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Abstract

This paper generalizes the methods in a previous paper
[10] in two ways. First, a more comprehensive analysis of
the initialization problem of the Chan-Vese models is given.
Second, the image segmentation method proposed in [10]
is improved by applying bimodal curve evolution with re-
gion competition. The improved method maintains the ad-
vantages of the previous method. It is efficient, stable in the
presence of strong noise and able to handle complicated
images. It outperforms the previous method for images with
weak edges. Experimental results in this paper demonstrate
these improvements.

1. Introduction

The Mumford-Shah model [8] is one of the most widely
studied mathematical models for image segmentation. The
model attempt to find image segments with all the following
three properties: (1) approximate to the original image, (2)
having small variations in regions, and (3) carrying short
boundaries between regions. The Mumford-Shah model,
especially the well-posed Mumford-Shah model, produces
piecewise constant image segments.

Many methods have been proposed for the imple-
mentation of the Mumford-Shah model, such as varia-
tional methods [2], an elliptic approximation method by
I'-convergence [1], and curve evolution methods [3]
(51 [12] [13].

Among all the methods, these curve evolution methods
are mathematically well-founded [4] [6], and have stable
implementations [7] [9]. Curve evolution methods drive
one or more initialized curves, based on the minimization of
the Mumford-Shah functional, to the boundaries of objects
in the image. Curve evolution methods are able to handle
topological changes automatically. Furthermore, since the
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Mumford-Shah functional combines both region and gradi-
ent information in the image, these curve evolution methods
can be made robust to noise and weak edges.

Curve evolution methods, however, still have problems.
First, most have initialization problems, which means dif-
ferent initial curves result in different segmentations for the
same image. Second, these methods have difficulty with
complicated images with multiple junctions. Top-down
hierarchical methods [12] or multiple coupled evolving
curves [13] are used to segment multiple junctions. Both
top-down hierarchical methods and coupled curve evolution
are time-consuming. Techniques are usually required to en-
sure that no pixels in the image are unsegmented or included
in multiple segments.

Several methods are proposed to solve these problems,
such as [10] and [5]. In [5], the authors illustrated the
initialization problem for Chan-Vese models, and proposed
a solution using a decoupled multiphase Chan-Vese model
ands reduce the computational load. The method in [5] is
hierarchically top-down, as in [12], so it still requires multi-
ple segmentation passes for complex images. A mathemat-
ical analysis for the initialization problem of the bimodal
Chan-Vese model was provided in [10], which proposed a
bottom-up hierarchical method to minimize the well-posed
Mumford-Shah functional. The authors also proposed a fast
curve evolution method for the bimodal Chan-Vese model.
The methods in [10] are efficient, robust in the presence of
noise and are able to handle complicated images.

This paper extends the work in [10]. First, a more
comprehensive mathematical analysis for the initialization
problem of the Chan-Vese models is provided. Second, re-
gion competition, which includes region growing as a spe-
cial case, is incorporated. The improved method keeps the
advantages reported in [10] and outperforms the previous
method for images with weak edges. The improved method
bears some similarities with those reported in [11] and
[14], but no a priori information or human interaction is



necessary.

The paper is organized as follows: Background infor-
mation on image segmentation using the Mumford-Shah
functional is introduced in section 2. In section 3, the ini-
tialization problem for the Chan-Vese models is analyzed.
The improved image segmentation method based on region
competition and the Mumford-Shah functional is developed
in 4. Experimental results are given and analyzed in section
5. Conclusions are provided in section 6.

2 Image segmentation using the Mumford
Shah Functional

In this section, some background information on the
Mumford-Shah functional and its implementations are in-
troduced. The Mumford-Shah functional [8] is reviewed,
followed by the introduction of the bimodal and multiphase
Chan-Vese models.

2.1 The Mumford-Shah Model

Let Iy be a function representing the image to be seg-
mented and I be a differentiable function representing the
segmented image. Both Iy and I are defined on a planar
domain R. Let R; be disjoint connected open subsets of R
with piecewise smooth boundaries and let I' be the union
of the portions of the boundaries of R; inside R. Then the
Mumford-Shah functional is defined as

E(I,T) = p? // (I - Io)zda?dy—i—// | VI||dxdy+v|T|
R R-T

ey
where |I'| represents the total length of T', and 1 and v are
positive constant.

The functional in (1) is not necessarily well-posed. In
most cases, a special case of (1), in which [ is restricted to
be piecewise constant, is applied. The special case of the
Mumford-Shah functional, which is well-posed, takes the
following form

ET) = zi// (Io — meang, (Iy))*dxdy + v[T| (2)
R;

Although the functional in (2) is well-posed and may
have a global minimum, it is not convex and may have nu-
merous local minima. This is the underlying reason that the
Chan-Vese models, which will be introduced next, have the
initialization problem.

2.2 The bimodal Chan-Vese Model

The Chan-Vese models are curve evolution implementa-
tions of the well-posed Mumford Shah functional (2). The
bimodal Chan-Vese model [3] applies the functional (2) to

bimodal images. The energy functional is a special case of
the well-posed Mumford Shah model (2) with i« = 2. By
means of curve evolution, bimodal images are segmented
into two parts, the background and the foreground, which
can correspond to images of objects. *

Applying the Euler-Lagrange equation, this functional is
minimized by solving the following PDE:
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where 1) is a level set representation of an evolving curve C,
which means C' = {(z,y)|¢(x,y) = 0}. ¢1 and ¢y are the
average values of pixels inside and outside C, respectively.
K represents the curvature of the evolving curve. J.(v)) =
€/(m(€% +1?)), and € is a positive constant.

It can be seen from (3) that the evolution of the curve
is affected by two terms. The curvature term ~ regularizes
the curve during evolution. The region term —(I — ¢1)? +
(I — c2)? affects the motion of the curve. This term can / be
interpreted as a competition between the region inside the
evolving curve and the region outside the curve.

2.3 The Multiphase Chan-Vese Model

The bimodal Chan-Vese model is directly applicable
only for bimodal images. The multiphase Chan-Vese model
[13] has been proposed for complicated images. In this
model, two or more coupled curves evolve simultaneously
to segment images with multiple objects. Consider a four-
phase Chan-Vese with energy functional (2) and ¢ = 4. In
the implementation, two coupled curves 1 and 5 evolve
according to coupled Euler-Lagrange equations.

Suppose the initial curves divide the image into four re-
gions: Ryy = {1/)1 < 0,99 < O}, Rig = {d’l > 0,1 <
0}, Ror = {¢1 < 0,92 > 0}, Ry1 = {¢1 > 0,42 > 0},
as shown in Flg 2 (a) Let Co0, C10, €01, and C11 be the
average intensities inside Rog, R19, Ro1, R11, respectively.
The evolution of 1/ follows the PDE:

Q0 _ o) — ((To — enn)? — (T — o)) H (1)
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“4)
— ((Io = ¢10)? = (Io = c00)®)(1 — H(¢2))}

where k1 = V - Q%h) is the curvature of ¢, and H(-)
is the Heaviside function: H(z) = 1 when z > 0 and
H(z) = 0when 2z < 0. A similar equation can be written
for 5.

It can be seen from (4) that the evolution of v, deter-
mines a boundary comprised of two parts: the part between
Ryo and Ry where ¥5 < 0, and the part between Ry, and
Ry1 where ¥5 > 0. The first part evolves due to region
competition between Ryg and R;o. The evolution of the




second part is driven by region competition between Ry;
and Ry;. Similar observations can be made for 5. In this
manner, the multiphase Chan-Vese model divides the image
into several smaller regions and performs curve evolution
based on competitions between these regions.

3. Initialization Problem of the Chan-Vese
Models

An analysis is provided in this section for the initializa-
tion problem of the Chan-Vese models. Based on the back-
ground information in section 2, three observations can be
made about the initialization problem.

First, initialization determines which local minimum of
the energy functional (2) is achieved. Initialization in the
Chan-Vese models provides the starting point for the mini-
mization of the energy functional. Since the energy func-
tional may have multiple local minima, and the Euler-
Lagrange method is a gradient-descent method, a local min-
imum may be reached, for example, if the initial value is
chosen to be closer to one of the local minima than the
global minimum. Fig. 1 illustrates this fact. The initial-
ization in Fig. 1(a) causes the global minimum of (2) to be
found where all the objects are segmented. The initializa-
tion in Fig. 1(c), however, is closer to a local minimum of
(2) than to the global minimum, and one object is not seg-
mented as a result in Fig. 1(d) . The authors of [10] have
also illustrated that the solutions to the Chan-Vese model
may go through different intermediate states for different
initializations even if they achieve the same local minimum.

Second, as mentioned in [10], the way the Chan-Vese
model utilizes region information creates the initialization
problem. In the Chan-Vese model, information from dif-
ferent regions are competing to evolve the curve. If initial-
ization causes the total influence of multiple regions on the
curve to be zero, nothing is segmented. Although the mul-
tiphase Chan-Vese model introduces computation between
multiple small regions, initialization is still a problem with-
out prior information about the image. The reader may refer
to [10] for more details.

Third, coupling between evolving curves may magnify
the effects of initialization and introduce more computa-
tional load. Fig. 2 illustrates this fact. For the initialization
in (a), curve evolution based on only region information can
not reach a local minimum, as shown in (d). It can be seen
from (e)-(h), however, that every part of the evolving curve
converges to a local minimum. Although the curvature term
may finally drive the curves to a local minimum, the cou-
pling introduces extra computation and makes the segmen-
tation time-consuming. Therefore, it is useful to decouple
the evolving curves in the multiphase Chan-Vese model for
better segmentation results [5].
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Figure 1. Different initialization in the Chan-
Vese model may generate different segmen-
tation results. (a) and (c) represent images
with different initializations. (b) and (d) are
the segmentation results corresponding to
(a) and (c) respectively. The top rectangle is
not segmented in (d).

4. Image Segmentation using Region Competi-
tion and the Mumford Shah Functional

An efficient bottom-up hierarchical image segmentation
method is proposed in [10] to minimize the well-posed
Mumford-Shah functional (2) while avoiding the initializa-
tion problem and reducing the computational load. The
method utilizes region growing to minimize the energy
functional. At the beginning, each pixel in the image is
taken as a region. In this way, no curves are initialized and
the initialization problem is avoided. During image seg-
mentation, two neighboring regions are merged so long as
the action will decrease the energy functional. Since the
well-posed Mumford-Shah model tends to segment images
into piecewise constant regions, the pixels in the merged re-
gion are set to be the average intensity in the region. Such a
process is repeated until no merges of regions can decrease
energy. This method is shown to be efficient, robust in the
presence of strong noise, and capable of handling compli-
cated images.

The method in [10], however, can be improved. Region
growing is not enough for energy minimization in some
cases. Although the merges of two regions may increase the
energy functional, moving their common boundaries may
decrease the energy functional. Thus, region competition
on the boundaries between neighboring regions can be ben-
eficial. In fact, region growing can be taken as a special
case of the region competition. This idea is similar to the
ideas [11] [14] and the Chan-Vese models presented in [3]
[13]. But there are differences. First, region competition
in the present case results in changes between regions, not
the evolution of curves. Second, region competition is per-
formed only when region growing can not decrease the en-
ergy functional, lowering the computational burden.

Several methods may be applied for region competition,
such as in [3] and [14]. The bimodal Chan-Vese model [3]
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Figure 2. Coupling between curve evolution
may enlarge initialization problems. (a) Mul-
tiphase Chan-Vese model. (b) Initialization.
(c) Intermediate results after 12 iterations. (d)
Segmentation results. (e)-(h) show the posi-
tions of four parts of the evolving curves in

(d).

is a good choice because the geometric curve evolution in
[3] can handle topological changes automatically. But [3]
may be time-consuming. In the implementation, therefore,
a simplified method of [3] as proposed in [10] is applied.
The method evolves the boundary based on the signs of the
region term —(I — ¢1)? + (I — ¢2)? and v, and regularizes
the boundary using Gaussian smoothing. Since it does not
solve PDEg, it is very efficient.

The improved method can be seen as an extension of the
multiphase Chan-Vese model when numerous initial curves
are introduced so that every pixel in the image is taken as
a region. It can also be viewed as a method to select the
starting point for energy minimization to try to reach the
the global minimum.

5. Experimental Results

Experimental results using the improved image segmen-
tation method are shown in this section. The proposed
method is implemented on a computer which has two In-
tel(R) Pentium(R) 3.2GHz CPUs, 2G bytes RAM, and runs
the Red Hat Enterprise Linux operating system. The CPU
times given in this paper are the sums of system CPU times
and user CPU times. The system CPU time is usually very
small, typically 0.01 - 0.08 second.

Fig.3 shows the comparison between the improved
method and the method reported in [10]. For images with
weak edges (a)(d), segmentation results of the improved
method (b2)(c2)(e2) are much better than the results of the
previous method. The boundaries between regions are more

regularized and the results are closer to the original image.
It can also be seen that both methods are very efficient.
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Figure 3. Comparison of the improved model
with the previous model. (a) Original image
(100 * 100). (b1) Segmentation using the pre-
vious model, v = 5000, CPU = 0.27s. (b2)
Segmentation using the improved model, v =
5000, CPU = 0.33s. (c1) Segmentation using
the previous model, » = 12000, CPU = 0.26s.
(c2) Segmentation using the improved model,
v = 12000, CPU = 0.27s. (d) Original image
(300 * 300). (e1) Segmentation of (d) using
the previous model, » = 18000, CPU = 2.69s.
(e2) Segmentation of (d) using the improved
model, v = 18000, CPU = 3.52s.

Segmentation results for more complicated images are
shown in Fig. 4. (a2) illustrates that the method is sta-
ble in the presence of large noise in (al). (b2)(c2)(d2)(g2)
are the segmentation results of (bl)(cl)(d1)(gl), respec-
tively. These results demonstrate that the proposed method
is able to handle complicated images and is very efficient.
(e2)(e3)(f2)(f3) show the influence of the parameter v. With
v increasing, fewer objects are segmented. The proper se-
lection of v for a specific image is a topic under research.

6. Summary

This paper generalizes the results reported in [10]. A
more comprehensive analysis is provided for the Chan-Vese
models, and an improved image segmentation method is
proposed using region competition and the Mumford-Shah
functional. The proposed method is shown to be efficient,
robust in the presence of noise, and able to handle compli-
cated images. Furthermore, it generates better results than
the previous method for images with weak edges with only
a minor increase in computational burden. Future work will



be focused on the dynamic selection of the parameter v and
the parallel implementation of the proposed method.

(al)

(a2) (b1) (b2)

(c2)

(e2) (€3)
Jal
i i
2) (3) (gl

Figure 4. Experimental results for real im-
ages. (al1)-(g1) are original images. The sizes
are: (a1) (128 * 128), (b1) (255 * 266), (c1) (200
* 150), (d1) (300 * 225), (e1) (200 * 150), (f1)
(200 * 150), (g1) (698 * 581). Other images
are segmentation results for (a1)-(d1). Corre-
sponding parameters are: (a2) » = 1200, CPU
= 0.82s. (b2) v = 7000, CPU = 4.61s. (c2) v
= 2500, CPU = 2.23s. (d2) » = 10000, CPU =
2.64s. (e2) v = 600, CPU = 1.82s.(e3) v = 700,
CPU = 1.96s. (f2) » = 600, CPU = 0.93s.(f3) v
= 1500, CPU = 0.91s. (g2) v = 3000, CPU =
27.16s.
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