 
MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);     //broadcast n 
if (n==0) break; //check for quit condition 
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else { 
int_size = 1.0 / (double) n;                          //calcs interval size 
part_sum = 0.0; 
 
for (i = rank + 1; i <= n; i += num_proc) 
 {                                                               //calcs partial sums 
 x = int_size * ((double)i - 0.5); 
 part_sum += (4.0 / (1.0 + x*x)); 
} 
temp_pi = int_size * part_sum; 
                                       //collects all partial sums computes pi 
 
MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1, 
MPI::DOUBLE, MPI::SUM, 0); 
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if (rank == 0) {                                                     /*I am server*/ 
cout << "pi is approximately " << calc_pi 
<< ". Error is " << fabs(calc_pi - actual_pi) 
<< endl 
<<"_______________________________________" 
<< endl; 
} 
}                                                                        //end else 
if (rank == 0) { /*I am root node*/ 
cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1; 
} 
}//end while 
MPI::Finalize();                                              //terminate MPI 
return 0; 
}                                                                   //end main 
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