
Efficient Bottom-Up Image Segmentation Using Region Competition and the
Mumford-Shah Model for Color and Textured Images

Yongsheng Pan J. Douglas Birdwell Seddik M. Djouadi
Department of Electrical and Computer Engineering

University of Tennessee, Knoxville
ypan@lit.net birdwell@lit.net djouadi@ece.utk.edu

Abstract

Curve evolution implementations [3][23] [25] of the
Mumford-Shah functional [16] are of broad interest in im-
age segmentation. These implementations, however, have
initialization problems [6] [25]. A mathematical analysis
of the initialization problem for the Chan-Vese implementa-
tion [3] [25] is provided in this paper. The initialization
problem is a result of the non-convexity of the Mumford-
Shah functional and the top-down hierarchy of the model’s
use of global region information in the image. Based on the
analysis, efficient implementation methods are proposed for
the Chan-Vese models [3] [25]. The proposed methods do
not have to solve PDEs and thus work fast. The advan-
tages of level set methods, such as automatic handling of
topological changes, are preserved. These methods work
well for images without strong noise. Initialization prob-
lems, however, still exist. A bottom-up image segmentation
method is proposed that alleviates the initialization prob-
lem, based on region competition and the Mumford Shah
functional [16]. This algorithm extends the method in [15],
and is able to automatically and efficiently segment objects
in complicated images. Using a bottom-up hierarchy, the
method avoids the initialization problem in the Chan-Vese
model and works for images with multiple junctions and
color images. It is then extended to textured images us-
ing Gabor filters and fractal methods. Experimental results
show that the proposed method works well and is robust to
the effects of noise.

1 Introduction

Curve evolution methods [1] [2] [3] [5] [6] [7] [8] [10]
[11] [13] [14] [19] [20] [23] [25] [26] [27] are widely used
in image segmentation problems. These methods drive one
or more initial curve(s), based on image gradient and/or re-
gion information , to the boundaries of objects in an image.

These methods are derived using variational methods, and
are implemented using finite difference approximations to
PDEs and level sets [9] [17].

In curve evolution methods, region-based geometric
methods [3] [6] [8] [13] [19] [23] [25] [26] have several
advantages. They can deal with topological changes auto-
matically, outperforming parametric methods such as [10]
and [27]. Utilization of global region information stabilizes
their responses to local variations (such as weak edges and
noise) in comparison to gradient-based geometric methods
[1] [2] [11] [14] [20].

Region-based geometric methods, however, have
some limitations. First, most have initialization prob-
lems [6] [25]: different initial curves produce different
segmentations. Second, these methods have difficulty with
complicated images with multiple junctions. Top-down
hierarchical methods [13] [18] [23] or multiple coupled
evolving curves [25] [26] have been used to segment
multiple objects. Top-down hierarchical methods are
time-consuming. In the worst case,n curve evolutions must
be performed to segment an image withn objects. Coupled
evolving curves usually introduce high computational
loads, and techniques must be used to ensure that no pixels
are left over or segmented twice.

A mathematical analysis of the initialization problem
for the Chan-Vese models [3] [25] is provided in this pa-
per. From that analysis, the initialization problem is shown
to originate from both the non-convexity of the Mumford-
Shah functional and the top-down hierarchical way that re-
gion information is utilized. Based on the way of the Chan-
Vese models to utilize region information, efficient imple-
mentation methods for the Chan-Vese models are proposed.
The methods do not have to solve PDEs. The computa-
tional load of curve evolution is thus greatly reduced. The
proposed method bears some similarities to [20], but the
proposed method is region-based rather than gradient-based
as in [20]. It is more straightforward to build region infor-
mation to drive curve evolution. More complicated issues,
such as sensitivity to noise which is not considered in [20],



are discussed. The proposed methods, although still have
initialization problems, work efficiently for images without
strong noise. They can also deal with complicated images
such as triple junctions. Initialization problems, however,
remain.

From the mathematical analysis, provided in section 2,
a bottom-up hierarchical algorithm may therefore be help-
ful. Region growing methods shown in [15] is a good ex-
ample. Every pixel in the image is treated as a region at
the beginning in [15]. Regions are merged if the merging
decreases the well-posed case of the Mumford-Shah func-
tional [16]. It avoids the initialization problem and works
very fast. However, this method is sensitive to local varia-
tions such as weak edges. The region competition method
proposed in [27] utilizes region competition to combine
snakes, region growing and MDL(Minimum Description
Length)/Bayes methods. Although this has been shown to
work for color and textured images, the proper manual se-
lection of seed points for region growing at the first stage
is required, limiting its applicability. Tek and Kimia [21]
proposed another bottom-up segmentation method using
reaction-diffusion bubbles. These bubbles are hypothesized
as fourth order shocks and are randomly initialized in ho-
mogeneous areas of the image. These bubbles grow, shrink,
split and disappear to capture objects in the image. The
method, however, has difficulty with multiple junctions.

In this paper, an efficient bottom-up image segmenta-
tion method is proposed that uses region competition and
the Mumford-Shah functional. The method reserves the ad-
vantages of the method in [15]: it avoids the initialization
problem of the Chan-Vese models; it works for complicated
images and is efficient; it is robust to the effects of noise; its
efficiency can be enhanced using multi-scale methods and
parallelization. The proposed method outperforms [15] in
the case of local variations.

The paper is organized as follows. In section 2, the
Mumford-Shah functional and the Chan-Vese models are
introduced. The initialization problem of the Chan-Vese
models is analyzed in section 3. Based on the analysis, a
fast curve evolution method that does not require solution
of a PDE is proposed in section 4. A novel image segmen-
tation method based on region growing and the Mumford-
Shah functional is proposed in section 5. In section 6, im-
plementation issues are discussed. An analysis of experi-
mental results is provided in section 7. Section 8 provides
summary with conclusions and future work.

2 Background

The Mumford-Shah functional [16] is introduced first in
this section, followed by the analysis of the bi-modal and
multiphase Chan-Vese models

2.1 The Mumford-Shah Model

Let I0 be a function representing the image to be seg-
mented andI be a differentiable function representing the
segmented image. BothI0 andI are defined on a planar
domainR. LetRi be disjoint connected open subsets ofR
with piecewise smooth boundaries and letΓ be the union
of the portions of the boundaries ofRi insideR. Then the
Mumford-Shah functional is defined as

E(I,Γ) = µ2

∫∫
R

(I − I0)
2dxdy+

∫∫
R−Γ

‖∇I‖dxdy+ν|Γ|

(1)
where|Γ| represents the total length ofΓ, andµ andν are
positive constant. The first term in (1) asksI approximates
I0; the second term asks thatI doesn’t vary much in each
region; the third term asks the boundaries are as short as
possible. All three terms work together to make the func-
tional meaningful.

The functional in (1) is not necessarily well-posed. In
most cases, a special case of (1), in whichI is restricted to
be piecewise constant, is applied. The special case of the
Mumford-Shah functional, which is well-posed, takes the
following form

E(Γ) = Σi

∫∫
Ri

(I0 −meanRi
(I0))

2dxdy + ν|Γ| (2)

Although the functional in (2) is well-posed and may
have a global minimum, it is not convex and may have nu-
merous local minima. This is the underlying reason that the
Chan-Vese models, which will be introduced next, have the
initialization problem.

2.2 The Bi-modal Chan-Vese Model

The Chan-Vese model [3] [25] is the curve evolution im-
plementation of a special case of the Mumford-Shah model
[16]. The bi-modal Chan-Vese model [3] minimizes the fol-
lowing energy functional:

F (c1, c2, C) = µ · Length(C) (3)

+ λ1

∫∫
inside(C)

|I(x, y) − c1|
2dxdy

+ λ2

∫∫
outside(C)

|I(x, y) − c2|
2dxdy

whereI is the original image,C is the evolving curve, and
c1 and c2 are selected as the average values of pixels in-
side and outsideC, respectively.µ, λ1 andλ2 are positive
constants. Bothλ1 andλ2 are usually taken as 1. These two
parameters, therefore, are neglected in the following deriva-
tions.



The energy functional (3) is minimized by solving the
following PDE:

ψt = δε(ψ)[µ · κ− (I − c1)
2 + (I − c2)

2] (4)

whereψ is the level set representation of the evolving curve
C, which meansC = {(x, y)|ψ(x, y) = 0}. κ represents
the curvature of the evolving curve.δε(ψ) = ε/(π(ε2+ψ2))
andε is a positive constant.

From (4), the evolution of the curve is influenced by
two terms. The curvature termκ regularizes the curve
and makes it smooth during evolution. The region term
−(I− c1)

2 +(I − c2)
2 affects the motion of the curve. The

initialization of the curve affects curve evolution through
this term.

2.3 The Multiphase Chan-Vese Model

The bi-modal Chan-Vese model is applicable only for bi-
modal images. The multiphase Chan-Vese model [25] has
been proposed for more complex images. In this model, two
or more coupled curves evolve simultaneously to segment
images with multiple objects. Consider a four-phase Chan-
Vese model, in which two coupled curvesψ1 andψ2 evolve
according to coupled Euler-Lagrange equations.

Suppose the initial curves divide the image into four re-
gions:R00 = {ψ1 < 0, ψ2 < 0}, R10 = {ψ1 > 0, ψ2 <
0}, R01 = {ψ1 < 0, ψ2 > 0}, R11 = {ψ1 > 0, ψ2 > 0},
as shown in Fig. 4 (a). Letc00, c10, c01, andc11 be the aver-
age intensities insideR00,R10,R01,R11, respectively. The
evolution ofψ1 andψ2 follows the Euler-Lagrange equa-
tions:

∂ψ1

∂t
= δε(ψ1){νκ1 − ((I0 − c11)

2 − (I0 − c01)
2)H(ψ2)

(5)

− ((I0 − c10)
2 − (I0 − c00)

2)(1 −H(ψ2))}

∂ψ2

∂t
= δε(ψ2){νκ2 − ((I0 − c11)

2 − (I0 − c10)
2)H(ψ1)

(6)

− ((I0 − c01)
2 − (I0 − c00)

2)(1 −H(ψ1))}

whereκ1 = ∇ · ( ∇ψ1

|∇ψ1|
) andκ2 = ∇ · ( ∇ψ2

|∇ψ2|
) are the

curvatures of the evolving curveψ1 andψ2. H(·) is the
Heaviside function:H(x) = 1 whenx > 0 andH(x) = 0
whenx < 0 .

It can be seen from (5) that the evolution ofψ1 deter-
mines a boundary comprised of two parts: the part between
R00 andR10 whereψ2 < 0, and the part betweenR01 and
R11 whereψ2 > 0. The first part evolves due to region in-
formation inR00 andR10. The evolution of the second part
is driven by region information betweenR01 andR11. Sim-
ilar observations can be made forψ2. In this manner, the

multiphase Chan-Vese model divides the image into several
smaller regions and performs curve evolution based on re-
gion information in these regions.

3 The Initialization Problem of The Chan-
Vese Model

An analysis is provided in this section for the initializa-
tion problem of the Chan-Vese models. Based on the back-
ground information in section 2, three observations can be
made about the initialization problem.

First, initialization determines which local minimum of
the energy functional (2) is achieved. Initialization in the
Chan-Vese models provides the starting point for the mini-
mization of the energy functional. Since the energy func-
tional may have multiple local minima, and the Euler-
Lagrange method is a gradient-descent method, a local min-
imum may be reached, for example, if the initial value is
chosen to be closer to one of the local minima than the
global minimum. Fig. 3 illustrates this fact. The initial-
ization in Fig. 3(a) causes the global minimum of (2) to be
found where all the objects are segmented. The initializa-
tion in Fig. 3(c), however, is closer to a local minimum of
(2) than to the global minimum, and one object is not seg-
mented as a result in Fig. 3(d). The solutions to the Chan-
Vese model may go through different intermediate states for
different initializations even if they achieve the same local
minimum. An illustration is provided in Fig. 1 and Fig. 2.

Second, the way the Chan-Vese model utilizes region in-
formation helps to formulate the initialization problem. In
the Chan-Vese models, information from different regions
are competing to evolve the curve. If initialization causes
the total influence of multiple regions on the curve to be
zero, nothing is segmented. Although the multiphase Chan-
Vese model introduces computation between multiple small
regions, initialization is still a problem without prior infor-
mation about the image.

Third, coupling between evolving curves may magnify
the effects of initialization and introduce more computa-
tional load. Fig. 4 illustrates this fact. For the initialization
in (a), curve evolution based on only region information can
not reach a local minimum, as shown in (d). It can be seen
from (e)-(h), however, that every part of the evolving curve
converges to a local minimum. Although the curvature term
may finally drive the curves to a local minimum, the cou-
pling introduces extra computation and makes the segmen-
tation time-consuming. Therefore, it is useful to decouple
the evolving curves in the multiphase Chan-Vese model for
better segmentation results [6].

A more detailed mathematical analysis is shown in the
following to illustrate the above statements. Consider a
piecewise constant bi-modal image. Suppose there are
n1 pixels in the background of the image, among which



m1(0 ≤ m1 ≤ n1) pixels lie inside the initial curve. Sup-
pose there aren2 pixels in the foreground of the image,
among whichm2(0 ≤ m2 ≤ n2) lie inside the initial curve.
All the pixels in the background (foreground) takeu1(u2)
as their intensity values. Obviously,m1 + m2 > 0 for all
initializations.

The the average intensity inside the evolving curve is

c1 = (m1u1 +m2u2)/(m1 +m2), (7)

and the average intensity outside the evolving curve is

c2 = ((n1−m1)u1+(n2−m2)u2)/((n1−m1)+(n2−m2)).
(8)

The region terms−(I−c1)
2+(I−c2)

2 for points on the
evolving curve in the foreground and the background are

(u2−c2)
2−(u2−c1)

2 = K0K2(m2n1−m1n2)(u1−u2)
2

(9)
(u1−c2)

2−(u1−c1)
2 = −K0K1(m2n1−m1n2)(u1−u2)

2,
(10)

whereK0 = 1/{(n1 − m1 + n2 − m2)(m1 + m2)},
K1 = (n2−m2)/(n1−m1+n2−m2)+m2/(m1+m2) and
K2 = (n1−m1)/(n1−m1 +n2−m2)+m1/(m1 +m2),
respectively.K0,K1 andK2 are positive for any initializa-
tion.

From (9) and (10), it can be seen that the region term
for points on the foreground part of the evolving curve is
opposite in sign to that on the background part of the evolv-
ing curve. Therefore, if one part of the evolving curve ex-
pands, the remaining part will have to shrink and vice versa.
Without loss of generality, setψ > 0 inside the evolving
curve andψ < 0 outside the evolving curve. Then three
cases may occur, depending upon different initializations.
If m2n1 − m1n2 > 0 (m2/n2 > m1/n1), then the fore-
ground part of the curve expands, and the background part
shrinks. The curve evolves into the foreground and seg-
ments the object from the foreground, as shown in Fig. 1. If
m2n1−m1n2 < 0 (m2/n2 < m1/n1), then the foreground
part of the curve shrinks and the background part expands.
The curve evolves into the background and segment the ob-
ject from the background, as shown in Fig. 2,. Finally, if
m2n1−m1n2 ≈ 0, then the influence of the region term on
the curve evolution is small at first. The curve is expected
to evolve very slowly and may segment nothing.

It can be seen from the above analysis that initialization
affects curve evolution in the Chan-Vese model. The results
from Fig. 1 and Fig. 2 illustrate this point. Although in Fig.
1 and Fig. 2, the same segmentation results are achieved,
in complicated cases, different initializations may generate
different segmentation results, as shown in Fig. 3. Both
initializations (a)(c) in Fig. 3 satisfym2/n2 > m1/n1,
making the foreground part of the evolving curve expand
and the background part shrink. Since the upper object is

not included in the initialization in (c), it is not segmented
using that initialization. This suggests that every objectin
the image should have at least one pixel included in the ini-
tial curve for good segmentation. For the Chan-Vese model,
good choices for the initialization would be the boundaries
or multiple bubbles. Multi-modal images can exacerbate
the initialization problem. This holds even for the multi-
phase Chan-Vese model [25], as shown in [6]. In the worst
case, the Chan-Vese model can fail to segment any object
if the total influence of the region information on the initial
curve is zero, as is shown in Fig. 8 (b1) and (b2).

The Chan-Vese model uses a top-down hierarchical
method for segmentation, and global region information is
utilized only on the evolving curve in the model. The ini-
tialization problem is a consequence of this. A bottom-up
hierarchical method, which makes use of local information,
may reduce the initialization problem and allow its appli-
cation to more complex images. A new image segmen-
tation method, which is based on region growing and the
Mumford-Shah model, is proposed in section 5. Before the
introduction of the new method, however, we propose a very
fast curve evolution method for the Chan-Vese model, based
on the analysis in this section.

(a) (b) (c) (d)

Figure 1. Example of the initialization prob-
lem, where m2/n2 = 0.21 is larger than
m1/n1 = 0.16. (a)(b)(c)(d) show the curve evo-
lution after 0, 10, 60 and 234 iterations sepa-
rately.

(a) (b) (c) (d)

Figure 2. Example of the initialization prob-
lem, where m2/n2 = 0.036 is smaller than
m1/n1 = 0.065. (a)(b)(c)(d) show the curve
evolution after 0, 10, 600 and 1182 iterations
separately.



(a) (b) (c) (d)

Figure 3. Different initialization in the Chan-
Vese model may generate different segmen-
tation results. (a) and (c) represent images
with different initializations. (b) and (d) are
the segmentation results corresponding to
(a) and (c) respectively. The top rectangle is
not segmented in (d).

4 Fast Curve Evolution Methods Without
Solving PDEs

The Chan-Vese models are usually implemented by solv-
ing PDEs, such as the level set equations [9] [17] and Pois-
son equations [25]. These methods are computationally in-
tense, although they are theoretically sound. Fast imple-
mentation methods are proposed for both the bi-modal and
the multiphase Chan-Vese models in this section. A math-
ematical analysis of the region information in the bimodal
Chan-Vese model is provided first, which provides the con-
cept for a fast implementation evolution method for that
model that does not require solving PDEs. The proposed
method is extended to the decoupled multiphase Chan-Vese
model, as provided in [6].

4.1 Fast Implementation of the Bi-modal Chan-
Vese Model

From the equations (9) and (10), the following observa-
tions can be acquired for the bi-modal Chan-Vese model:
First, the region term−(I − c1)

2 + (I − c2)
2 of the fore-

ground has the opposite sign to the region term of the back-
ground for any initialization. Second, for any point strictly
inside the foreground or the background, its region term
will has the same sign as the terms for its neighboring
points. Third, only the boundary points will have neigh-
boring points with region terms different in sign.

The observations shown above hold for all bi-modal im-
ages without strong noise. This information can be used to
construct an efficient evolution of the initial curve. A list
of points, instead of a narrow band of points in classical
methods [9] [17], is utilized to represent the evolving curve.
Without loss of generality, suppose the points inside the ini-
tial curve are set to have positiveψ value. For any point
in the list, if this point and all its neighboring points have

positive region terms, then at that point the curve will ex-
pand according to (4). We only need to remove this point
from the list, and add to the list those neighboring points
that have negativeψ values. Correspondingly, if a point on
the list and all its neighboring points have negative terms,
then the curve will shrink at that point. We need to remove
this point from the list and add to the list those neighboring
points that have positiveψ values. Otherwise, the boundary
has been reached, and nothing needs to be done.

Up to this point, the regularization term in (4) has not
been used in the proposed method. As proved in [12], curve
evolution based on curvature∂C/∂t = κN is equivalent to
a nonlinear analogy to Gaussian smoothing. Thus Gaussian
smoothing can be applied after each iteration of curve evo-
lution to smooth the curve.

4.2 Fast Implementation of the Multiphase Chan-
Vese Model

It seems straightforward to extend the proposed method
to the multiphase Chan-Vese model. In this case, two or
more curves are initialized and then evolved according to
the region information. Gaussian smoothing is utilized to
regularize the evolving curves. However, the coupling be-
tween the evolving curves in the multiphase Chan-Vese
model, as can be seen from (5) and (6), may cause the evolv-
ing curves stop at a local minimum [6] [25]. An illustration
is provided below.

In Fig. 4, (b) shows an image with initialized curves.
Let ψ1 be the red curve andψ2 be the green curve. Both
curves are initialized positive inside and negative outside.
(c) shows the segmentation result using the coupled multi-
phase Chan-Vese model. The blue lines in (c) means the
red curve and the green curve both stop there. It can be seen
that parts of the evolving curves do not stop at object bound-
aries, and only a local minimum is reached. (d) shows the
final location of the green part of the evolving curve, which
corresponds to the part ofψ2 in the regionψ1 > 0. This part
of the curve, which evolves under the direction of region
information in the area ofψ1 > 0, reaches its local min-
imum. Similar results can be achieved for the other three
parts of the evolving curves. The final result, however, is
not a real local minimum of the Mumford-Shah functional
(2). In other words, multiphase curve evolution in this case
reaches a “false” local minimum here. This problem arises
from the coupling of the evolving curves.

Decoupled models [6] have been proposed to solve the
problem. In this model, only one curve is evolved at a time.
The first curveψ1 separates the original image into two re-
gions {ψ1 > 0} and {ψ1 < 0}. The second curveψ2

evolves based on the results of the first curve, and may seg-
ment the original image into three or four regions, such as
{ψ1 > 0, ψ2 < 0}. This procedure is repeated until all the



objects in the original image are segmented. The evolving
curves in decoupled models are more likely to stop at object
boundaries because they do not evolve simultaneously.

Decoupled models in [6] reduce the effects of coupling,
but they solve PDEs for image segmentation, which is com-
putationally intense. The fast implementation method pro-
posed in the above section can be extended for decoupled
multiphase models. Consider the four-phase case of the
Chan-Vese model. Two curvesC1 andC2 are initialized,
and evolve in consecutive iterations. In each iteration, the
implementation method for the bi-modal case is utilized.
For the first iteration, the curveC1 evolves using region in-
formationR1 = ((I0−c11)

2− (I0−c01)
2)H(ψ2)− ((I0−

c10)
2 − (I0 − c00)

2)(1 − H(ψ2)) as in Eqn. ( 5). After
the first iteration is completed, the other curveC2 evolves
using region informationR2 = −((I0 − c11)

2 − (I0 −
c10)

2)H(ψ1) − ((I0 − c01)
2 − (I0 − c00)

2)(1 − H(ψ1))
as in Eqn. ( 6). Gaussian smoothing is utilized for regular-
ization.

(a) (b) (c) (d)

Figure 4. Coupling between curve evolution
may enlarge initialization problems. (a) Multi-
phase Chan-Vese model. (b) Initialization. (c)
Segmentation results. (d) show the positions
of one part of the evolving curves in (c).

5 Image Segmentation Using Region Compe-
tition and the Mumford-Shah Functional

In this section, an image segmentation method is
proposed based on region region competition and the
Mumford-Shah model. First, an explanation of the Chan-
Vese models [3] [25] is provided based on the concept of
region competition. The proposed segmentation method is
then described. Finally, an extension to color and textured
images is developed.

5.1 Region Competition in the Chan-Vese Models

The Chan-Vese models [3] [25] minimize an energy
functional by evolving an initialized curve. Curve evolu-
tion can be interpreted as the result of competition between
the foreground and the background. This idea is similar to

the method proposed in [27]. Curve evolution stops when
the competition is in equilibrium.

Consider, for example, the bi-modal case in section 3,
and let ψ > 0 inside the evolving curve. The curve
evolves according to the competition between the fore-
ground region and the background region. When the evolv-
ing curve reaches the boundary of the object,m1 = 0,
m2 = n2, c1 = u2, and c2 = u1. The region terms
calculated using the boundary points in the foreground are
(u2 − c2)

2 − (u2 − c1)
2 = (u2 − u1)

2 > 0, and the re-
gion terms for the boundary points in the background are
(u1 − c2)

2 − (u1 − c1)
2 = −(u2 − u1)

2 < 0. These re-
gion terms are equal in magnitude and opposite in sign. The
competition is balanced, and the evolving curve stops at the
boundary of the object.

5.2 Image Segmentation Based on Region Com-
petition and the Mumford-Shah Functional

The proposed image segmentation method is designed to
minimize the well-posed case of the Mumford-Shah func-
tional [16] using bottom-up region growing and region com-
petition. The energy functional takes the form:

E(Γ) =
∑
i

∫∫
Ri

(I − ci)
2dxdy + ν · Γ (11)

whereΓ represents the length of object boundaries,I repre-
sents the image to be segmented,ci represents the average
intensity of theith regionRi andν is a constant parameter.

As mentioned in [16], the energy functional (11) tends
to segment images into piecewise constant regions, which
gives an opportunity for minimization using region grow-
ing. The proposed method works as follows: Every pixel
in the image is initially its own region. A region is merged
with a neighboring region if this action will decrease the en-
ergy functional (11). In this way, the neighboring regions of
any selected current region are competing with each other to
reduce the energy functional. After two regions are merged,
the intensity of each pixel in the merged region is set to the
average intensity of the regions. The process is repeated un-
til no region merging occurs and no further reduction of the
value of the energy functional is possible. A mathematical
description of region merging is given below.

Consider two neighboring regionsΩ1 andΩ2 in the im-
age. SupposeΩ1 andΩ2 containn1 andn2 pixels respec-
tively, with c1 and c2 as their average intensities. These
two regions haveΓ pixels in common as their boundaries.
If the regions are merged, the average intensity would be
c = (n1c1 + n2c2)/(n1 + n2). The energy functionals be-
fore and after region merging can be evaluated:

Eprev =

∫∫
Ω1

(I − c1)
2dxdy+

∫∫
Ω2

(I − c2)
2dxdy+ν ·Γ

(12)



Eafter =

∫∫
Ω1

(I − c)2dxdy+

∫∫
Ω2

(I − c)2dxdy (13)

. The energy difference, therefore, is

Eafter − Eprev = 2V1(c1 − c) + 2V2(c2 − c) + n1(c
2 − c21)
(14)

+ n2(c
2 − c22) − ν · Γ

whereV1 =
∫∫

Ω1

Idxdy and V2 =
∫∫

Ω2

Idxdy. Re-
gion merging is performed only if the energy difference is
smaller than zero, reducing the value of the energy func-
tional.

The ideas so far are very similar to the method in [15].
Two extension are made to improve their performances. On
the one hand, during region growing, irregular boundaries
may be generated, especially in images with strong noise.
Regularization of region boundaries is, therefore, necessary.
Gaussian smoothing is utilized, and is performed only when
the region becomes larger than a specified threshold.

On the other hand, region growing is not enough for en-
ergy minimization in some cases. Although the merges of
two regions may increase the energy functional, moving
their common boundaries may decrease the energy func-
tional. Thus, region competition on the boundaries between
neighboring regions can be beneficial. In fact, region grow-
ing can be taken as a special case of the region competition.
This idea is similar to the ideas [21] [27] and the Chan-
Vese models presented in [3] [25]. But there are differ-
ences. First, region competition in the present case results
in changes between regions, not the evolution of curves.
Second, region competition is performed only when region
growing can not decrease the energy functional, lowering
the computational burden.

Several methods may be applied for region competition,
such as in [3] and [27]. The bimodal Chan-Vese model
[3] is a good choice because the geometric curve evolution
in [3] can handle topological changes automatically. But
[3] may be time-consuming. In the implementation, there-
fore, the fast curve evolution methods proposed in section
4 are applied. Since they do not solve PDEs, they are very
efficient.

In the proposed method, region information is used in
a manner that is similar to the Chan-Vese models [3] [25],
but initialization problem can be avoided and complicated
cases such as multiple regions and triple junctions are au-
tomatically handled, because of the bottom-up hierarchical
approach of the proposed method. The proposed method
can be seen as an extension of the multiphase Chan-Vese
model when numerous initial curves are introduced so that
every pixel in the image is taken as a region. It can also be
viewed as a method to select the starting point for energy
minimization to try to reach the the global minimum.

5.3 Existence of the Solution of the Proposed
Method

In the proposed method, the image is discretely sampled
as pixels, and the energy functional is approximated by a
finite sum. Then there are a finite number of possible com-
binations for image segmentation. This holds not only for
the region growing method in [15], but also for the pro-
posed region competition method. The characteristics of
region growing are kept in the proposed method, although
post-processing is added. Minimum of the approximated
energy functional, therefore, exists. As proved in [15], the
minimum can be achieved by region growing, and thus by
the proposed region competition method.

5.4 Extension to Color Images and Textured Im-
ages

The proposed method can be extended in a straightfor-
ward manner to color or textured images. Several color
models, such as the one used in [27], can be chosen for
the extension. The RGB color model is utilized here for
simplicity. For textured images, Gabor filters [22] [24] or
fractal methods [4] are utilized here to preprocess the tex-
tured images. The proposed methods are then applied to
segment the processed images using the following energy
functional

E(Γ) =

n∑
j=1

∑
i

∫∫
Ri

(Ij − cij)
2dxdy + ν · Γ (15)

wheren represents the number of features (n = 3 for color
images) andj represents the indices of the features.

The implementation of the proposed method for color
and textured images is similar to that for intensity images.
The only difference lies in the calculation of the region in-
formation.

6 Implementation Issues

The key issue for the implementation of the proposed
method is how to select an appropriate value forν for a
specified image. Intuitively,ν should be large enough to
suppress noise and small enough not to merge regions sepa-
rated by edges with high gradients. We show that the value
of ν should also be related to the size of competing regions.

Consider two extreme cases for the region growing prob-
lem of section 5.2. First, ifV1 = n1c1, V2 = n2c2 and
n1 = n2 = n, thenc = (c1 + c2)/2, and

Eafter − Eprev = 1.5 · n(c1 − c2)
2 − ν · Γ (16)

If, on the other hand,V1 = n1c1, V2 = n2c2 andn1 >> n2,
thenc ≈ c1, and

Eafter − Eprev ≈ n2(c1 − c2)
2 − ν · Γ (17)



In both cases, the energy change as regions grow is highly
related to the size of competing regions (n in (16) orn2 in
(17)). It is very difficult to select the proper value ofν if
many regions of different sizes are competing at the same
time.

Since the proposed method assigns a region to each pixel
at the beginning, the above problem can be solved by re-
stricting the maximum size of a region after each iteration.
For example, the largest region after the first traverse of the
whole image is set to 2 pixels. The image is then segmented
into numerous regions containing two pixels after the first
traverse. The largest region after the second traverse of the
image is then set to 4 pixels. Now almost all competing re-
gions contain 2 pixels and the image will be segmented into
regions of 4 pixels, and so on. In this way, most competing
regions have the same size, and the selection of the value of
ν may be less affected by the sizes of the regions.

Suppose the variance of noise in an intensity image is
σ2, and the gradient of the region boundaries is expected to
be g0 (g0 > σ); then the value ofν can be selected such
thatσ2 < ν < g2

0 . For color images, the value ofν can be
selected such that3σ2 < ν < 3g2

0. It is usually acceptable
to chooseν = 1000 for intensity images andν = 3000 for
color images.

7 Experimental Results

Experimental results from the proposed method are
shown in this section. The proposed method is implemented
on a computer which has two Intel(R) Pentium(R) 3.2GHz
CPUs, 2G bytes RAM, and runs the Red Hat Enterprise
Linux operating system. The CPU times given in this pa-
per are the sums of system CPU times and user CPU times.
The system CPU time is usually very small, typically 0.01 -
0.08 seconds.

7.1 Experimental Results of the Fast Implemen-
tation Methods

The proposed fast implementation method is efficient
compared to the classical method solving PDEs [9] [17],
as can be seen from Fig. 5, which shows that the proposed
method is much faster and achieves the same segmentation
results for both synthetic and real images. Fig. 5 (a1)-(a3)
demonstrate that the proposed method is able to automati-
cally handle topological changes.

Fig. 6 shows segmentation results using the proposed
method for complicated images. (a)-(d) shows the segmen-
tation of triple junctions using the proposed method for
the decoupled multiphase Chan-Vese model. The red ini-
tial curve in (a) is evolved first, and the result is shown in
(b). The green curve shown in (b) is evolved in the sec-
ond iteration, and the result is shown in (c). (d) shows the

final segmentation result. The results show that the pro-
posed method works well for images with multiple junc-
tions. However, only a local minimum is reached in this
case, which means the initialization problem still exists in
the fast implementation method.

The effects of noise on the proposed fast implementation
method are illustrated in Fig. 7. Fig. 7 (a)-(c) show the
segmentation of an image with medium noise. Although
the noise affects the process of curve evolution, as can be
seen in Fig. 7 (b), the object in the image is successfully
segmented in Fig. 7 (c). In this case region information has
to be updated after every iteration to reduce the effects of
noise, which is not required in the image of Fig. 5. Fig. 7
(d) shows the curve evolution result after 100 iterations for
an image with strong noise. The proposed method fails in
this case. The reason is that the noise in the image is so
strong that it changes the sign of the region termR. The
curve can not evolve in the proper direction from the sign
of the region term.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 5. Comparison of the proposed fast im-
plementation method to the classical method
solving PDEs [9] [17]. (a1) An image (300 *
300) with initial curve. (b1) Intermediate re-
sult using the proposed method. (c1) Seg-
mentation result of the proposed method,
CPU = 0.51s. (d1) Segmentation result of
the Chan-Vese model by solving PDEs, CPU =
11.98s. The new method provides a 23 times
speed-up. (b1) An original image (200 * 150).
(b2) Initial curve of (b1). (b3) Segmentation
result of the proposed method, CPU = 0.34s.
(b4) Segmentation result of the Chan-Vese
model, CPU = 30.835s. The new method pro-
vides almost 100 times speed-up.



(a) (b) (c) (d)

Figure 6. Fast decoupled curve evolution for
complicated images. (a) Original image (300
* 300) with initializations. (b) Segmentation
results after the first iteration. (c) Segmenta-
tion result after the second iteration. (d) Final
segmentation result, CPU = 1.960s.

(a) (b) (c) (d)

Figure 7. Effects of noise on the proposed
fast implementation method. (a) An image
with medium noise. (b) Curve evolution after
44 iterations. (c) Segmentation results of (a),
CPU = 0.3s. (d) Curve evolution after 100 it-
erations for an image with strong noise. The
proposed method fails in (d).

7.2 Experimental Results of the Bottom-Up Seg-
mentation Methods

Experimental results of the proposed bottom-up segmen-
tation methods are provided in this subsection. Fig. 8 repre-
sents the comparison of the proposed method and the Chan-
Vese model. (a1) shows the image to be segmented. The
image contains one background region (intensity 128) and
4 foreground regions (intensity 32, 64, 192, 224 counter-
clockwise) of equal size. The segmentation result in (a2)
shows that the proposed is very efficient (1.9s). The Chan-
Vese model fails for the initialization shown in (b1). Since
the effects of the region information on the curve are zero,
the curve evolves very slowly, driven by the curvature. Af-
ter more than 13 seconds, the initial curve evolves into (b2)
and will shrink to a point in the end.

Fig.9 shows the comparison between the region compe-
tition method and the region growing method in [15]. For
images with weak edges (a)(d), segmentation results of the
improved method (b2)(c2)(e2) are much better than the re-
sults of the previous method. The boundaries between re-
gions are more regularized and the results are closer to the
original image. It can also be seen that both methods are

very efficient.
Fig. 10 demonstrates the ability of the proposed region

competition method to deal with images with multiple junc-
tions. The initialization problem can occur happen for the
Chan-Vese model, as shown in [6]. The proposed method
generates very good segmentation results with high effi-
ciency.

Fig. 11 shows the stability of the proposed method with
respect to noise. It can be seen that the proposed method
works very well for images with strong noise. The results
also shows that a largerν is required, and the segmentation
process becomes longer for images with stronger noise.

In Fig. 12, the extension of the proposed method to color
images is tested. Images in Fig. 12 (a1)(a2) are designed to
have the same intensity so that they can not be segmented
just using intensity. By means of the color information, the
proposed method successfully segments objects with differ-
ent colors.

Fig. 13 shows the effects ofν on the segmentation re-
sults. The image has four regions. The pixels are ran-
domly chosen and independent, with Gaussian distribution
N(60, 402), N(110, 402), N(160, 402), andN(210, 402).
By the discussion in section 6, the choice ofν should sat-
isfy 402 < ν < 502. The results in Fig. 13 show that the
proposed method works for a wider range ofν. From the
results in Fig. 13 (b)(c)(d), it can be seen that the segmen-
tation time becomes shorter with increasingν, while at the
same time the object boundaries become coarser. This can
be explained by the fact that regions are more likely to be
merged with largerν values. In practice, a compromise has
to be made between efficiency and accuracy.

Experimental results for complicated real images are
provided in Fig. 14. Gaussian smoothing is not utilized
here since these images are of good quality. It can be seen
that the proposed method is very efficient, even for com-
plex images. Post-processing may be necessary for better
results.

In Fig. 15, Gabor filters are utilized for texture descrip-
tion. (a3)(b3) show the outputs of Gabor filter (a2)(b2) ap-
plied to original textured images (a1)(b1). The proposed
segmentation method is then applied on (a3)(b3), which
generates final segmentation results (a4)(b4). Experimen-
tal results in (a4)(b4) show that regions of textures are seg-
mented very well. Multiple Gabor filters may also be ap-
plied on (a1)(b1). The selection of parameters for Gabor
filters and the combination of their outputs for a textured
image are topics under investigation.

8 Conclusions and Future Work

In this paper, a mathematical analysis of the initialization
problem of the Chan-Vese model is provided. This analysis
shows that the initialization problem is caused by the top-



down manner in which region information is used. A new
bottom-up image segmentation method is proposed to solve
this problem. It is based on region growing, region com-
petition, and the Mumford-Shah functional. This method
works well for complex images. It is very efficient, easy to
implement and robust to noise. Experimental results show
this method is able to quickly segment complex images. A
fast curve evolution method is also proposed for the Chan-
Vese model. This method does not need to solve PDEs and
works very well for images without strong noise.

(a1) (a2) (b1) (b2)

Figure 8. Comparison of the proposed re-
gion competition method and the Chan-Vese
model for images with multiple regions. (a1)
A gray image (256 by 256) with average inten-
sity 128. (a2) Segmentation of the proposed
method, ν=1000, CPU =1.9s. (b1) A gray im-
age with the initialized curve. (b2) Segmen-
tation using the Chan-Vese model, CPU =
13.03s.
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