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ABSTRACT

A probabilistic active contour model is formulated,
in which curve evolution is viewed as state estimation
for a nonlinear dynamical system. The method is imple-
mented using particle filters in a Bayesian framework.
Level set methods are utilized and enable the proposed
model to handle topological changes. Experimental re-
sults show that the proposed method works well for com-
plicated images, but is, as expected, computationally in-
tense.

1. INTRODUCTION

Active contour models are among the most state-of-art
image segmentation methods. In these models, simple
closed curveC initialized in an image evolves according
to attributes of the image and the curve itself. Image
segmentation is achieved by stopping the evolving curve
at boundaries between objects.

Numerous active contour models have been proposed.
In [1]-[4], gradient information and/or region informa-
tion from the image are utilized. Although the ways to
use the image information are different, these models are
all geometric flows.

Image segmentation can also be viewed as a spe-
cific tracking problem: tracking of object boundaries
using curve evolution from an initial position. In this
sense, Kalman snakes [7]-[8] are alternatives for image
segmentation. However, Kalman snakes and their ex-
tensions are only applicable for systems with Gaussian
noise. This assumption fails in curve evolution, which
has nonlinear dynamics with unknown noise.

A new probabilistic active contour model is formu-
lated, in which curve evolution is a state prediction and
estimation problem for a nonlinear dynamical system.
Particle filters [9][10], which are applicable to nonlinear
systems with non-Gaussian noise, are used to solve the
state prediction and estimation problem in a Bayesian
framework. The states in the model are defined as the
properties of a narrow band of image pixels around the

evolving curve. By means of level set methods, the pro-
posed model automatically deals with topological changes
in image segmentation. Both gradient and region infor-
mation are utilized to guide the curve’s evolution.

The paper is organized as follows. The geometric
curve evolution model is introduced in section 2, and a
probabilistic active contour model is proposed in section
3. In section 4, some background information on parti-
cle filters is provided. Several implementation problems
are discussed in section 5. Section 6 provides an analysis
of experimental results, followed by a brief conclusion
in section 7.

2. THE GEOMETRIC ACTIVE CONTOUR
MODEL

Geometric active contour models are briefly introduced
in this section. Basic concepts and their implementa-
tions are discussed, followed by a more complicated model,
which makes use of both gradient and region informa-
tion for curve evolution.

In the geometric curve evolution model, the evolv-
ing curve C is usually implicitly represented by the zero
level set of a function of two dimensions ψ,

C = {(x, y) : ψ(x, y) = 0} (1)

This formulation allows topological changes as the func-
tion ψ evolves, and this is a great advantage over para-
metric curve evolution methods.

A simple curve evolution model evolves the initial
curve at a constant speed along its normal direction, mak-
ing the curve expand or shrink. The curvature is utilized
at each point on the curve to make the evolving curve
smooth at all times. This model can be described as

ψt = (υ + εκ)|∇ψ| (2)

where υ is the constant speed of evolution, ε is a positive
constant, and κ = div(∇ψ/|∇ψ|) is the curvature, where
div represents the divergence operator.



Sethian’s work [11] gives a finite difference algo-
rithm to solve (2):

ψk+1 = ψk +4t{max(υ, 0)∇++min(υ, 0)∇−} (3)

where

∇+ = {max(D−x, 0)2 +min(D+x, 0)2

+max(D−y, 0)2 +min(D+y, 0)2}1/2

and

∇− = {max(D+x, 0)2 +min(D−x, 0)2

+max(D+y, 0)2 +min(D−y, 0)2}1/2

in which D−x, D+x, D−y and D+y are the backward
and the forward finite differences of ψ in the x and y
directions, respectively.

This algorithm illustrates the fundamental idea of
curve evolution; however, no information from the im-
age is utilized. In order to perform image segmentation,
both image gradient and region information should be
used to guide the evolving curve to boundaries of objects
in the image. A new curve evolution model is proposed
in [12] that extends (2):

ψt = αφl(v+εκ)|5ψ|+(1−α)γδβ(ψ){(I−c2)
2−(I−c1)

2}
(4)

Here, ψ is the evolving curve, and I represents the im-
age. The first term in the right hand of (4) makes use
of the gradient information in the image, where φl =
1/{1 + ‖∇I‖}. In this term, v is the inflationary term,
and κ is the curvature. The second term uses region
information. In this term, δβ(x) = β/(π(x2 + β2))
approximates a delta function. c1 and c2 are the aver-
age values of the points inside and outside the evolving
curve, respectively, and α, β, γ and ε are positive con-
stant coefficients.

Following the approach of Sethian [11], a numerical
algorithm for the model (4) can be derived:

ψk+1 = ψk + 4t{α{max(φlυ, 0)∇
+ +min(φlυ, 0)∇

−}

+ (1 − α) · γδβ(ψ){(I − c2)
2 − (I − c1)

2}}
(5)

An illustration of this algorithm’s behavior is given
in Fig. 1, in which anisotropic diffusion methods [13][14]
are incorporated to reduce the effects of noise. In Fig. 1,
(a) is the image with the initial curve, (b) and (c) are
intermediate results during curve evolution, and (d) is
the final result. It can be clearly seen that the algorithm
segments the image and converges to the boundaries.

3. PROBABILISTIC CURVE EVOLUTION
MODEL

The geometric curve evolution model is clearly nonlin-
ear, and images typically contain noise, either Gaussian

(a) (b)

(c) (d)

Fig. 1. Boundary detection using curve evolution.

or non-Gaussian. A state-space model of the curve evo-
lution can be constructed, embedding traditional geo-
metric curve evolution models in a probabilistic frame-
work.

3.1. The State Model

In the state space model, points selected on and close to
the evolving curve ψi

k(i = 1...N) form the states of the
model. The ideal motions of the states follow a distribu-
tion approximating

ψt = αφ(υ + εκ)|∇ψ| (6)

where φ = 1/{1 + ‖∇I‖}.
With the presence of additive noise, a finite differ-

ence model has the form:

ψk+1 = ψk + 4ψk + nk (7)

whereψk is the vector of the values of the selected points
in the image, nk is the noise affecting process dynamics,
and 4ψk = 4t ·α{max(φυ, 0)∇+ +min(φυ, 0)∇−}
measures the difference between the values of the cur-
rent state and the next state.

The conditional probability density function ofψk+1

given ψk is modeled using a Gibbs (or Boltzmann) dis-
tribution of the form

p(ψk+1|ψ
i
k) =

1

Ps
exp{−|ψk+1 − (ψi

k + 4ψi
k)|}

=
1

Ps
exp{−|ψk+1 − ψi

k+1|} (8)

where ψk+1 ∈ [−1, 1]. p(ψk+1|ψ
i
k) is 0 when ψk+1 is

not in [−1, 1], and Ps is a normalization constant, which
takes the following value:

Ps = 2−exp(−1−(ψi
k+4ψi

k))−exp(−1+(ψi
k+4ψi

k))
(9)



3.2. The Measurement Model

Region information in the image is utilized in the mea-
surement model. Since region information depends on
the evolving curve, which is the zero level set of the
states ψk

i (i = 1...N), this measurement model is a func-
tion of the states. Additive noise is assumed to corrupt
the measured image data. The measurement model is
postulated to be

Zk = f(ψk) + υk (10)

where f(ψk) = 4t · (1 − α)γ{(I − c2)
2 − (I − c1)

2},
and f(ψk) is normalized to lie between −4t and 4t.
Comparing the formation of f(ψk) with (5), it corre-
sponds to the the region term of the increments, which
is chosen to make use of region information in the geo-
metric model.

The conditional probability density function of Zk

given ψk is assumed to be a Gibbs distribution:

p(Zk|ψ
i
k) =

{

1
Pz

exp{−|Zk − f(ψi
k)|} ψk ∈ [−1, 1]

0 otherwise
(11)

where ψk ∈ [−1, 1], and Pz is a normalization constant
too, taking the form:

Pz = 2− exp(−1− f(ψi
k))− exp(−1 + f(ψi

k)) (12)

3.3. Initialization

To initiate the curve’s evolution, the initial curve is rep-
resented by the zero level set of a two-dimensional plane
ψ. The points inside the initial curve are assigned pos-
itive values, the points outside it are assigned negative
values, and the points on the curve are given value 0.
The values of each point is proportional to its distance
to the initial curve.

The initial probabilities of the components of the
states for the model are assumed to be exponential func-
tions of their initial values, in which a Gibbs distribution
is assumed:

p(ψ) =

{

1
P0

exp{−|ψ − ψ0|} ψ ∈ [−1, 1]

0 otherwise
(13)

where ψ0 ∈ [−1, 1], ψ is a component of the initial state
and P0 is a normalization constant:

P0 = 2 − exp(−1 − ψ0) − exp(−1 + ψ0) (14)

.
The state model and the measurement model are de-

signed to simulate the geometric curve evolution model.
In this way, the evolving contour, usually initialized to
shrink from the image boundary, is forced to stop at
boundaries of objects and thus accomplish image seg-
mentation.

4. PARTICLE FILTERS

An overview of the theory of particle filters is given
in this section; additional information can be found in
[9][10]. A formation of nonlinear Bayesian state predic-
tion and estimation will be described first.

4.1. Nonlinear State Estimation

For a nonlinear system, the state space model can be
described as

xk+1 = fk(xk, vk) (15)

yk = hk(xk, nk) (16)

where xk are states of the system, fk and hk are possibly
nonlinear functions, vk and nk are i.i.d process noise
sequences, k ∈ N, the set of natural numbers.

State estimation in a Bayesian framework for the
tracking problem of the nonlinear system includes two
stages - the prediction stage and the update stage. The
prediction stage uses the state model to obtain the pdf of
the state at time k+1, prior to receipt of a measurement
yk+1, via the Chapman-Kolmogorov equation

p(xk+1|y1:k) =

∫

p(xk+1|xk)p(xk|y1:k)dxk (17)

where the Markov property of the state space model is
used: p(xk+1|xk, y1:k) = p(xk+1|xk).

In the update stage, the posterior pdf, given a new
measurement yk+1, is calculated using Bayes’ rule:

p(xk+1|y1:k+1) =
p(yk+1|xk+1)p(xk+1|y1:k)

p(yk+1|y1:k)
(18)

where p(yk+1|y1:k) is a normalizing constant.
Analytic solutions of (17-18) are typically not feasi-

ble for a nonlinear system with non-Gaussian noise. In
these cases, particle filters, which will be introduced in
the next subsection, provide an approximate solution.

4.2. Particle Filters

Particle filters [9][10] are sequential Monte Carlo meth-
ods for the approximate solution of the nonlinear fil-
tering equations (17-18). A probability density func-
tion p(x) is approximated by a discrete random mea-
sure {x(n), w(n)}N

n=1 , defined by particles {x(n)} and
weights {w(n)}. The probability distribution is approx-
imated in the weak convergence by

p(x) =
N

∑

n=1

w(n)δ(x− x(n)) (19)

where δ(.) is the delta function. The state estimate prob-
lem is converted to the prediction and update of the par-
ticles’ positions and weights.



When sampling from p(x) is computationally intractable,
one can generate particles x(n) from a distribution π(x),
known as an importance function. Weights are assigned
according to

w∗(n) =
p(x)

π(x)
(20)

and then normalized to obtain the weights w(n). using
the following formula:

w(n) =
w∗(n)

∑N
k=1 w

∗(n)
(21)

Suppose the posterior distribution p(x1:k|y1:k) is ap-
proximated by the discrete random measure
χk = {x

(n)
0:k , w

(n)
k }N

n=1. The estimation problem is trans-
formed to: given χk and yk+1, find χk+1. This reduces
to finding x(n)

k+1 and w(n)
k+1.

If an importance function π(x0:k+1|y0:k+1) can be
factored,

π(x0:k+1|y0:k+1) = π(xk+1|x0:k, y0:k+1)π(x0:k|y0:k)
(22)

then the solution to the tracking problem can be accom-
plished using the update:

x
(n)
k+1 ∼ π(xk+1|x

(n)
0:k , y0:k+1) (23)

w
(n)
k+1 ∝

p(yk+1|x
(n)
k+1)p(x

(n)
k+1|x

(n)
k )

π(x
(n)
k+1|x

(n)
0:k , y0:k+1)

w
(n)
0:k (24)

Selection of the importance function remains, which
plays a key role in particle filtering. Two frequently used
importance functions are the prior and the optimal im-
portance function. If the importance function is selected
as the prior importance function, given by p(xk+1|x

(n)
k ),

then the weights update as follows [9][10]:

w
(n)
k+1 ∝ w

(n)
k p(yk+1|x

(n)
k+1) (25)

The optimal importance function is designed to mini-
mize the variance of p(xi

k+1|y1:k+1)/π(xi
k+1|x

i
k, yk+1),

which is p(xk+1|x
(n)
0:k , y0:k+1). The corresponding weight

update is

w
(n)
k+1 ∝ w

(n)
k p(yk+1|x

(n)
k ) (26)

Although the optimal importance function usually pro-
vides better performance than the prior importance func-
tion, it is more difficult to implement, because both inte-
gration and sampling from p(xk+1|x

(n)
0:k , y0:k+1) are re-

quired in this case. In the proposed model, the prior
model is selected to be the importance function, and the
weights are updated using (25). A more complete de-
scription for particle filters is provided in [9][10].

5. IMPLEMENTATION

In this section, several implementation issues are dis-
cussed. The first problem is sampling for a pdf. The
method in [15] is utilized for this problem. Sampling
in this method is performed by selection of a piecewise
constant function whose integral over any interval ap-
proximates the pdf, and a pseudo-random number gen-
erator is used to select points according to this approxi-
mation density. Emphasis of this section will be placed
on the implementations for both prediction and update.

5.1. The Prediction Step

In this probabilistic curve evolution model, evolution
is accomplished in the prediction stage, predicting the
states of the evolving curve at the next iteration using
current state and the observed data (the region informa-
tion). The prediction stage is implemented (17), from
which the prediction is derived:

p(xk+1|y1:k) =

∫

p(xk+1|xk)p(xk|y1:k)dxk

=

∫ 1

−1

p(xk+1|xk)

N
∑

i=1

w
(i)
k δ(xk − x

(i)
k )dxk

=

N
∑

i=1

w
(i)
k

∫ 1

−1

p(xk+1|xk)δ(xk − x
(i)
k )dxk

=
N

∑

i=1

w
(i)
k p(xk+1|x

(i)
k )

=

N
∑

i=1

w
(i)
k · exp{−|ψk+1 − ψ

(i)
k −∇ψ

(i)
k |}

(27)

p(xk+1|y1:k) is assumed to take the form of exp{−|ψk+1−

ψ
(i)
k+1|} to be consistent with the state model, in which

ψ
(j)
k+1 represents the next state of the evolving contour.

For the exponential distribution, most of the particles lie
near the peak, and the absolute value of ψk+1 −ψ

(i)
k+1 is

very close to zero, in which case

exp{−|ψk+1 − ψ
(i)
k+1|} ≈ 1 − |ψk+1 − ψ

(i)
k+1| (28)

The following formula is obtained and used to update
the states of the evolving curve:

p(xk+1|y1:k) =
1

P
exp{−|ψk+1 − ψ

(i)
k+1|}

=
1

P
exp{−|ψk+1 −

N
∑

i=1

w
(i)
k (ψ

(i)
k + ∇ψ

(i)
k )|}

(29)



The state at the next iteration is the weighted summation
of the updated densities of all the particles, which is intu-
itive. Experimental results show that this approximation
method works.

5.2. The Update Step

In the update step, region information is utilized to di-
rect the evolution of the evolving curve. The update step
would normally be implemented using (25):

w
(n)
k+1 ∝ w

(n)
k p(yk+1|x

(n)
k+1)

However, a slight revision is made: If the sign of the re-
gion information f(ψk) = 4t · (1 − α)γ{|I − c2|

2 −

|I − c1|
2} is same as the difference ∇ψ

(i)
k = ψ

(i)
k+1 −

ψ
(i)
k for a particle, the weight for that particle is mul-

tiplied by exp{|f(ψk) ∗ φl|}; otherwise, the weight is
multiplied by exp{|f(ψk) ∗ φl|}. In this way, both the
gradient and the region information are utilized and af-
fect the evolution of the curve, causing it to stop at object
boundaries.

6. EXPERIMENTAL RESULTS

In this section, experimental results are presented and
analyzed. In all the experiments shown below, the pa-
rameter α is set to be 0.2. The narrow-band method in
[11] is utilized.

For the first experiment, the ability of the proposed
model to undergo topological change is tested. The num-
ber of particles for each state is set to be 1300. An initial
simply connected closed curve is used from Fig. 2(a)-
(d). The topological change of the evolving curve to
four disjoint curves is successful.

Next, the role of the region information in the model
is tested. The number of particles for each state is once
again 1300. The evolving curve is set to shrink. The
region information causes the evolving contour to con-
verge to the boundary of the object. This is illustrated in
images (a)- (d) of Fig. 3.

The third experiment applies the proposed model to
a noisy real image, as shown in Fig. 4 and 5. As in Fig.
1, anisotropic diffusion methods [13][14] are utilized to
reduce the effects of noise. Comparison of Fig. 4 to Fig.
1 shows that the proposed probabilistic model achieves
similar results to the geometric model. From Fig. 5(a)-
(d), it can be seen that the airplane in the noisy image is
successfully segmented.

7. CONCLUSION

A probabilistic curve evolution model is proposed, based
on the geometric model and a Gibbs distribution. Both

(a) (b)

(c) (d)

Fig. 2. Topological change of the probabilistic curve
evolution.

the gradient and the region information are utilized for
curve evolution. Curve evolution is accomplished using
particle filters in a Bayesian framework. Experimental
results show that this model does work, and good results
have been achieved. The results are comparable to those
acquired using geometrical models. A potential prob-
lem with the proposed model is that it is computation-
ally intense because of the large number of the states.
Further research will be focused on the improvement of
the model to increase evolution speed.
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Fig. 3. The role of region information in the probabilis-
tic curve evolution.

(a) (b)
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Fig. 4. Segmentation of multiple regions with noise.

(a1) (b1)
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Fig. 5. Segmentation of real noisy images


