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Abstract

In this paper, a new model is proposed for image segmen-
tation that integrates the curve evolution and anisotropic
diffusion methods. The curve evolution method, utilizing
both gradient and region information, segments an image
into multiple regions. During the evolution of the curve,
anisotropic diffusion is adaptively applied to the image to
remove noise while preserving boundary information. Cou-
pled partial differential equations (PDE’s) are used to im-
plement the method. Experimental results show that the
proposed model is successful for complex images with high
noise.

1 Introduction

Active contour models are widely used in image segmen-
tation problems. In these models, curves are evolved in an
image from initial locations, in response to information de-
rived from the image, to detect object boundaries. These
methods are derived using variational methods, and are im-
plemented using finite difference approximations to PDE’s
and level sets.

The geometric model of active contours, proposed by
Caselles et al. [1] and Malladi et al. [2], evolves curves
in a Eulerian formulation and is implemented via level set
algorithms [3][4]. This model, compared to the classic para-
metric model put forward by Kass et al. [5], has several ad-
vantages, mainly the capacity to automatically handle topo-
logical changes and simultaneously detect multiple objects.
Several models [6]-[13] have been proposed that follow this
approach, and good results have been achieved.

Several problems, however, remain. First, a boundary

leakage problem exists for some models [6][7], in which
the evolving curve does not stop at the boundaries of ob-
jects. Second, most of these models utilize either gradient
information [6] or region information [8][9] alone. Both
gradient and region information are used in some models
[7][10][12], but the information is not fully utilized [7], or
several assumptions are required [10][12]. Finally, methods
are needed that are less sensitive to noise.

A new geometric active contour model is proposed in
this paper that integrates curve evolution and anisotropic
diffusion. The curve evolution method utilizes both gradient
and region information for image segmentation. This model
solves the boundary leakage problem. It is also able to deal
with complicated cases such as color images and images
with triple junctions. Anisotropic diffusion methods are in-
tegrated in the proposed model to reduce the effects of noise
without smoothing the boundaries of deteced segments.

The paper is organized as follows. In section 2, previous
work on both curve evolution and anisotropic diffusion is
reviewed. Details of the proposed model are described in
section 3. Section 4 discusses implementation issues. In
section 5, experimental results are given and analyzed. A
summary is provided in section 6.

2 Previous Work

This section provides a short review of previous work
on curve evolution and anisotropic diffusion. Problems as-
sociated with both methods will be analyzed, providing a
foundation and justification for the proposed model in this
paper.



2.1 Curve Evolution

In several of the active contour models mentioned above,
either gradient information [6] or region information [8][9]
alone is utilized to perform image segmentation. Some
models [7][10][12] use both types of information, but prob-
lems and limitations still exist.

For earlier models, gradient information alone is usually
used to stop a curve at boundaries of objects, by weighting
the evolution speed using a monotone decreasing function
of image gradients [6]. Kichenassamy et al. [6] proposed
minimization of the following energy functional:

Lφ(t) =

∫ 1

0

‖
∂C

∂p
‖φdp (1)

where C is the evolving curve, p is the parameter of
the curve C, and φ is a weighting function that depends
upon image content. The energy functional measures the
weighted length of C. The minimization of this energy
functional leads to the following curve evolution model:

ψt = φ(x, y)(υ + ε · div(
∇ψ

|∇ψ|
))|∇ψ| + ∇φ · ∇ψ (2)

where ψ is the level set of the evolving curve C, which
means C = {(x, y) : ψ(x, y) = 0}. div stands for the
divergence operator, υ represents the speed of curve evolu-
tion, and ε is a positive constant. φ(x, y) acts as a “stop-
ping term” using gradient information. φ takes the form
1/(1 + |∇Gσ ∗ I|), where Gσ represents the Gaussian ker-
nel with variance σ, and I is the image function.

Although this model works well in many cases, it allows
boundary leakage when image gradients are not very high.
Siddiqi et al. [7] combines gradient and area information
for shape segmentation. Their methods have good perfor-
mance, but boundary leakage still exists.

In the papers of Chan and Vese [8], region information
is utilized for image segmentation. In their methods, the
segmentation problem is formulated as the minimization
of an energy functional simplified from the Mumford-Shah
model [15]. The energy functional, which is also called the
minimal variance criterion [13], takes the form:

F (c1, c2, C) = µ · Length(C) (3)

+ λ1

∫∫

inside(C)

|I(x, y) − c1|
2dxdy

+ λ2

∫∫

outside(C)

|I(x, y) − c2|
2dxdy

where I is the original image, C is the evolving curve, and
c1 and c2 are selected as the average value of pixels inside
and outside C, respectively. µ, λ1 and λ2 are positive con-
stants.

This model is implemented using level set methods and
provides very good performance for bimodal images. Vese
et al. later extended the model to multi-modal images [9].
In their model, however, gradient information is not uti-
lized. Tsai et al. [10] implemented the Mumford-Shah
model [15] using curve evolution methods and extended it
to image noise reduction, interpolation and magnification.

Paragios et al. [11] put forward a model of coupled ac-
tive regions to utilize both gradient and region information
in a statistical framework. In this model, assumptions on
the statistics of pixels and regions in the image are made,
which impose limits on the model’s performance.

Xie et al. [12] proposed a region-aided geometric snake
model, which also makes use of the combination of gradient
and region information. The method resolves the boundary
leakage problem by using the region information. However,
it seems difficult to deal with textured images by applying
this method together with the tensor measure.

Kimmel [13] presents a general model that incorporates
the alignment term, the geodesic active contour model [14]
and the minimal variance criterion [8]. The energy func-
tional to be minimized takes the following form:

E(C, c1, c2) = −

∮

C

|〈∇I, ~n〉|ds+ α

∮

C

g(C(s))ds (4)

+ β
1

2
(

∫∫

inside(C)

(I − c1)
2dxdy

+

∫∫

outside(C)

(I − c2)
2dxdy)

In this way, both gradient and region information are uti-
lized for image segmentation.

Another issue for active contour models is that noise
should be carefully processed. For models using region in-
formation, image denoising is an independent step. Gaus-
sian filters are usually used to smooth the image. For those
models using gradient information, a Gaussian smoothing
method is selected to reduce the effects of noise when cal-
culating the gradients. In this process, however, the bound-
aries are also smoothed, which makes it difficult to find the
boundary locations and encourages boundary leakage. In
the present paper, anisotropic diffusion methods are used to
address this problem and are introduced below.

2.2 Anisotropic Diffusion

Anisotropic diffusion is a good method for image de-
noising. It prefers intra-region smoothing to inter-region
smoothing, and is thus able to smooth the noise while keep-
ing the boundaries from being smoothed.

Anisotropic diffusion was first introduced by Perona and
Malik [16]. The basic idea is to evolve a family of smoothed
images I(t) from an initial image I0 using the following



partial differential equation

It = div(g(|∇I|)∇I) = g(|∇I|)4I + ∇g · ∇I (5)

where g(|∇I|) is designed to preferably smooth pixels in-
side a region rather than pixels near the boundary. g(|∇I|)
is usually selected as:

g(|∇I|) = exp(−(|∇I|/K)2) (6)

or

g(|∇I|) =
1

1 + (|∇I|/K)2
(7)

where K is a constant that is tuned for a particular applica-
tion.

In [17], You et al. showed that the Perona-Malik
anisotropic diffusion listed above is equivalent to mini-
mizing the following functional using a gradient descent
method:

E(I) =

∫∫

Ω

∇I

1 + (|∇I|/K)2
dxdy (8)

This paper also shows that the Perona-Malik anisotropic
diffusion method is ill-posed in the sense that images close
to each other are likely to diverge during the diffusion pro-
cess. Another problem with this method is the formation of
density steps near boundaries, termed staircasing [18].

A theoretical analysis of the Perona-Malik method has
shown that a weak solution is not guaranteed to exist [19].
In practice, however, this method usually performs very
well. Weickert [20] and You [21] have examined the dif-
ferences between continuous and discrete anisotropic diffu-
sion. They show that discrete anisotropic diffusion is well-
posed even if its continuous counterpart is ill-posed. The
performance of discrete anisotropic diffusion, however, de-
pends on finite difference schemes and grid sizes.

Several methods have been proposed to solve these prob-
lems. Alvarez et al. [22] proposed a well-posed method to
selectively smooth the pixels in the image in its tangential
direction

It = g(G ∗ |∇I|)|∇I|div(
∇I

|∇I|
) (9)

where G is a Gaussian kernel and G ∗ |∇I| is a local es-
timate of ∇I for noise elimination. This method, together
with the Perona-Malik method, makes use of local infor-
mation only, which provides poor estimation of the gradi-
ent and its direction. Global information should be used to
improve these models, such as the Gabor method in [23].
Many models have been proposed recently to improve the
diffusion performance, such as [24], [10], [25] and [26].

3 Integration of Curve Evolution and
Anisotropic Diffusion

In this section, a new active contour model is proposed,
which integrates curve evolution and anisotropic diffusion.
The proposed curve evolution model, which makes use of
both gradient and region information in the image, will be
introduced first. Then, the connections between curve evo-
lution and anisotropic diffusion are examined. Finally, the
integration of curve evolution and anisotropic diffusion is
shown. In the proposed model, anisotropic diffusion is se-
lectively applied to images to reduce the effects of noise
during curve evolution. Curve Evolution and anisotropic
diffusion are combined by coupled PDE’s.

3.1 Curve Evolution Model

The proposed model begins with an energy functional
that integrates gradient and region information using the
form

E(C) = α ·

∫ 1

0

‖
∂C

∂p
‖φdp (10)

+ (1 − α)λ

∫∫

inside(c)

|I(x, y) − c1|
2dxdy

+ (1 − α)λ

∫∫

outside(c)

|I(x, y) − c2|
2dxdy

The minimization of (10) leads to the following active con-
tour model

ψt = αφl(υ + εκ)|∇ψ| + ∇φl · ∇ψ (11)

+ (1 − α)λδβ(ψ)[(I − c2)
2 − (I − c1)

2]

In both equations, the weight function φl is selected as
1/(1 + |∇I|2). For more details about the derivation, re-
fer to [6][7][13].

The first term in the right hand side of (11) is a combina-
tion of constant motion and curvature motion. In this term,
υ is the inflationary term, which attracts the curve in one
direction, either expanding or shrinking; κ represents the
curvature, which keeps the curve smooth when evolving.
The third term makes use of the region information, which
helps to stop the curve at the boundaries of interest. In this
term, δβ(x) = β/(π(x2 + β2)) acts like an approximate
delta function, as in [8]. α, β and ε are positive constant
coefficients. λ is a normalization constant to make the val-
ues of gradient and region information comparable. α lies
between 0 and 1 and determines the weights of the gradi-
ent and the region information. α is usually set to 0.5. For
those images where weak edges exist, α is set to be less than
0.5 to increase the weight of the region information; 0.2 is
usually a good choice for α in such cases.



When α is set to 1, only gradient information is used, and
the model is the same as model (1) in [6]. When the function
φ is chosen to 1 everywhere and υ is set to 0, (11) becomes
model (3) in [8]. Another point worth mentioning is that
the minimization of the energy functional (10), according to
the proofs in [13], will lead to the following active contour
model

ψt = αφl(υ + εκ)|∇ψ| + ∇φ · ∇ψ (12)

+ (1 − α)λδβ(ψ)[(I − c2)
2 − (I − c1)

2]|∇ψ|

Note that the region information, in (12), influences the
speed of the evolving curve in its normal direction. Our
model in (11) constructs a region force field to guide the
curve evolution. The region force field bears some similar-
ity to the region force diffusion model in [12], but differs in
that our region force field varies with the evolving curve.

Utilization of region information as shown above is par-
ticularly suitable for a bimodal image. To deal with images
containing multiple objects, a hierarchical approach is pro-
posed, which is similar to the one in [10]. In this approach,
an image is segmented into two sub-images, and then the
method is recursively applied on these sub-images. The re-
cursion continues until each region contains only one ob-
ject. In this way, the number of regions in the image need
not to be known a priori nor estimated in the segmenta-
tion [11]. We only need to detect whether each of the sub-
images contains more than one object, which can be accom-
plished using the histogram of the sub-image.

The proposed method is easy to extend to vector-valued
images. For a vector-valued image I : R2 → Rm, the
length weight function is selected as:

φl =
1

m

m
∑

i=1

1

1 + ‖∇Gσ ∗ Ii‖n
(13)

Accordingly, the region weight function is selected so
that the level set function takes the following form:

ψt = αφl(v + εκ)|∇ψ| + ∇φ · ∇ψ

+ (1 − α)δβ(ψ)
1

m
[

m
∑

i=1

(Ii − c2i)
2 − (Ii − c1i)

2] (14)

For color images, three channels of information can be
directly used in the above formulas. For textured images,
preprocessing techniques, such as wavelet or Gabor trans-
forms, can be performed, and the resulting vector-valued
images are used.

3.2 Connections between Curve Evolution and
Anisotropic Diffusion

Connections between curve evolution methods and
anisotropic diffusion methods are examined before intro-
ducing anisotropic diffusion to the proposed model.

For the curve evolution model in (2), the term div( ∇ψ
|∇ψ| )

corresponds to the curvature of the evolving curve. It is
used to keep the evolving curve smooth. The constant ε is
usually chosen much smaller than υ. This term can then
be neglected in the following analysis, without affecting the
conclusion. Then (2) becomes

ψt = υφ(x, y)|∇ψ| (15)

Since φ(x, y) is related to the image only and indepen-
dent of the evolving curve, the above equation is equivalent
to the minimization of the following functional via Green’s
theorem [7] (set υ = 1 here):

E(I) =

∫∫

Ω

φ(x, y)dxdy =

∫∫

Ω

1

1 + |∇Gσ ∗ I|
dxdy

(16)
Comparing the energy functional of curve evolution (16),

with that of anisotropic diffusion (8), we find that they have
structral similarities.

This similarity shows the relationship between curve
evolution and anisotropic diffusion, which gives a clue to
their combination. Curve evolution methods (3)(4)(10)
minimize the energy functional by evolving a simple closed
curve, which corresponds to the zero level set of ψ. They
make use of global information and smoothing to avoid
staircasing. Anisotropic diffusion methods (5)(9), on the
other hand, minimize the energy functional by smoothing
the whole image, which can be viewed as a set of curves
corresponding to multiple level sets. They utilize the lo-
cal information and reduce the effects of noise. Thus, the
combination of these methods should solve the above prob-
lems and provide good performance. The method of cou-
pled PDE’s [27] is a good candidate for the combination.

3.3 Curve Evolution Model integrating
Anisotropic Diffusion

Anisotropic diffusion methods are utilized to reduce the
effects of noise on (11). Since both gradient and region in-
formation are used in the model, anisotropic diffusion meth-
ods are separately applied for each of them.

For gradient information, the Perona-Malik method (5)
is applied, in which g(|∇I|) = 1

1+(|∇I|/K)2 . Backward
diffusion in the method (5) strengthens the edge gradient,
which helps to stop the curve at object boundaries. Region
information in the curve evolution model, on the other hand,
helps to reduce staircasing. Since curve evolution is used to
minimize the energy functional, only closed contours exist
in the final result for closed initial contour, and staircasing
problems are avoided. During curve evolution, only the gra-
dient information near the evolving curve is used. Perona-
Malik anisotropic diffusion, therefore, is applied to a narrow
band close to the evolving curve.



For region information, the method (9) in [22] is applied
to the regions away from the evolving curve. Since this
method is well-posed and no backward diffusion is intro-
duced, noise in the image will be effectively smoothed, and
region information will be fully utilized.

The proposed model is described by the coupled PDE’s:

It = f(ψ)div{g(|∇I|)∇I}+(1−f(ψ))g(|∇I|)|∇I|div
∇I

|∇I|
(17)

ψt = αφl(υ+εκ)|5ψ|+(1−α)δβ(ψ)[(I−c2)
2−(I−c1)

2]
(18)

where f(ψ) acts as an indicator function and takes the fol-
lowing form:

f(ψ) =

{

1 if the pixel is close to ψ
0 if the pixel is far away from ψ

In the proposed model, curve evolution methods help
anisotropic diffusion methods by reducing staircasing,
while anisotropic diffusion methods help the curve evolu-
tion methods by reducing noise without smoothing object
boundaries. This concept is implemented by introducing
the coupling between the two PDE’s (17) and (18).

4 Implementation Issues

The proposed model is implemented using level set
methods [3][4]. The narrow-band methods in [3] are uti-
lized to reduce the computational load, and the fast march-
ing methods are applied for reinitialization. The narrow-
band is defined to contain those pixels which are no more
than 6 pixels away from the evolving curve. In the imple-
mentation, the speed of the evolving curve υ is set to make
the curve shrink at speed 1. The coefficient of the curvature
ε is set to be 0.5.

For anisotropic diffusion, the Perona-Malik method (5)
is applied to the pixels in the narrow-band, and the selec-
tive diffusion method (9) is applied elsewhere in the image.
Each of the diffusion methods is applied for 20 iterations
during initialization and reinitialization. The threshold K
in the Perona-Malik method is set to be 40 unless specifi-
cally mentioned.

Another implementation issue is the choice for the value
of the normalization parameter λ in (18) for specific im-
ages. To reduce the labor to empirically choosing its value,
a heuristic method is utilized in the implementation. Since
the maximal value of the gradient function φ is 1.0, λ is
chosen as the maximal absolute value in the region force
field. In this way, the largest absolute value of the region
term is also 1.0, making it comparable to the gradient infor-
mation. Experimental results show that this implementation
achieves very good experimental results.

In this approach, the parameter λ is no longer a constant
and varies with the evolving curve in each iteration. Thus,
the implementation changes to some extent the energy func-
tional to be minimized (10). Convergence problems may
be introduced. Adaptive control techniques may be utilized
here, which is a topic for ongoing research.

5 Experimental Results

Experimental results from the proposed model are given
in this section. The program is implemented on a computer
which has two Intel(R) XeonTM 2.4GHz CPUs , 2G bytes
RAM, and runs the Red Hat Linux operating system. The
CPU times given in this paper are the sums of system CPU
times and user CPU times. The system CPU time is usually
very small, typically 0.01 - 0.03 second.

Fig. 1 illustrates the role of region information in the
proposed model. The initial curve in the image is set as a
small circle in its center (a). The curve is set to shrink, but
the region information forces the curve to move and expand
to the correct boundary of the object (c). The final result
is very good, even though the image is very noisy. The re-
gion information also helps to stop the evolving curve at the
correct position and avoid the boundary leakage problem.
Images (b) and (d) show the region force field at the start
and end of the curve evolution. Note that no big differences
exist between (b) and (d).

Fig. 2 shows the segmentation of multiple objects in an
image. Note that the original image (a) is much noisier than
Fig. 1(a). Images (b), (c) and (d) in Fig. 2 show the evolv-
ing curve for the proposed model. The irregularity in the
boundary of the big circle occurs in (d) because the corre-
sponding area is more similar to the background than the
circle. The objects are successfully segmented in spite of
the noise. This experiment shows that anisotropic diffusion
methods used by the proposed model work very well to re-
duce the effects of noise.

In Fig. 3, comparisons between the proposed method
and the methods of [6] and [8] are given when α is set to
be 0.1. The original image (a) is generated by smoothing
an ideal circle using a 13-by-13 Gaussian filter. It can be
seen that our method (b) and the method in [8] (c) correctly
segment out the object in the image. The results from (b)
and (c) show no big differences. In comparison, the method
in [6] (d) allows the boundary leakage. This example shows
that our model performs very well for images with weak
edges.

Fig. 4 shows the segmentation results of a real image
with initial contour (a1) and (a2). Images (b1)-(d1) show
the results of the proposed method, in which the rock is suc-
cessfully segmented. (b2)-(d2) show those of the method in
[8]. The evolving curve, driven mostly by the region infor-
mation, doesn’t stop at the boundaries of the rock. It can be



clearly seen that in this case our results (d1) are much better
than (d2) produced by the method of [8]. Fig. 5 shows more
experimental results on real images.

The results in Fig. 6 show the segmentation of a triple
junction in an image, in which a hierarchical approach is
utilized. For the original image (a), the first iteration of the
model separates the red region from the green and blue re-
gions. The second iteration divides the green region and the
blue region. The triple junction is successfully segmented
by these two iterations.

In Fig. 7, the susceptibility of the model to the stair-
casing problem is tested. For the original image Fig. 7(a),
which is the same as Fig. 1(a), Perona-Malik diffusion is
performed with the threshold K = 10. Staircasing occurs in
(b) as expected. (c) magnifies a portion of (b), which shows
staircasing. (d)-(g) show the results of the proposed model.
The final segmentation result in (g) is good. (h) also magni-
fies part of (g). It can be seen that staircasing is not present,
and the image is segmented into two regions.

In Fig. 8, the proposed method is applied to an image
with heavy noise, as can be seen in the original image (a).
(b) and (c) show intermediate segmentation results. (d) con-
tains the final segmentation results. From these results, we
can see that our model achieves acceptable results in the
presence of high noise.

6 Summary

A new image segmentation method is proposed in this
paper, which integrates curve evolution and anisotropic dif-
fusion. The curve evolution method, utilizing both the re-
gion and gradient information, solves the boundary leakage
problem. It can segment complicated images with the hi-
erarchical approach. Anisotropic diffusion methods reduce
the effects of noise on both the gradient and the region in-
formation. Experimental results show that the model works
very well. Further research will be focused on the exten-
sion of the proposed model for the segmentation of textured
images.
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(a) (b) (c) (d)

Figure 1. Region information in the model
drives the curve, which is initially set to
shrink, to evolve to correct position. (a) im-
age with initial contour, size = 128 * 128. (b)
the region field at the start. (c) final segmen-
tation result. (d) the region field in the end.
(α = 0.2, 44 iterations, CPU = 6.93s).

(a) (b) (c) (d)

Figure 2. Segmentation of multiple objects
in a noisy image. Multiple objects can be
successfully segmented using the proposed
model even in a very noisy image (size = 150
* 150) (α = 0.1, 348 iterations, CPU = 20.06s).

(a) (b) (c) (d)

Figure 3. The boundary leakage problem. (a)
image with weak edges with initial contour,
size = 100 * 100. (b) results using the pro-
posed method (α = 0.1, 451 iterations, CPU =
5.14s). (c) results using the method in [8] (α
= 0.1, 51 iterations, CPU = 0.84s). (d) results
using the method in [6], where boundary leak-
age occurs (α = 1.0, 1137 iterations, 13.32s).



(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 4. Segmentation of real images.
(a1)(a2) original images with initial contour,
size = 200 * 150. (b1)-(d1) results using the
proposed method (α = 0.2, 334 iterations, CPU
= 57.99s). (b2)-(d2) results using the method
in [8] (α = 0.1, 934 iterations, CPU = 84.13s).

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 5. Segmentation of real images. (a1)-
(d1) results for the image with a mountain.
(size = 200 * 150, α = 0.2, 680 iterations, CPU
= 52.53s). (a2)-(d2) results for the image with
a tower (α = 0.1, 115 iterations, CPU = 20.56s).
(a3)-(d3) results for image with a bag (α = 0.2,
451 iterations, CPU = 25.87s).

(a) (b) (c) (d)

Figure 6. Segmentation of triple junctions in
an image using an hierarchical approach. (a)
Original image, size = 150 * 150. (b) Segmen-
tation results after first iteration. (c) Segmen-
tation results after second iteration. (d) final
results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Solution of the staircasing problem.
(a) Original image, size = 182 * 182. (b) Stair-
casing problem by PM method (K = 10). (c)
Magnified portion in (b). (d)-(g) segmentation
process of the proposed model. (h) Magnified
portion of (g).

(a) (b) (c) (d)

Figure 8. Segmentation of an image with
heavy noise (size = 211 * 141, α = 0.2, 289
iterations, CPU = 193.88s). (a) Original im-
age. (b) and (c) intermediate results. (d) final
results.


