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Abstract— Curve evolution implementations [3][17] [18] of the
Mumford-Shah functional [11] are of broad interest in image
segmentation. These implementations, however, have initializa-
tion problems [4]. A mathematical analysis of the initialization
problem for the bi-modal Chan-Vese model [3] is provided in
this paper. The initialization problem is a result of the non-
convexity of the Mumford-Shah functional and the top-down
hierarchy of the model’s use of global region information in the
image. An efficient image segmentation method is proposed that
alleviates the initialization problem, based on region growing,
region competition and the Mumford Shah functional [11]. This
algorithm is able to automatically and efficiently segment objects
in complicated images. Using a bottom-up hierarchy, the method
avoids the initialization problem in the Chan-Vese model and
works for images with multiple junctions and color images. It
can be extended to textured images. Experimental results show
that the proposed method is robust to the effects of noise.

I. INTRODUCTION

Curve evolution methods [1] [2] [3] [4] [5] [7] [8] [9]

[10] [14] [15] [17] [18] [19] [20] are widely used in

image segmentation problems. These methods drive one or

more initial curve(s), based on image gradient and/or region

information , to the boundaries of objects in an image.

These methods are derived using variational methods, and are

implemented using finite difference approximations to PDEs

and level sets [6] [12].

In curve evolution methods, region-based geometric meth-

ods [3] [4] [5] [9] [14] [17] [18] [19] have several advantages.

They can deal with topological changes automatically, outper-

forming parametric methods such as [7] and [20]. Utilization

of global region information stabilizes their responses to local

variations (such as weak edges and noise) in comparison to

gradient-based geometric methods [1] [2] [8] [10] [15].

Region-based geometric methods, however, have some lim-

itations. First, most have initialization problems [4]: different

initial curves produce different segmentations. Second, these

methods have difficulty with complicated images with multiple

junctions. Top-down hierarchical methods [9] [13] [17] or

multiple coupled evolving curves [18] [19] have been used to

segment multiple objects. Top-down hierarchical methods are

time-consuming. In the worst case, n curve evolutions must

be performed to segment an image with n objects. Coupled

evolving curves usually introduce high computational loads,

and techniques must be used to ensure that no pixels are left

over or segmented twice.

A mathematical analysis of the initialization problem for

the Chan-Vese model [3] is provided in this paper. From

that analysis, provided in section II, the initialization problem

is shown to originate from both the non-convexity of the

Mumford-Shah functional and the top-down hierarchical way

that region information is utilized.

A bottom-up hierarchical algorithm may therefore be help-

ful. The region competition method proposed in [20] is a

good example. The method of [20] utilizes region competi-

tion to combine snakes, region growing and MDL(Minimum

Description Length)/Bayes methods. Although this has been

shown to work for color and textured images, the proper

manual selection of seed points for region growing at the

first stage is required, limiting its applicability. Tek and Kimia

[16] proposed another bottom-up segmentation method using

reaction-diffusion bubbles. These bubbles are hypothesized as

fourth order shocks and are randomly initialized in homoge-

neous areas of the image. These bubbles grow, shrink, split

and disappear to capture objects in the image. The method,

however, has difficulty with multiple junctions.

In this paper, an efficient bottom-up image segmenta-

tion method is proposed that uses region growing and the

Mumford-Shah functional. The method avoids the initializa-

tion problem of the Chan-Vese model. It works for complicated

images and is efficient. It is robust to the effects of noise.

Furthermore, the efficiency of the proposed method can be

enhanced using multi-scale methods and parallelization.

The paper is organized as follows. In section II, the Chan-

Vese model is introduced, and its initialization problem is

analyzed. A novel image segmentation method based on region

growing and the Mumford-Shah functional is proposed in

section III. In section IV, implementation issues are discussed.

An analysis of experimental results is provided in section V.

Section VI provides summary with conclusions and future

work.

II. THE INITIALIZATION PROBLEM OF THE CHAN-VESE

MODEL

The Chan-Vese model is introduced first in this section,

followed by the analysis of its initialization problem.



A. The Chan-Vese Model

The Chan-Vese model [3] [18] is the curve evolution imple-

mentation of a special case of the Mumford-Shah model [11].

The bi-modal Chan-Vese model [3] minimizes the following

energy functional:

F (c1, c2, C) = µ · Length(C) (1)

+ λ1

∫∫
inside(C)

|I(x, y) − c1|
2dxdy

+ λ2

∫∫
outside(C)

|I(x, y) − c2|
2dxdy

where I is the original image, C is the evolving curve, and c1
and c2 are selected as the average values of pixels inside and

outside C, respectively. µ, λ1 and λ2 are positive constants.

Both λ1 and λ2 are usually taken as 1. These two parameters,

therefore, are neglected in the following derivations.

The energy functional (1) is minimized by solving the

following PDE:

ψt = δǫ(ψ)[µ · κ− (I − c1)
2 + (I − c2)

2] (2)

where ψ is the level set representation of the evolving curve

C, which means C = {(x, y)|ψ(x, y) = 0}. κ represents the

curvature of the evolving curve. δǫ(ψ) = ǫ/(π(ǫ2 + ψ2)) and

ǫ is a positive constant.

From (2), the evolution of the curve is influenced by two

terms. The curvature term κ regularizes the curve and makes

it smooth during evolution. The region term −(I−c1)
2 +(I−

c2)
2 affects the motion of the curve. The initialization of the

curve affects curve evolution through this term.

B. The Initialization Problem of The Chan-Vese Model

The Chan-Vese model introduced above is a curve evolution

implementation of the minimization of a well-posed case of

the Mumford-Shah functional [3]. The Mumford-Shah func-

tional, however, is non-convex and thus may have multiple

minima [11]. Furthermore, the Chan-Vese model minimizes

the functional using the Euler-Lagrange equation, which is

equivalent to gradient descent. The selected initial condition

determines the local optimum to which the solution of (2)

converges.

Consider a piecewise constant bi-modal image. Suppose

there are n1 pixels in the background of the image, among

which m1(0 ≤ m1 ≤ n1) pixels lie inside the initial curve.

Suppose there are n2 pixels in the foreground of the image,

among which m2(0 ≤ m2 ≤ n2) lie inside the initial curve.

All the pixels in the background (foreground) take u1(u2)

as their intensity values. Obviously, m1 + m2 > 0 for all

initializations.

The the average intensity inside the evolving curve is

c1 = (m1u1 +m2u2)/(m1 +m2), (3)

and the average intensity outside the evolving curve is

c2 = ((n1−m1)u1 +(n2−m2)u2)/((n1−m1)+(n2−m2)).
(4)

The region terms −(I − c1)
2 + (I − c2)

2 for points on the

evolving curve in the foreground and the background are

(u2−c2)
2−(u2−c1)

2 = K0K2(m2n1−m1n2)(u1−u2)
2 (5)

(u1−c2)
2− (u1−c1)

2 = −K0K1(m2n1−m1n2)(u1−u2)
2,

(6)

where K0 = 1/{(n1 − m1 + n2 − m2)(m1 + m2)}, K1 =
(n2−m2)/(n1 −m1 +n2−m2)+m2/(m1 +m2) and K2 =
(n1−m1)/(n1−m1+n2−m2)+m1/(m1+m2), respectively.

K0, K1 and K2 are positive for any initialization.

From (5) and (6), it can be seen that the region term for

points on the foreground part of the evolving curve is opposite

in sign to that on the background part of the evolving curve.

Therefore, if one part of the evolving curve expands, the

remaining part will have to shrink and vice versa. Without

loss of generality, set ψ > 0 inside the evolving curve and

ψ < 0 outside the evolving curve. Then three cases may occur,

depending upon different initializations. If m2n1 −m1n2 > 0
(m2/n2 > m1/n1), then the foreground part of the curve

expands, and the background part shrinks. The curve evolves

into the foreground and segments the object from the fore-

ground, as shown in Fig. 1. If m2n1 −m1n2 < 0 (m2/n2 <
m1/n1), then the foreground part of the curve shrinks and

the background part expands. The curve evolves into the

background and segment the object from the background, as

shown in Fig. 2,. Finally, if m2n1 − m1n2 ≈ 0, then the

influence of the region term on the curve evolution is small

at first. The curve is expected to evolve very slowly and may

segment nothing.

It can be seen from the above analysis that initialization

affects curve evolution in the Chan-Vese model. The results

from Fig. 1 and Fig. 2 illustrate this point. Although in Fig.

1 and Fig. 2, the same segmentation results are achieved,

in complicated cases, different initializations may generate

different segmentation results, as shown in Fig. 3. Both ini-

tializations (A)(C) in Fig. 3 satisfy m2/n2 > m1/n1, making

the foreground part of the evolving curve expand and the

background part shrink. Since the upper object is not included

in the initialization in (C), it is not segmented using that

initialization. This suggests that every object in the image

should have at least one pixel included in the initial curve for

good segmentation. For the Chan-Vese model, good choices

for the initialization would be the boundaries or multiple

bubbles. Multi-modal images can exacerbate the initialization

problem. This holds even for the multiphase Chan-Vese model

[18], as shown in [4]. In the worst case, the Chan-Vese model

can fail to segment any object if the total influence of the

region information on the initial curve is zero, as is shown in

Fig. 4 (B1) and (B2).

The Chan-Vese model uses a top-down hierarchical method

for segmentation, and global region information is utilized

only on the evolving curve in the model. The initialization

problem is a consequence of this. A bottom-up hierarchical

method, which makes use of local information, may reduce

the initialization problem and allow its application to more

complex images. A new image segmentation method, which



is based on region growing and the Mumford-Shah model, is

proposed in the next section.

(A) (B) (C) (D)

Fig. 1

EXAMPLE OF THE INITIALIZATION PROBLEM, WHERE m2/n2 = 0.21 IS

LARGER THAN m1/n1 = 0.16. (A)(B)(C)(D) SHOW THE CURVE

EVOLUTION AFTER 0, 10, 60 AND 234 ITERATIONS SEPARATELY.

(A) (B) (C) (D)

Fig. 2

EXAMPLE OF THE INITIALIZATION PROBLEM, WHERE m2/n2 = 0.036 IS

SMALLER THAN m1/n1 = 0.065. (A)(B)(C)(D) SHOW THE CURVE

EVOLUTION AFTER 0, 10, 600 AND 1182 ITERATIONS SEPARATELY.

(A) (B) (C) (D)

Fig. 3

DIFFERENT INITIALIZATION IN THE CHAN-VESE MODEL MAY GENERATE

DIFFERENT SEGMENTATION RESULTS. (A) AND (C) REPRESENT IMAGES

WITH DIFFERENT INITIALIZATIONS. (B) AND (D) ARE THE SEGMENTATION

RESULTS CORRESPONDING TO (A) AND (C) RESPECTIVELY. THE TOP

RECTANGLE IS NOT SEGMENTED IN (D).

III. IMAGE SEGMENTATION USING REGION GROWING

AND THE MUMFORD-SHAH FUNCTIONAL

In this section, an image segmentation method is pro-

posed based on region growing, region competition and the

Mumford-Shah model. First, an explanation of the Chan-

Vese models [3] [18] is provided based on the concept of

region competition. The proposed segmentation method is then

described. Finally, an extension to color images is developed.

A. Region Competition in the Chan-Vese Models

The Chan-Vese models [3] [18] minimize an energy func-

tional by evolving an initialized curve. Curve evolution can be

interpreted as the result of competition between the foreground

and the background. This idea is similar to the method

proposed in [20]. Curve evolution stops when the competition

is in equilibrium.

Consider, for example, the bi-modal case in section II-B,

and let ψ > 0 inside the evolving curve. The curve evolves

according to the competition between the foreground region

and the background region. When the evolving curve reaches

the boundary of the object, m1 = 0, m2 = n2, c1 = u2,

and c2 = u1. The region terms calculated using the boundary

points in the foreground are (u2 − c2)
2 − (u2 − c1)

2 = (u2 −
u1)

2 > 0, and the region terms for the boundary points in the

background are (u1 − c2)
2 − (u1 − c1)

2 = −(u2 − u1)
2 < 0.

These region terms are equal in magnitude and opposite in

sign. The competition is balanced, and the evolving curve stops

at the boundary of the object.

B. Image Segmentation Based on Region Growing and the

Mumford-Shah Functional

The proposed image segmentation method is designed to

minimize the well-posed case of the Mumford-Shah func-

tional [11] using bottom-up region growing and region com-

petition. The energy functional takes the form:

E(Γ) =
∑

i

∫∫
Ri

(I − ci)
2dxdy + ν · Γ (7)

where Γ represents the length of object boundaries, I repre-

sents the image to be segmented, ci represents the average

intensity of the ith region Ri and ν is a constant parameter.

As mentioned in [11], the energy functional (7) tends to

segment images into piecewise constant regions, which gives

an opportunity for minimization using region growing. The

proposed method works as follows: Every pixel in the image is

initially its own region. A region is merged with a neighboring

region if this action will decrease the energy functional (7).

In this way, the neighboring regions of any selected current

region are competing with each other to reduce the energy

functional. After two regions are merged, the intensity of each

pixel in the merged region is set to the average intensity of

the regions. The process is repeated until no region merging

occurs and no further reduction of the value of the energy

functional is possible. A mathematical description of region

merging is given below.

Consider two neighboring regions Ω1 and Ω2 in the image.

Suppose Ω1 and Ω2 contain n1 and n2 pixels respectively,

with c1 and c2 as their average intensities. These two regions

have Γ pixels in common as their boundaries. If the regions

are merged, the average intensity would be c = (n1c1 +
n2c2)/(n1 + n2). The energy functionals before and after

region merging can be evaluated:

Eprev =

∫∫
Ω1

(I − c1)
2dxdy +

∫∫
Ω2

(I − c2)
2dxdy + ν · Γ

(8)



Eafter =

∫∫
Ω1

(I − c)2dxdy +

∫∫
Ω2

(I − c)2dxdy (9)

. The energy difference, therefore, is

Eafter − Eprev = 2V1(c1 − c) + 2V2(c2 − c) + n1(c
2 − c21)

(10)

+ n2(c
2 − c22) − ν · Γ

where V1 =
∫∫

Ω1

Idxdy and V2 =
∫∫

Ω2

Idxdy. Region

merging is performed only if the energy difference is smaller

than zero, reducing the value of the energy functional.

During region growing, irregular boundaries may be gener-

ated, especially in images with strong noise. Regularization of

region boundaries is, therefore, necessary. Gaussian smoothing

is utilized, and is performed only when the region becomes

larger than a specified threshold.

In the proposed method, region information is used in

a manner that is similar to the Chan-Vese model [3], but

initialization problem can be avoided and complicated cases

such as multiple regions and triple junctions are automatically

handled, because of the bottom-up hierarchical approach of

the proposed method.

C. Extension to Color Images

The proposed method can be extended in a straightforward

manner to color or multi-spectral images. Several color mod-

els, such as the one used in [20], can be chosen for the

extension. The RGB color model is utilized here for simplicity.

The energy functional is taken as the summation of energy

functionals for each of three channels of the image, and has

the form

E(Γ) =

3∑
j=1

∑
i

∫∫
Ri

(Ij − cij)
2dxdy + ν · Γ (11)

where j represents the index of the color channel.

The implementation of the proposed method for color im-

ages is similar to that for intensity images. The only difference

lies in the calculation of the region information, which is

straightforward.

IV. IMPLEMENTATION ISSUES

The key issue for the implementation of the proposed

method is how to select an appropriate value for ν for a spec-

ified image. Intuitively, ν should be large enough to suppress

noise and small enough not to merge regions separated by

edges with high gradients. We show that the value of ν should

also be related to the size of competing regions.

Consider two extreme cases for the region growing problem

of section III-B. First, if V1 = n1c1, V2 = n2c2 and n1 =
n2 = n, then c = (c1 + c2)/2, and

Eafter − Eprev = 1.5 · n(c1 − c2)
2 − ν · Γ (12)

If, on the other hand, V1 = n1c1, V2 = n2c2 and n1 >> n2,

then c ≈ c1, and

Eafter − Eprev ≈ n2(c1 − c2)
2 − ν · Γ (13)

In both cases, the energy change as regions grow is highly

related to the size of competing regions (n in (12) or n2 in

(13)). It is very difficult to select the proper value of ν if many

regions of different sizes are competing at the same time.

Since the proposed method assigns a region to each pixel at

the beginning, the above problem can be solved by restricting

the maximum size of a region after each iteration. For example,

the largest region after the first traverse of the whole image is

set to 2 pixels. The image is then segmented into numerous

regions containing two pixels after the first traverse. The

largest region after the second traverse of the image is then set

to 4 pixels. Now almost all competing regions contain 2 pixels

and the image will be segmented into regions of 4 pixels, and

so on. In this way, most competing regions have the same size,

and the selection of the value of ν may be less affected by the

sizes of the regions.

Suppose the variance of noise in an intensity image is σ2,

and the gradient of the region boundaries is expected to be

g0 (g0 > σ); then the value of ν can be selected such that

σ2 < ν < g2
0 . For color images, the value of ν can be selected

such that 3σ2 < ν < 3g2
0 . It is usually acceptable to choose

ν = 1000 for intensity images and ν = 3000 for color images.

V. EXPERIMENTAL RESULTS

Experimental results from the proposed method are shown

in this section. The proposed method is implemented on a

computer which has two Intel(R) Pentium(R) 3.2GHz CPUs,

2G bytes RAM, and runs the Red Hat Enterprise Linux

operating system. The CPU times given in this paper are the

sums of system CPU times and user CPU times. The system

CPU time is usually very small, typically 0.01 - 0.08 seconds.

Fig. 4 represents the comparison of the proposed method

and the Chan-Vese model. (A1) shows the image to be seg-

mented. The image contains one background region (intensity

128) and 4 foreground regions (intensity 32, 64, 192, 224

counterclockwise) of equal size. The segmentation result in

(A2) shows that the proposed is very efficient (1.9s). The

Chan-Vese model fails for the initialization shown in (B1).

Since the effects of the region information on the curve are

zero, the curve evolves very slowly, driven by the curvature.

After more than 13 seconds, the initial curve evolves into (B2)

and will shrink to a point in the end.

Fig. 5 demonstrates the ability of the proposed method to

deal with images with multiple junctions. The initialization

problem can occur happen for the Chan-Vese model, as

shown in [4]. The proposed method generates very good

segmentation results with high efficiency.

Fig. 6 shows the stability of the proposed method with

respect to noise. It can be seen that the proposed method

works very well for images with strong noise. The results

also shows that a larger ν is required, and the segmentation

process becomes longer for images with stronger noise.

In Fig. 7, the extension of the proposed method to color

images is tested. Images in Fig. 7 (A1)(A2) are designed to

have the same intensity so that they can not be segmented

just using intensity. By means of the color information, the



proposed method successfully segments objects with different

colors.

Fig. 8 shows the effects of ν on the segmentation results.

The image has four regions. The pixels are randomly cho-

sen and independent, with Gaussian distribution N(60, 402),
N(110, 402), N(160, 402), and N(210, 402). By the discus-

sion in section IV, the choice of ν should satisfy 402 < ν <
502. The results in Fig. 8 show that the proposed method works

for a wider range of ν. From the results in Fig. 8 (B)(C)(D), it

can be seen that the segmentation time becomes shorter with

increasing ν, while at the same time the object boundaries

become coarser. This can be explained by the fact that regions

are more likely to be merged with larger ν values. In practice,

a compromise has to be made between efficiency and accuracy.

Fig. 9 illustrates the utility of the proposed method for

images with weak edges. From the results in Fig. 9 (B)(C)(D),

we can see that the proposed method over-segments the image

(A). This can be explained by the fact that gradient information

is utilized in the proposed region growing method to control

the segmentation process. This also shows that the proposed

method uses more local information than global information.

Post-processing may be necessary for images with weak edges.

Experimental results for complicated real images are pro-

vided in Fig. 10. Gaussian smoothing is not utilized here since

these images are of good quality. It can be seen that the

proposed method is very efficient, even for complex images.

As in Fig. 9, post-processing may be necessary for better

results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a mathematical analysis of the initialization

problem of the Chan-Vese model is provided. This analysis

shows that the initialization problem is caused by the top-down

manner in which region information is used. A new bottom-

up image segmentation method is proposed to solve this

problem. It is based on region growing, region competition,

and the Mumford-Shah functional. This method works well

for complex images. It is very efficient, easy to implement

and robust to noise. Experimental results show this method is

able to quickly segment complex images. Future research will

be focused on the combination of bottom-up and top-down

hierarchical methods.
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(A1) (A2) (B1) (B2)

Fig. 4

COMPARISON OF THE PROPOSED METHOD AND THE CHAN-VESE MODEL

FOR IMAGES WITH MULTIPLE REGIONS. (A1) A GRAY IMAGE (256 BY

256) WITH AVERAGE INTENSITY 128. (A2) SEGMENTATION OF THE

PROPOSED METHOD, ν=1000, CPU =1.9S. (B1) A GRAY IMAGE WITH THE

INITIALIZED CURVE. (B2) SEGMENTATION USING THE CHAN-VESE

MODEL, CPU = 13.03S.

(A1) (A2) (B1) (B2)

Fig. 5

MORE RESULTS OF THE PROPOSED METHOD FOR COMPLICATED IMAGES.

(A1) A BISCUIT IMAGE (300 * 300). (A2) SEGMENTATION OF (A1),

ν=300, CPU =4.08S. (B1) AN IMAGE WITH MULTIPLE JUNCTIONS (300 *

300). (B2) SEGMENTATION OF (B1), ν = 2000, CPU = 5.02S.

(A1) (A2) (B1) (B2)

Fig. 6

STABILITY OF THE PROPOSED METHOD W.R.T. NOISE. (A1)(B1) ARE

ORIGINAL IMAGES (200 * 133), WITH NOISE BECOMING STRONGER. (A2)

SEGMENTATION OF (A1), ν=1000, CPU =1.08S. (B2) SEGMENTATION OF

(B1), ν = 3000, CPU = 8.85S.

(A1) (A2) (B1) (B2)

Fig. 7

EXTENSION OF THE PROPOSED METHOD TO COLOR IMAGES. (A1)(B1)

COLOR IMAGES (256 * 256). (A2) SEGMENTATION OF (A1), ν=1050,

CPU =2.19S. (B2) SEGMENTATION OF (B1), ν = 1200, CPU = 2.05S.
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Fig. 8

EFFECTS OF ν ON SEGMENTATION RESULTS. (A) A GRAY IMAGE WITH

DIFFERENT DISTRIBUTIONS (300 * 300). (B)SEGMENTATION OF (A),

ν = 800, CPU = 24.79S. (C) SEGMENTATION OF (A), ν = 1200, CPU =

10.29S. (D) SEGMENTATION OF (A), ν = 2000, CPU = 3.91S.

(A) (B) (C) (D)

Fig. 9

THE ABILITY OF THE PROPOSED METHOD FOR WEAK EDGES. (A) A GRAY

IMAGE WITH WEAK EDGES (200 * 150). (B)SEGMENTATION OF (A),

ν = 5000, CPU = 1.34S. (C) SEGMENTATION OF (A), ν = 10000, CPU =

1.11S. (D) SEGMENTATION OF (A), ν = 20000, CPU = 1.12S.

(A1) (A2) (B1) (B2)
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Fig. 10

EXPERIMENTAL RESULTS FOR REAL IMAGES. (A1)-(F1) ARE ORIGINAL

REAL IMAGES. THE SIZES ARE: (A1) 200 * 150, (B1) 200 * 150, (C1) 300

* 225, (D1) 400 * 278,(E1) 300 * 250, (F1) 500 * 375. (A2)-(F2) ARE

SEGMENTATION RESULTS OF IMAGES (A1)-(F1). CORRESPONDING

PARAMETERS ARE: (A2) ν = 1500, CPU = 1.09S, (B2) ν = 2500, CPU =

1.06S, (C2) ν = 15000, CPU = 2.66S, (D2) ν = 3000, CPU = 8.04S, (E2)

ν = 5000, CPU = 3.33S, (F2) ν = 3000, CPU = 9.47S.


