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ABSTRACT

Computed tomography (CT) has been extensively studied and widely used for a variety of medi-
cal applications. The reconstruction of 3D images from a projection series is an important aspect
of the modality. Reconstruction by filtered backprojection (FBP) is used by most manufacturers
because of speed, ease of implementation, and relatively few parameters. Iterative reconstruc-
tion methods have a significant potential to provide superior performance with incomplete or
noisy data, or with less than ideal geometries, such as cone-beam systems. However, iterative
methods have a high computational cost, and regularization is usually required to reduce the
effects of noise. The simultaneous algebraic reconstruction technique (SART) is studied in this
paper, where the Feldkamp method (FDK) for filtered back projection is used as an initialization
for iterative SART. Additionally, graphics hardware is utilized to increase the speed of SART
implementation. Nvidia processors and compute unified device architecture (CUDA) form the
platform for GPU computation. Total variation (TV) minimization is applied for the regulariza-
tion of SART results. Preliminary results of SART on 3-D Shepp-Logan phantom using using
TV regularization and GPU computation are presented in this paper. Potential improvements
of the proposed framework are also discussed.
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1. INTRODUCTION

Computed tomography (CT)1 has been widely used in modern medical and industrial appli-
cations. It is usually applied to reconstruct a three-dimensional (3D) object from a series of
two-dimensional (2D) X-ray projections. CT reconstruction methods can be roughly categorized
as analytical reconstruction methods such as filtered backprojection (FBP) methods and iterative
reconstruction methods such as algebraic methods.

FBP methods are based on the Fourier slice theorem,1 which means the Fourier transform of
a parallel projection of a 2D object taken at a specific angle is equal to the 2D Fourier transform
of the object along a line rotated by that angle. FBP methods are implemented by calculating
the Fourier transform of each projection, multiplying the results using a weighting function,
and backprojecting the weighting results over the image plane. In practice an FBP algorithm
specifically designed to approximate cone beam geometries, proposed by Feldkamp,2 is used by
most manufacturers for efficiency.
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FBP methods, however, require sufficient projection data with low noise level. This, combined
with the approximations used for cone-beam acquisitions, results in reconstruction artifacts. Al-
gebraic reconstruction methods have a significant potential to provide superior performance with
incomplete and noisy data, particularly in the context of cone-beam acquisitions. These algebraic
or iterative methods formulate the reconstruction problem as finding an array of unknowns using
algebraic equations from the projection data. Specific algorithms, such as the algebraic recon-
struction technique (ART) and the simultaneous algebraic reconstruction Technique (SART),1

differ in the formulation of the objective and update strategy. Algebraic reconstruction methods
require less data than FBP methods,3 and they are more robust to the effects of noise. Fur-
thermore, these methods can include nonlinear regularization terms—the equivalent of the linear
filters used in FBP.

The iterative nature of algebraic methods poses a computational challenge, and the regular-
ization of the solutions further increases the computation time. Many improvements on algebraic
methods456789 have recently been proposed. The methods proposed in457 apply regularization
methods to image reconstruction. The methods in89 utilize graphics processing unit (GPU)
to speed up the SART method. While Cg10 is applied in8 and OpenGL texture mapping11 is
utilized in9 for speed-up, both platforms are nontrivial to implement.

The recently proposed API for graphics cards, called compute unified device architecture
(CUDA), is more general for GPU computing, and is used in this paper to speed up the SART
algorithm. Furthermore we use total variation (TV) minimization to regularize the SART algo-
rithm. Preliminary results of the proposed method are provided in this paper.

This paper is organized as follows. Section 2 introduces the background information. The
proposed method is shown in Section 3. Experimental results are provided in Section 4. Section 5
contains the summary and the future work.

2. BACKGROUND

2.1 FBP

FBP methods reconstruct an object using Fourier transforms. They generally entail three steps.
First, the Fourier transform Sθ(w) for each projection Pθ(t) is calculated. Second, the Fourier
transformation Sθ(w) is multiplied with the weighting function 2π|w|/K in the frequency domain,
where w ∈ [−Wm,Wm] represents the bandlimited frequency and K is the number of projections.
Wm is the maximum frequency related to the sampling interval during data acquisition. This
step is usually implemented by a convolution in the time domain. Third, the inverse Fourier
transforms of the filtered projections are summarized over the image plane (the backprojection
process).

The reconstruction results from FBP methods are affected by the imaging beam types: par-
allel beam, equiangular fan beam, and equidistant fan beam. Fig. 1 shows an example of FBP
reconstruction of a 2D object using the projections from the equidistant fan beam. It can be
seen from Fig. 1(c) that the reconstruction is good except for some artifacts in the background.

Three-dimensional cone beam geometry is a 3D generalization of the 2D equidistant fan
beam geometry, and results when a 3D object is irradiated with a point source and the x-ray
transmission is measured on a plane using 2D equidistant fan beams. This mechanism is quite
efficient. The Feldkamp algorithm (FDK)2 is a practical FBP algorithm designed for 3D cone
beam reconstruction. It is fast to compute, but only approximate, and results in reconstruction
artifacts off of the center axis.
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Figure 1. Illustration of FBP reconstruction. (a) Original synthetic image. (b) Projection of (a) using
equidistant fan beam. (c) FBP reconstruction using (b).

2.2 SART

Algebraic reconstruction methods are designed to solve the following simultaneous equation
system

pi =
N∑

j=1

wijvj (1)

where pi represents the ith projection, wij represents the weight which the voxel vj contributes
its value to the projection i. Reconstruction is achieved by finding vj from the equation system
(1).

The SART algorithm solves the equation system by iteratively applying a correction array to
each voxel vj as follows

vk+1
j = vk

j + λ

∑
i

{
wij

pi−
∑N

m=1
wimvk

m∑N

m=1
wim

}

∑
i wij

(2)

where λ is a constant coefficient.

It has been proved that the SART algorithm converges globally to the solution of a weighted
least square problem for λ ∈ (0, 2).12 An initial condition for the reconstruction vj needs to be
specified for iterative updates in the implementation.

2.3 Total Variation Minimization

Total variation minimization13 is a nonlinear image denoising method that performs a gradient
descent on the total variation of the image. Given an image f defined on domain Ω, this method
seeks a smoothed image u which minimizes the following energy functional

F (u) =
∫

Ω

‖∇u‖ +
α

2

∫

Ω

‖u − f‖2 (3)

where α is a constant coefficient. This penalty has the nice property of allowing (or preserving)
straight, sharp edges, and thus allows solutions to have a piecewise flat property. It has been,
very recently, tied to the more general method of compressed sensing.14
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Figure 2. Illustration of TV smoothing. (a) Original image with noise. (b) Image smoothed using TV
with α = 0.1. (c) Image smoothed using TV with α = 0.5.

The minimization of the energy functional (3) is numerically calculated using the following
updating scheme

un+1 − un

�t
= ∇ · ∇un

‖∇un‖ − α(u − f) (4)

The minimization is iteratively processed until convergence.

Fig. 2 illustrates the smoothing effects of TV. Fig. 2(b) shows the TV results from the
original image Fig. 2(a) with the coefficient α = 0.1, and Fig. 2(c) shows the TV results with the
coefficient α = 0.5. It can be seen that the TV results contain less noise than the original image
and that the results in Fig. 2(c) are closer to the original image with larger α.

3. PROPOSED METHOD

An integrated method is proposed in this paper to combine FBP, SART, TV, and GPU. Although
SART is proved to converge, the initialization may make a difference on efficiency. In the
proposed method, the reconstruction results from FDK are utilized as the initialization for SART.
The TV method is applied after each iteration of SART to reduce the effects of noise. The
proposed method takes the following steps for algebraic reconstruction.

Step 1. Perform FBP reconstruction for SART initialization,

Step 2. Perform TV on FBP results using (4),

Step 3. Compute image projection for each ray, i.e., p̂i =
∑N

m=1 wimvk
m,

Step 4. Compute correction image for each voxel, i.e., (pi − p̂i)/
∑N

m=1 wim,

Step 5. Perform image backprojection based on (2),

Step 6. Perform TV on SART results using (4),

where Steps 3-6 are iterated until convergence.

The proposed method is implemented using both CPU and GPU. CUDA is utilized for the
GPU implementation on the Nvidia Geforce 8800 hardware. Allocation of the SART and TV
algorithms on Nvidia’s GT200 GPUs is in process. Because Step 4 has to be implemented in
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CPU,9 Step 3 and 5 are implemented using GPU. In the GPU implementation of Step 3, the
3D projection data are divided into smaller blocks, and the image projections on all these small
blocks are computed simultaneously. The 3D volume data are divided into small blocks for
parallel backprojection in Step 5.

4. EXPERIMENTAL RESULTS

Experimental results from the proposed method are shown in this section. The 3D Shepp-Logan
head phantom, whose parameters are shown in Table 1, is used for performance evaluation. The
head phantom comprises of 10 ellipsoids. The locations and the sizes of the ellipsoids are taken
as those in.1 The gray levels are revised to enhance the contrast between ellipsoids.

Table 1. Parameters of the revised 3D Shepp-Logan head phantom. The locations and the sizes of
the ellipsoids are the same as those in.1 The gray levels are revised to enhance the contrast between
ellipsoids.

Ellipsoid Center Coordinates Axis Lengths Rotation angle Gray Level

a (0, 0, 0) (0.69, 0.92, 0.9) 0 2.0

b (0, 0, 0) (0.6624, 0.874, 0.88) 0 -0.9

c (-0.22, 0, -0.25) (0.41, 0.16, 0.21) 108 -0.2

d (0.22, 0, -0.25) (0.31, 0.11, 0.22) 72 -0.2

e (0, 0.1, -0.25) (0.046, 0.046, 0.046) 0 -0.2

f (0, 0.1, -0.25) (0.046, 0.046, 0.046) 0 0.2

g (-0.8, -0.65, -0.25) (0.046, 0.023, 0.02) 0 0.1

h (0.06, -0.065, -0.25) (0.046, 0.023, 0.02) 90 0.1

i (0.06, -0.105, 0.625) (0.56, 0.04, 0.1) 90 0.2

j (0, 0.1, -0.625) (0.056, 0.056, 0.1) 0 -0.2

Fig. 3 shows the experimental results for SART reconstruction of the object (64×64×64) in
Fig. 3(a). 100 rotations are taken in this experiment, and 169×169 projections are generated
in each rotation. The FBP results shown in Fig. 3(b) are utilized as initializations for SART.
Fig. 3(c)-Fig. 3(f) show the SART results after 3, 20, 35, and 50 iterations respectively. It can
be seen that the SART results are much closer to the original object than the FBP results.

The plots in Fig. 4 show the convergence rate of SART. Fig. 4(a) shows the difference between
the original object and the reconstructed object with respect to iterations. Fig. 4(b) shows
the changes of the differences between the SART results. The differences of real projections
and projections computed from the SART results are shown in Fig. 4(c). It can be seen that
the differences change rapidly within the first five iterations and that they change gradually
thereafter. This can be justified by the fact that no big changes can be observed perceptually
in Fig. 3(d)-Fig. 3(f). The SART results after three iterations may be good enough in real
applications.

Fig. 5 demonstrates the effects of TV regularization on SART results. Fig. 5(c) shows the
TV regularization of Fig. 5(b), which represents the FBP results of the original object Fig. 5(a).
It can be seen that the noise is largely reduced after TV regularization. Fig. 5(e), Fig. 5(g), and
Fig. 5(i) show the TV regularizations for Fig. 5(d), Fig. 5(f), and Fig. 5(h) respectively. The
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(d) (e) (f)

Figure 3. Illustration of 3D SART using FBP as initializations. (Object volume: 64×64×64; Projection
data: 100×169×169 ) TV regularization is not applied in this experiment. (a) The 25th slice from the
phantom. (b) The reconstruction results from FBP. (c) The reconstruction results from SART after 3
iterations. (d) The reconstruction results from SART after 20 iterations. (e) The reconstruction results
from SART after 35 iterations. (f) The reconstruction results from SART after 50 iterations.

(a) (b) (c)

Figure 4. Illustration of the convergence of 3D SART. (a) The difference between the original data and
the reconstructed data w.r.t. iterations. (b) The difference between the SART results w.r.t iterations.
(c) The difference of real projections and projections from the SART results.
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Figure 5. Illustration of 3D SART using TV regularizations. (Object volume: 32×32×32, Projection
data: 26×43×43) (a) The 21st slice from the phantom. (b) Results from FBP. (c) Results from FBP after
TV regularizations . (d) Results from SART after 3 iterations. (e) Results of (c) after TV regularizations.
(f) Results from SART after 20 iterations. (g) Results of (f) after TV regularizations. (h) Results from
SART after 35 iterations. (i) Results of (h) after TV regularizations.

artifacts are largely reduced after TV regularization. This demonstrates the potential of TV
regularization for SART reconstruction.

Table 2 shows the computational efficiency of CPU SART and GPU SART. The parameters
in Table 1 are used to define the 3D object with volume size 32×32×32. 26 rotations are applied
for projection generation. Results from each rotation contains 43×43 projections. Sij in the
table represents the computation for Step i on the jth iteration. The results in Table 2 show
that the GPU implementation is more than 100 times faster than the CPU implementation on
the average for Step 3 and Step 5 of the SART algorithm. It demonstrates the potential of
CUDA GPU on CT reconstruction.
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Table 2. Comparison of SART computation using CPU and GPU.

S31 S51 S32 S52 S33 S53 S34 S54 S35 S55 Total

CPU (ms) 7.674 0.343 7.992 0.388 7.751 0.396 10.042 0.421 9.801 0.411 45.219

GPU (ms) 0.091 0.042 0.026 0.023 0.036 0.022 0.034 0.022 0.026 0.024 0.346

Speed-up 84 8 307 17 215 18 295 19 377 17 130

5. SUMMARY

Analytical CT reconstruction methods are restricted to the choice of acquisition geometries.
They can not tolerate limited-angle or sparse acquisitions, and they are sensitive to the effects
of noise. Therefore, iterative reconstruction methods, which are superior in such cases, may
have large potentials in real applications. This paper presents the results of SART algebraic
reconstruction on 3-D synthetic images. FBP is chosen as the initialization for SART, and TV
regularization is applied to reduce the effects of noise. CUDA GPU is utilized to speed up the
computation. Results on real CT data will be presented in later publications.
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