
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Chapter 4

Partitioning
 and Divide-and-Conquer Strategies

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.1

Partitioning
Partitioning simply divides the problem into parts.

Divide and Conquer
Characterized by dividing problem into sub-problems of
same form as larger problem. Further divisions into still
smaller sub-problems, usually done by recursion.

Recursive divide and conquer amenable to parallelization
because separate processes can be used for divided parts.
Also usually data is naturally localized.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.2

Partitioning/Divide and Conquer
 Examples

Many possibilities.

• Operations on sequences of number such as
simply adding them together

• Several sorting algorithms can often be
partitioned or constructed in a recursive fashion

• Numerical integration

• N-body problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.15

Numerical integration using rectangles
Each region calculated using an approximation given by
rectangles:
Aligning the rectangles:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.16

Numerical integration using
trapezoidal method

May not be better!

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.17

Adaptive Quadrature
Solution adapts to shape of curve. Use three areas, A, B,
and C. Computation terminated when largest of A and B
sufficiently close to sum of remain two areas .

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.18

Adaptive quadrature with
false termination.

Some care might be needed in choosing when to terminate.

Might cause us to terminate early, as two large regions are
the same (i.e., C = 0).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 3.19

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.20

/***
pi_calc.cpp calculates value of pi and compares with actual
value (to 25digits) of pi to give error. Integrates function f(x)=4/(1+x^2).
July 6, 2001 K. Spry CSCI3145
**/
#include <math.h> //include files
#include <iostream.h>
#include "mpi.h“

void printit(); //function prototypes
int main(int argc, char *argv[])
{
double actual_pi = 3.141592653589793238462643;
 //for comparison later
int n, rank, num_proc, i;
double temp_pi, calc_pi, int_size, part_sum, x;
char response = 'y', resp1 = 'y';
MPI::Init(argc, argv); //initiate MPI

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.21

num_proc = MPI::COMM_WORLD.Get_size();
rank = MPI::COMM_WORLD.Get_rank();
if (rank == 0) printit(); /* I am root node, print out welcome */

while (response == 'y') {
 if (resp1 == 'y') {
 if (rank == 0) { /*I am root node*/
 cout <<"__________________________________" <<endl;
 cout <<"\nEnter the number of intervals: (0 will exit)" << endl;
 cin >> n;}
} else n = 0;

MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0); //broadcast n
if (n==0) break; //check for quit condition

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.22

else {
int_size = 1.0 / (double) n; //calcs interval size
part_sum = 0.0;

for (i = rank + 1; i <= n; i += num_proc)
 { //calcs partial sums
 x = int_size * ((double)i - 0.5);
 part_sum += (4.0 / (1.0 + x*x));
}
temp_pi = int_size * part_sum;
 //collects all partial sums computes pi

MPI::COMM_WORLD.Reduce(&temp_pi,&calc_pi, 1,
MPI::DOUBLE, MPI::SUM, 0);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 4.23

if (rank == 0) { /*I am server*/
cout << "pi is approximately " << calc_pi
<< ". Error is " << fabs(calc_pi - actual_pi)
<< endl
<<"_______________________________________"
<< endl;
}
} //end else
if (rank == 0) { /*I am root node*/
cout << "\nCompute with new intervals? (y/n)" << endl; cin >> resp1;
}
}//end while
MPI::Finalize(); //terminate MPI
return 0;
} //end main

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

