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Preferential Image Segmentation
Using Trees of Shapes

Yongsheng Pan, Member, IEEE, J. Douglas Birdwell, Fellow, IEEE, and Seddik M. Djouadi, Member, IEEE

Abstract—A novel preferential image segmentation method is
proposed that performs image segmentation and object recogni-
tion using mathematical morphologies. The method preferentially
segments objects that have intensities and boundaries similar to
those of objects in a database of prior images. A tree of shapes
is utilized to represent the content distributions in images, and
curve matching is applied to compare the boundaries. The algo-
rithm is invariant to contrast change and similarity transforma-
tions of translation, rotation and scale. A performance evaluation
of the proposed method using a large image dataset is provided. Ex-
perimental results show that the proposed approach is promising
for applications such as object segmentation and video tracking
with cluttered backgrounds.

Index Terms—Curve matching, preferential image segmenta-
tion, tree of shapes.

I. INTRODUCTION

I MAGE segmentation algorithms are designed to segment an
image into several regions so that the contents of each re-

gion represent meaningful objects. The segmentation results can
then be utilized for postprocessing stages such as object recog-
nition. Image segmentation simplifies postprocessing stages by
focusing attention on each individual segment.

Image segmentation dates back to the early 1980s. Edge de-
tection methods such as the Canny detector [6] were widely
applied for this task. Edge detection methods utilize intensity
gradients to detect the boundaries of objects. However, edge
detection methods usually generate edges that are not closed
contours, and this causes difficulties for later processing such
as object recognition. It has been shown [19] that it is hard to
construct stable edge detection methods even using a multiscale
theory because of the edge-linking issue across scales and mul-
tiple-thresholding issues at each scale.

Curve evolution methods [32], [33], [37] have been popular
for image segmentation since the early 1990s. These methods
evolve the initialized curve(s) to the boundaries of objects in
an image. The evolution of the curves may be driven by image
gradient information [8], [25], region information [11], [24],
[35], or their combination [38]. These methods are theoretically
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solid and numerically stable. Moreover, these methods generate
image segments enclosed by closed contours, which leads to
straightforward postprocessing.

Most curve evolution methods, however, are unsupervised
and are only able to segment simple images. For complicated
cases, such as triple junctions and images with a cluttered back-
ground, these methods have to utilize hierarchical methods [35],
and are usually computationally intense.

The utilization of prior information, therefore, seems to be
necessary for curve evolution methods in complicated image
segmentation applications. Several methods [13]–[17], [23],
[26], [27], [34] have been proposed that utilize prior informa-
tion for supervised image segmentation. These methods usually
propose new variational energy functionals which integrate
both the prior information and the gradient/region information
in the image to be segmented. The minimizations of these
functionals can lead to segmentation results. Shape priors are
utilized in [13]–[15], and [27]. Both intensity priors and shape
priors are applied in [26]. Natural image statistics are utilized
for natural image segmentation in [23]. These methods usually
work better than unsupervised methods. However, shape priors
are primarily incorporated in supervised segmentation methods,
and the information contained in the intensities is not always
fully utilized. For example, the methods in [16] and [17] utilize
the intensity histograms only, and the spatial information is
ignored. Furthermore, these methods usually have initialization
problems because the energy functionals have multiple local
minimums. The methods are sensitive to the initial locations of
the evolving curves.

The above methods tend to segment the whole image into
several regions, which is challenging for images with cluttered
background. On the other hand, this is not always necessary in
real applications. The user may be interested in finding only the
location of objects of interest. For example, only the car in Fig.
1(a) is of interest in this video tracking application. The clut-
tered background need not to be segmented. The task changes
and can be stated as: Segment from the image the regions whose
contents are similar to the car in the prior image Fig. 1(b). In
this sense, image segmentation and object recognition are com-
bined. This is the key idea of “preferential image segmentation,”
which means to preferentially segment objects of interests from
an image and ignore the remaining portions of the image for this
application.

The idea of preferential image segmentation bears some
similarities to object detection methods from images [1]. These
methods detect the existence and rough location of objects in
an image, e.g., in [1], using a sparse, part-based object repre-
sentation and a learning method. However, these methods do
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Fig. 1. Illustration of preferential image segmentation. (a) The video frame in
which only the car is of interests. (b) The prior image of the car.

not provide the exact locations of the object boundaries, which
is required by image segmentation. Supervised image classifi-
cation methods in [3] and [36] and the image parsing method
in [40] are also similar to preferential image segmentation. The
image classification methods in [3] and [36] generalize the level
set methods to classify an image into multiple regions by means
of wavelets [3] and variational methods [36], respectively. The
image parsing method [40] utilizes probabilistic methods to
unify segmentation, detection and recognition. These methods,
however, tend to classify/parse an whole image instead of
meaningful objects. Furthermore, these methods are usually
computationally intense.

A novel preferential image segmentation method is proposed
in this paper using techniques from mathematical morphologies.
This method is motivated by the utilization of prior information
in curve evolution models. However, image topologies may pro-
vide better results for complicated cases. The proposed method
utilizes a tree of shapes [29], [30] to represent the image content.
This representation provides a hierarchical tree for the objects
contained in the level sets of the image. The hierarchical struc-
ture is utilized to select the candidate objects from the image.
The boundaries of the selected objects are then compared with
those of objects selected from prior images. By means of the
tree of shapes and curve matching, the proposed method is able
to preferentially segment objects with closed boundaries from
complicated images. It is more straightforward to utilize prior
information in this way than with the curve evolution methods,
and there is no initialization problem. Furthermore, the method
is invariant to contrast change and translation, rotation and scale.
The method has been shown to work in the presence of noise.

This paper is organized as follows. Section II provides back-
ground information on image representation using the tree of
shapes and curve matching. A novel preferential image segmen-
tation method is proposed in Section III, followed by Section IV
which shows experimental results. Section V describes the eval-
uation of the performance of the proposed method using a large
image data set. A summary and future research directions are
provided in Section VI.

II. BACKGROUND

Background information for the proposed method is intro-
duced in this section. Section II-A shows how an image is repre-
sented using a tree of shapes. It also shows how a tree structure

is introduced for image representation. Section II-B describes
the relationship between color and geometry in natural images.
Section II-C introduces the techniques of planar curve matching,
which can be utilized to compare the boundaries of different ob-
jects.

A. Image Representation Using the Tree of Shapes

The tree of shapes [5], [7], [9], [20], [28], [30] represents im-
ages based on the techniques of contrast-invariant mathematical
morphologies [19], [29]. This method is based on the theory of
image representation using connected components of set of fi-
nite perimeters in the space of functions with weakly bounded
variations (WBV), as introduced in [2], [4], and [10]. It shows
that an image, if taken as a function of weakly bounded varia-
tion [4], is guaranteed to be decomposed into connected com-
ponents with closed boundary [2]. This is an extension to clas-
sical methods such as [31] where an image is taken as a piece-
wise-smooth function.

The representation of an image using a tree of shapes utilizes
the inferior or the superior of a level line to represent an object,
and takes the boundary of the inferior area as the shape of the
object. Therefore, only closed shapes are generated. This repre-
sentation also provides a tree structure to represent the spatial
relationship for the objects in an image.

For a gray image with , the upper level set
of value and the lower level set of value are defined

in [7] as

(1)

(2)

The above definitions have several advantages. First, they rep-
resent regions instead of curves in an image, which provide a
way to handle the contents inside the regions. Second, they are
invariant to the contrast changes in an image, which may be
caused by the change of lighting [19], [29]. Third, closed bound-
aries are acquired for each upper level set or lower level set,
which can be utilized for shape matching of the regions. In com-
parison, the level lines defined by
usually generate open curves rather than closed curves in real
images. For an image modeled as a function of bounded vari-
ation, the regions represented by level sets are connected com-
ponents. Fourth, their representations are complete for images,
which means that the family of the upper level sets (or the
family of the lower level sets ) is sufficient to reconstruct the
image [19], [29] because of the following relationship [7]:

(3)

Note that the geometrical inclusion holds for the level sets.
The family of upper (lower) level sets is decreasing (increasing)
because [7]

and (4)

The nesting of level sets provides an inclusion tree for an
image. The inclusion tree from the family of upper level sets
and the tree from the family of lower level sets, however, can be
different if the connected components are directly utilized. The
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Fig. 2. Illustration of the tree of shapes. (a) The original image, which locates
at the root of the inclusion tree. (b), (c), (d) Shapes in the first layer of the tree
of shapes. (e), (f) Shapes in the second layer of the tree of shapes. (g) Shapes in
the third layer of the tree of shapes. (h) The structure of the tree of shapes.

concept of “shape” is introduced to generate a unique inclusion
tree for an image. A shape is defined as the connected compo-
nents of a level set and the holes inside them. Fig. 2 shows an
example of the tree of shapes generated for a piecewise-constant
image. A tree of shapes shown in Fig. 2(h) is constructed for the
image in Fig. 2(a). The whole image acts as the root of the tree,
which locates at the top level. The shapes in the same level are
spatially disjoint in the image. The shapes in the lower level are
spatially included in the shapes in the next higher level. The tree
of shapes, therefore, provides a natural way to represent the spa-
tial relationships between the shapes in the image.

It is straightforward to find upper level sets and lower level
sets in an image by thresholding. A tree of shapes can be further
constructed by the nesting of level sets. However, this method is
computationally intense. The fast level lines transform (FLLT)
[29], [30] provides a faster way to construct a tree of shapes.

FLLT is a pyramidal algorithm based on region growing. It re-
duces the computational burden from to
where represents the number of pixels in an image. FLLT is
implemented in the MEGAWAVE package (http://www.cmla.
ens-cachan.fr).

B. Color and Geometry in Mathematical Morphologies

The total order (or lexicographical order) proposed in [12],
[21] is utilized in the proposed method to compare the color
vectors in a color image. Let and

represent the color vectors in two pixels in a color
image. The meanings of , , and differ in different color
models. The total order provides a way to compare these color
vectors. It is defined as follows:

or
and or
and and

(5)

The definition in (5) bears some similarity with the concept of
conditional expectations shown in Section II-B when repre-
sents the gray level in the image.

actually represents the gray level in the color image in the
proposed method. An improved space [22] is uti-
lized for the color model. The color in every pixel is represented
with three channels , which corresponds to the gray
level, saturation and hue respectively. The space, com-
pared to other spaces such as and , has the property
of a “well-behaved” saturation coordinate. The space al-
ways has a small numerical value for near-achromatic colors,
and is completely independent of the brightness function. For
a pixel with color in the space, and the cor-
responding pixel with color , the transformation from
the RGB space to the IHLS space is

(6)

(7)

if
otherwise

(8)

where

(9)

The proposed method uses the transformation and the total order
in (5) to extract the shapes and build the tree of shapes for color
images. The inverse transformation from the IHLS space to the
RGB space is not utilized here. Refer to [22] for more details.

Fig. 3 illustrates the construction of a tree of shapes for a color
image. Fig. 3(a) displays a color image of interest. The color
image is synthesized so that its gray version contains no shape
information. Using the IHLS color space (6)–(9) and the total
order (5), a tree of shapes is built for the color image, whose
boundaries are shown in Fig. 3(b).

C. Planar Curve Matching

The method in [28] defines the shape of a curve as a conjunc-
tion of shape elements and further defines the shape elements
as any local, contrast invariant and affine invariant part of the
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Fig. 3. Illustration of tree of shapes for a color image. (a) A color image of
interests. (b) Boundaries of shapes built for (a) using the total order defined in
(5).

curve. These definitions are oriented to provide invariance to
noise, affine distortion, contrast changes, occlusion, and back-
ground.

The shape matching between two images are designed as the
following steps.

1) Extraction of the level lines for each image. The level set
representations (1), (2) are utilized here for the extraction.
The level lines is defined as the boundaries of the connected
components as shown before.

2) Affine filtering [28] of the extracted level lines at several
scales. This step is applied to smooth the curves using
affine curvature deformation to reduce the effects of noise.

3) Local encoding of pieces of level lines after affine normal-
ization [28]. Both local encoding and affine normalization
are designed for local shape recognition methods. This step
will help to deal with occlusions in real applications.

4) Comparison of the vectors of features of the images. Eu-
clidean distance is utilized to compare the feature vectors.

The performance of curve matching between two curves is cal-
culated after affine filtering, curve normalization and local en-

Fig. 4. Illustration of of preferential image segmentation using the tree of
shapes. (a) The object of interest in the prior image. (b) The image to be
segmented. (c) A simplified tree of shapes of the whole image in (b). (d)
Segmentation results using the proposed preferential image segmentation.
Image size: 460 � 612. CPU time: 1.70 s.

coding. Suppose and are two curves for matching, and
and are pieces from and , respectively. The perfor-

mance to take and as the matching between and is

(10)

where , ,
and . The maximum score

over all possible matching pieces is taken as the matching
between the curves and . Refer to [28] for details of
the mathematical definitions and the implementation issues.
This method is implemented in the MEGAWAVE package
(http://www.cmla.ens-cachan.fr), which is open-source and can
be utilized directly.

III. PREFERENTIAL IMAGE SEGMENTATION

A preferential image segmentation algorithm is proposed
in this section. The proposed algorithm is illustrated using an
example for clarification. Suppose we need to preferentially
segment objects similar to the one indicated in Fig. 4(a) from
the cluttered image shown in Fig. 4(b). As illustrated in Sec-
tion II-A, the tree of shapes provides a natural way to represent
the spatial relationship of the shapes in an image. The tree of
shapes, therefore, is a good candidate tool to utilize the intensity
information in the prior image for preferential segmentation.
A naturally intuitive idea is to construct the trees of shapes
for both images and then find the node in the tree of image in
Fig. 4(b) whose properties are similar to the node in Fig. 2(c).

The tree of shapes, however, usually generate large number of
shapes, especially for complicated images. For example, 3832
shapes, as shown in Fig. 4(c), are contained in the tree of shapes
for the whole image in Fig. 4(b). Note that every closed red
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curve corresponds to the boundaries of a shape in the tree of
shapes in Fig. 4(c).

The boundaries of shapes provide valuable information for
the similarities between shapes. However, comparison of all the
boundaries corresponding to shapes in the image to be seg-
mented would be computationally intense. It is necessary to
narrow down the candidate shapes from the image to be seg-
mented for each shape from the prior image before their bound-
aries can be compared. The intensity information contained in
the shapes provides good measures for the similarities between
shapes in real images. The intensity information by means of the
tree of shapes [e.g. Fig. 2(h)] includes the following features.

1) The number of objects contained directly in the shape,
which corresponds to the number of direct children of the
shape in the tree. for the indicated shape in
Fig. 4(a).

2) The total number of objects contained in the shape,
which corresponds to the total number of children below
the shape in the tree. for the indicated shape in
Fig. 4(a).

3) The relative area change between the shape and its direct
children. Suppose the area of the shape is , and the areas
of its direct children are , where , the relative
area change is then defined as

(11)

4) The rough similarities of the boundaries of the shapes,
which can be represented as the ratio of the circumferences

squared to the area of the boundaries of the shapes
[18], i.e., .

These features for two shapes should be very close if they
match. Exact matching may not be achieved because of the dif-
ferences between shapes, the effects of noise, lighting changes
and cluttered background. Thresholds should be set for coarse
matching to affect a rapid exclusion of most candidate shapes.
For example, set the threshold ,

. A shape is considered to roughly match the prior match
if ,

, ,
. These thresholds may be adjusted for different

applications.
The number of candidate shapes decreases substantially by

means of the intensity features extracted from the tree of shapes.
In the case of Fig. 4(b), the feature decreases the number of
candidate shapes from 3832 to 977; the feature decreases
the number from 977 to 83; the feature decreases the number
from 83 to 1; the feature retains this candidate. The candidate
shape left over matches the prior shape, as shown in Fig. 4(d).
The process takes 1.70 s.

In most cases, however, the candidate shapes will decrease
from thousands to tens, but not 1. Curve matching as introduced
in Section II-C is then performed on the boundaries of the re-
sulting candidate shapes and the prior shapes. The candidate
shape which best matches the prior’s curve is taken as the pref-
erential segmentation result.

In summary, the proposed method models an image with
a function of bounded variation and utilizes a tree of shapes
for image representation. This method encodes the prior infor-
mation for preferential segmentation as a tree of shapes. The
method is invariant to translation, rotation and scale transfor-
mations because both feature extraction and boundary matching
are invariant to these transformations.

The proposed method bears similarities with template
matching. Both methods utilize prior information to locate
objects from images. However, these methods are different in
various aspects. First, the proposed method models an image
as a function of bounded variation, while template matching
usually models an image as a continuous function. Second, the
proposed method utilizes level sets for image representation
and represents spatial relationship by a tree structure, while
template matching represents an image as pixels by means
of sampling theorem. Third, the proposed method handles
invariance to rotation, scale and translation automatically,
while template matching needs to handle these invariances
explicitly. Fourth, the proposed method is easy to extend to
segmentation by parts, while template matching is hard for
occlusions. More importantly, the proposed method segments a
most similar object from an image, which combines segmen-
tation and recognition. A template matching method, on the
other hand, only recognizes the location, orientation and scale
information of a known object. There is no segmentation in
template matching. Experimental results for this comparison
are shown in the next section.

IV. EXPERIMENTAL RESULTS

Experimental results from the proposed method are provided
in this section. The proposed method is implemented using the
MEGAWAVE package (http://www.cmla.ens-cachan.fr). The
program runs on a computer which has two Intel(R) Pentium(R)
3.2 GHz CPUs, 1-Gb RAM, and runs the Red Hat Enterprise
Linux operating system. The CPU times given in this paper are
the sums of system CPU times and user CPU times. The system
CPU time is usually very small, typically 0.01–0.08 s.

Two implementation issues need to be clarified here. First,
the representative shapes are manually selected from the in-
clusion tree of the prior image. The “llview” function of the
MEGAWAVE package is utilized to visualize the inclusion tree
for shape selection. This is acceptable because the operation
only need to be performed once. Automatic selection is the focus
of current research. Second, interpolation methods are utilized
in the construction of the inclusion tree for high precision. This
may generate many shapes whose areas are very close (e.g.,
95%–98%). These shapes may correspond to only one object in
the image. A sensitivity measure is utilized to handle this issue.
The shape will not be considered as an object until the ratio of
its area to that of its precedents falls below a certain threshold
(e.g., 80%).

Fig. 5 shows the preferential image segmentation of a car
from an image with cluttered background. For the prior image
Fig. 5(a), the representative shape is selected as shown in Fig.
5(b). A very similar shape is selected from the image Fig. 5(c),
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Fig. 5. Preferential image segmentation of a car using the tree of shapes. (a) The
prior image (image size: 460 � 612). (b) The object of interest in the prior
image. (c) The image to be segmented. (d) Segmentation results using the pro-
posed preferential image segmentation. The region enclosed by the red line cor-
responds to the segmentation result similar to (b). CPU time: 1.53 s. (e) The
initialized curves for the Chan–Vese curve evolution. (f) The intermediate seg-
mentation result using curve evolution after 800 iterations. CPU time: 712 s.

as shown in Fig. 5(d). Curve matching is not necessary here be-
cause only one candidate is left over. The process takes 1.53 s.
For comparison, the results in Fig. 5(d) are also achieved by
means of template matching, whose implementation by the au-
thors takes 192.57 s, which is very time consuming compared
to the proposed method (126 ). Fig. 5(f) shows the interme-
diate segmentation results using the Chan–Vese curve evolution
method [11] without using any prior information for the initial-
ization shown in Fig. 5(e). It can be seen that the curve evolu-
tion method segments the brighter area of the image, which in-
cludes parts of the car, but it cannot segment the whole car. The
curve evolution method is computationally intense, requiring al-
most 12 min in this case. Furthermore, the post processing for
the segmentation results is challenging because of the cluttered
background. The curve evolution methods based on prior infor-
mation may provide better segmentation results, but it can be
expected that they would be also computationally intense. Thor-
ough comparisons are a subject of future research.

Fig. 6 shows the performance of the proposed method for a
MRI brain image and a car logo. The prior shape enclosed in the

Fig. 6. More examples for preferential image segmentation. (a) The prior
image for a medical image. (b) Segmentation results of using the prior shape
from (a). Image size: 218 � 282. CPU time: 0.61 s. (c) The prior image for a car
logo. (d) Segmentation results using the prior shape from (c). Image size: 600
� 450. CPU time: 4.98 s. The regions enclosed by the red lines corresponds to
the segmentation results.

red line in Fig. 6(a) is used to segment the image in Fig. 6(b),
which also contains the segmentation results. Only 0.61 s was
required for the segmentation of an image of size 218 282.
Similarly, the prior shape in Fig. 6(c) is utilized for the segmen-
tation of Fig. 6(d), which also contains the segmentation results.
This took 4.98 s for the segmentation of an image of size 600
450.

The rotation invariance of the proposed method is illustrated
in Fig. 7. The shape shown in Fig. 7(a) is utilized as the prior
for preferential image segmentation in Fig. 7(b). The candidate
shapes resulting from intensity features are shown in Fig. 7(c)
Both shapes are similar to the one in Fig. 7(a). Fig. 7(d) shows
the final result, which agrees with the ground truth.

The proposed method is also invariant to scale change, as
shown in Fig. 8. The object shown in Fig. 8(a) (size: 147 113)
is extracted from Fig. 8(d), and is then scaled up to Fig. 8(b)
(size: 195 150), which is utilized as the prior for preferential
segmentation in Fig. 8(d). Fig. 8(c) shows the prior shape for
Fig. 8(b). Fig. 8(d) shows the segmentation results. The object
is found using a scaled prior image, which demonstrates scale
invariance.

Contrast invariance and intensity invariance of the proposed
method are demonstrated in Fig. 9. Fig. 9(a) shows the object
extracted from the image to be segmented. The image contrast
is increased, as shown in Fig. 9(b). The object is successfully
segmented from Fig. 9(d) using the selected prior in Fig. 9(c).
The intensity levels are increased for the image in Fig. 9(e). The
results in Fig. 9(g) show that the object has been successfully
segmented by means of the prior shape in Fig. 9(f).

The results shown in Fig. 10 show that the proposed method
works in the presence of noise. The prior shape in Fig. 10(a)
are utilized for preferential segmentation. Fig. 10(b) shows the
segmentation results for a noisy image. Fig. 10(c) displays the
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Fig. 7. Illustration of rotation invariance of the proposed method. (a) The prior
image with object of interests. (b) The image to be segmented. Image size: 426 �
568. (c) Candidate shapes from the intensity prior. (d) Segmentation result. The
region enclosed by the red line corresponds to the segmentation result. CPU
time: 2.74 s.

Fig. 8. Illustration of scale invariance of the proposed method. (a) The object
extracted from the image to be segmented. Size: 147 � 113. (b) The rescaled
image from (a). Size: 195 � 150. (c) Prior shape selected from (b). (d) Segmen-
tation result. The region enclosed by the red line corresponds to the segmenta-
tion result. CPU time: 2.73 s.

results for the same noisy image after diffusion. The proposed
method works in both cases, though the shapes of the segmented
regions are slightly different from the prior object’s shape due to
the effects of noise. It can also be expected that the method may
fail in the case of heavy noise because noise affects the intensity
features and curve matching.

A collection of 26 images is utilized to test the performances
of the proposed method. The objects in 16 images are success-
fully segmented based on the prior image in Fig. 8(c). Fig. 11
shows the segmentation results of four exemplar images. The
results show that the proposed method works for complicated
images with shadows.

The proposed method is applied to face images in Fig. 12.
Twenty face images (image_0001.jpg–image_0020.jpg from
the Caltech face image database, which is available at
http://www.vision.caltech.edu/archive.html) are tested. The
face in image_0018.jpg is extracted for the prior image. Three
images with different backgrounds are segmented successfully,
as shown in Fig. 12(b)–(d). Expression changes in the face,
such as winking eyes, and opening and closing of eyes or
mouth, may cause sufficient changes in the face images to
introduce difficulties for preferential image segmentation using
the proposed method. Segmentation by parts may be a good
solution to this issue.

Fig. 9. Illustration of contrast and lighting invariance of the proposed method.
(a) The object extracted from the image to be segmented. (b) The image with
higher contrast. (c) Prior shape selected from (b). (d) Segmentation result using
(c). Image size: 426 � 568. CPU time: 1.61 s. (e) The image with higher bright-
ness. (f) Prior shape selected from (e). (g) Segmentation result using (f). Image
size: 426 � 568. CPU time: 2.57 s.

Fig. 10. The proposed method works to the effects of noise. (a) The prior shape.
(b) Segmentation results for a noisy image (Size: 568 � 426). CPU time: 4.91 s.
(c) Segmentation results for the noisy image in (b) after diffusion. CPU time:
3.68 s.

V. PERFORMANCE EVALUATION OF PREFERENTIAL IMAGE

SEGMENTATION USING THE TREE OF SHAPES

The previous sections show the theoretical background, algo-
rithm details and experimental results of the proposed preferen-
tial image segmentation method. The results demonstrate that
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Fig. 11. Preferential image segmentation for a collection of images. (a) Seg-
mentation results. CPU time: 3.62 s. (b) Segmentation results. CPU time: 3.09 s.
(c) Segmentation results. CPU time: 4.26 s. (d) Segmentation results. CPU time:
2.03 s. Image size: 460 � 612.

Fig. 12. Preferential image segmentation of face images (from http://www.vi-
sion.caltech.edu/archive.html) using the Tree of Shapes. (a) The prior image
with selected shape. (b) Segmentation results (image size: 296 � 448). CPU
time: 2.43 s. (c) Segmentation results for another face image (size: 296 � 448).
CPU time: 2.26 s. (d) Segmentation results (size: 296 � 448). CPU time: 2.59 s.

the proposed method is efficient, invariant to contrast changes
and similarity transformations, and applicable to various appli-
cations. A performance evaluation of the proposed method using
a large set of natural images is presented in this section. The re-
sults here will give a better indication of the performance of the
proposed methods in real applications.

This section presents the procedure used for performance
evaluation and the corresponding results. The experimental
results are also provided in this section. An introduction to
the image dataset is described in Section V-A. The way to
select prior shapes from the training images is illustrated in
Section V-B. This is followed by the details of the experimental
results in Section V-C.

A. Introduction to the Image Dataset

The image dataset contains a training set of 26 images and a
test set of 95 images. These images are taken under different
conditions of lighting, backgrounds, shadows, displacements,
and rotations, and examples of close contact between objects
and strong occlusions. Every training image contains 20 ob-
jects whose prior information is known. The number of objects
varies in the test images. The total number of objects in the 95
test images is 520. Fig. 13(a) shows the indices of the prior
objects in a training image. Fig. 13(b)–(d) shows examples of
the training images with good lighting and clear background.
Fig. 13(e) and (f) are examples of the training images with light
shadows. Fig. 13(g) and (h) are examples of the training images
with strong shadows. Occlusions and rotations can be seen in
Fig. 13(c) and (d).

The test images are complicated by occlusion, textured back-
ground, strong shadow and close contact. Fig. 14 shows exam-
ples of the images to be segmented in the test set. Note that
the training images have no textured backgrounds, which intro-
duces more challenges to the segmentation task. The test images
are categorized into several classes: clear background, cluttered
(or textured) background, light shadow, strong shadow, close
contact, occlusion, separated. The first two classes represent
the background information; the middle two classes show the
lighting conditions; the last three attributes represent the spatial
relationships between objects. These categories may overlap.
Among the 95 test images, 47 test images have clear back-
grounds, e.g., Fig. 14(a), (d), (g), (h); 33 test images have clut-
tered background, e.g., Fig. 14(b), (c), (e), (f); seven test images
have light shadows, e.g., Fig. 14(f); 34 test images have strong
shadows, e.g., Fig. 14(g), (h); 30 test images have close contacts
among their objects, e.g., Fig. 14(e); 41 images have occlusions,
e.g., Fig. 14(b), (c), (d), (f), (g); 24 test images have spatially
separated objects. These categories will be analyzed separately
to determine the influences of these factors on the segmentation
results.

B. Prior Selection

The experiments are designed to utilize the prior information
provided in the training set to segment the objects in the test set.
The priors in the images of the training set are first manually seg-
mented. An interface for the prior selection has been developed
with the help of the CImg library [39]. The program will prefer-
entially select the shape which contains the point left-clicked by
the mouse and which has at least one direct child. The selected
shape will be removed by right clicking the mouse if the selected
object is not satisfactory. Fig. 15 shows the procedure used to
select object 18 from the training image Quarter753.bmp. The
user clicks the pixel under the red cursor, located in the left part
of the training image, and the boundary of the selected object is
shown in the right part.

Fig. 16 shows several examples of prior objects selected
from the training images. Fig. 16(a) and (b) shows prior ob-
jects selected from images with no shadows or occlusions.
Fig. 16(c)–(f) shows prior objects selected in the presence of
light or strong shadows, which degrades the prior selection
process. Parts of the prior objects are selected when the whole
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Fig. 13. Examples of prior images in the training set. (a) The indices of objects
in the prior image. (b)–(h) Examples of prior images with different background,
lighting, shadows, poses and occlusions. The tree structures for thess images
contain 26474, 16755, 17035, 60027, 43190, 65454, 56250 shapes, respectively,
in the implementation.

objects are difficult to select because of the presence of shadow
or occlusion, as shown in Fig. 16(g) and (h).

The manual selection procedure is offline and identifies the
priors from the training images. The prior information utilized in
the proposed method contains only the number of direct children

, the total number of children , the relative area change
, the rough similarities , and the coordinates of the pixels

on the boundaries of the object. This information is stored in a
sequential text file on the hard drive. The text file will be read
into memory when the test images are processed.

As an example, the extracted information for the shape prior
selected in Fig. 15 (object 18 in Quarter753.bmp) is displayed
as follows:

Fig. 14. Examples of images to be segmented in the test set. (a)–(h) Examples
of test images with different background, lighting, shadows, poses, and occlu-
sions.

Fig. 15. Illustration of shape prior selection in training images.

Each of the numbers is stored as a line in the record. These
numbers are displayed as a line for the convenience of visual-
ization. The first number (1) represents the type of the level set.
Its value is set to 1 if the selected shape prior is a upper level
set; otherwise 0. The second number (1) represents the direct
children of the selected shape prior. The third number (52)
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Fig. 16. Examples of prior objects selected from the training images.
(a)–(h) Examples of prior objects selected from the training images images
with different background, lighting, shadows, poses, and occlusions.

stores the number of total children. The forth number stands for
the ratio of the relative area change, defined in (11). The fifth
number (0) represents the depth of the current shape. The sixth
number (116.199) represents the boundary-squared-to-area
ratio of the selected shape. The numbers left over are utilized
for boundary matching. The seventh number (525) shows
the size of the boundary for the selected shape. The eighth
number (362717) represents the maximum size available for
the boundary storage. The ninth number (2) is the dimension of
the boundary pixels, which is usually 2. The tenth number in the
file represents the data for program use. The eleventh number
and the twelfth number represents the coordinates of a pixel in
the boundary. The rest of the file shows the coordinates of all
other pixels contained in the boundary of the selected shape.

C. Experimental Results

In the prior selection stage, one object is selected from the
training images at a time. Thus, prior objects

Fig. 17. Loose criteria for false alarm evaluation. (a) Groups of objects which
are taken as inseparable by the visual evaluation criteria.

are obtained. The prior information contained in every object
is utilized to segment each of the 95 test images. Thus,

experiments are performed to evaluate the
performance of the proposed methods. In the detection of object
1 from the test image Quarter779.bmp, for example, all 26 priors
for object 1 are utilized one at a time, and the one that matches
best is recorded as the segmentation result.

Human Visual Evaluation: The most reliable way to eval-
uate the experimental results is by human eyes. 456 out of 520
objects (87.7%) in the 95 test images have been correctly seg-
mented according to this evaluation procedure. Less than 20 ob-
jects were falsely segmented for those 1380 objects that do not
exist in test images using a human evaluation criteria. This is a
false alarm rate of about 1.4% using that evaluation.

However, results from human evaluations are subjective.
Users may get different results from their evaluations because
different criteria are utilized. A loose criterion is utilized here
for an illustration. Fig. 17 shows the groups of objects which
are taken as inseparable by the visual evaluation criteria. For
example, if object 1 is not shown in an image, but the program
segments object 2 (or object 3) as the result, it is taken as false
alarm. The accuracy may increase to above 90%, but at the
same time the false alarm rate rises 24% (331 out of 1380). This
shows that the false alarm rate of the proposed algorithm lies
between 1.4% and 24%, depending on the criteria. Similarly,
the accuracy lies between 87.7% and 100%.

Figs. 18 and 19 show several segmentation results. The left
column in Fig. 18 shows the prior object, while the right column
shows the segmentation result. Fig. 18(b) shows an example
where the proposed method works very well for good lighting
with no occlusions. Fig. 18(d) shows an example where an ob-
ject can be segmented by parts in cluttered background. Fig.
18(f) shows that an object can be segmented when it is placed in
different poses. Fig. 18(h) shows that the proposed method may
also work well in the presence of strong shadows.

Fig. 19 shows several segmentation results from challenging
problems. The left column in Fig. 19 shows the prior object,
while the right column shows the segmentation results. The re-
sults in Fig. 19(b) show that close contacts between objects may
introduce difficulties for preferential segmentation. Fig. 19(d)
shows the performance of the method in textured background
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Fig. 18. Examples of segmentation results. (a), (c), (e), (g). Prior objects in the
training images. (b), (d), (f), (h). Segmentation results of the test images using
the priors in (a), (c), (e), (g), respectively.

and strong shadows. Because of occlusion, object 16 cannot be
segmented in Fig. 19(f). Fig. 19(h) shows that a cluttered back-
ground can cause preferential segmentation to fail.

The previous discussion shows the necessity for automatic
and objective evaluation. Human visual performance evaluation
is subjective rather than objective. It also requires human in-
tervention and is, therefore, not automatic, which is a big disad-
vantage for large image datasets or autonomous operations. Au-
tomatic performance evaluation needs a quantitative evaluation
of the match quality between the prior object [e.g., Fig. 19(a)]
and the corresponding segmented object [e.g., Fig. 19(b)]. An
automatic performance evaluation using the location center is
presented below.

Automatic Performance Evaluation Using the Location
Center: The locations of segmented objects provides a way
to evaluate the performance of the proposed method. If the
center of a segmented object is close to the center of visual
observation, then preferential segmentation may be considered

Fig. 19. Examples of segmentation results. (a), (c), (e), (g). Prior objects in the
training images. (b), (d), (f), (h). Segmentation results of the test images using
the priors in (a), (c), (e), (g), respectively.

as successful. Otherwise it may be considered a failure. This
method does not give a thorough evaluation because different
segments may have the same center, and that the content and
boundary information are not utilized. However, it provides a
way to evaluate the locations of the segmented objects.

In the implementation, the locations of the objects are first
visually determined first. The locations of the segments are cal-
culated by the program, and the Euclidean distances between the
corresponding locations are calculated. The minimum of the dis-
tances between all priors is taken as the final result. If an object
does not exist in an image, or the program does not segment any-
thing for an object, the location of that object is taken as (0, 0).
Therefore, this evaluation method produces a small false alarm
(false positive) rate and a high accuracy (true positive) rate rel-
ative to other evaluation strategies.

Fig. 20 shows the figures of the true positive rate [Fig. 20(a)]
and the false positive rate [Fig. 20(b)], with respect to the dis-
tance threshold in pixels, as well as the receiver operating char-
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Fig. 20. Performance evaluation with respect to the distance threshold. (a) Ac-
curacy rate (true positive rate). (b) False alarm rate (false positive). (c) ROC
curve for the evaluation.

acteristics (ROC) curve (with the true positive rate as the ver-
tical axis and the false positive rate as the horizontal axis) [Fig.
20(c)]. One issue about the ROC curve is that the maximum
false positive rate is less than 20%. A trade-off between detec-
tion capability and error rates can be achieved by choice of de-
tection threshold. If a 91% detection rate is desired, a threshold

of 206.47 is chosen, yielding a false positive rate of 8.7% and a
failure-to-detect rate of 9.0%.

VI. SUMMARY AND FUTURE RESEARCH

A novel preferential image segmentation method is pro-
posed in this paper. The method utilizes both the intensity
and shape prior information by means of the tree of shapes
and boundary matching. It is invariant to contrast change and
similarity transformations such as scale, rotation and transla-
tion. Experimental results show that the proposed method is
able to preferentially segment objects from complicated cases.
Future research on segmentation methods will be focused on
the multiscale analysis of the proposed method and the topic
of segmentation by parts. The proposed method is also applied
to large image databases to examine its performance. In the
performanceevaluation procedure, the detection rate is above
87.7% and the false alarm rate lies between 1.4% and 24% by
human observation. The results are shown to be very promising
for images with different lightings, backgrounds and occlu-
sions. Future work on performance evaluation can focus on
the selection (or design) of measures. Some results in the area
of content based image retrieval may be useful for this topic.
Techniques such as manifold learning may be applied for the
postprocessing for color information, which may potentially
improve the performance of the proposed method. A systematic
evaluation of the proposed method will be performed on large
image databases, and the results will be provided in future
publications.
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