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Abstract— Efficient implementation methods are proposed for
Chan-Vese models [3] [16]. The proposed methods do not require
solutions of PDEs and are therefore fast. The advantages of level
set methods, such as automatic handling of topological changes,
are preserved. These methods utilize region information to guide
the evolution of initial curves. Gaussian smoothing is applied
to regularize the evolving curves. These algorithms are able
to automatically and efficiently segment objects in complicated
images. Experimental results show that the proposed methods
work efficiently for images without strong noise. However, they
still have initialization problems, as do the Chan-Vese models.

I. INTRODUCTION

Curve evolution methods [1] [2] [3] [4] [6] [7] [9]

[10] [13] [14] [15] [16] [17] are widely used in image

segmentation problems. These methods drive one or more

initial curve(s), based on gradient and/or region information

in the image, to the boundaries of objects in that image.

These methods are derived using variational methods, and are

implemented using finite difference approximations to PDEs

and level sets [5] [12].

In curve evolution methods, region-based geometric meth-

ods [3] [4][9] [13] [15] [16] have several advantages.

First, they can deal with topological changes automatically,

outperforming parametric methods such as [6] and [17].

Second, utilization of the global region information stabilizes

their responses to local variations (such as weak edges and

noise) in comparison to gradient-based geometric methods

[1] [2] [7] [10] [14].

Region-based geometric methods, however, have some lim-

itations. First, these methods are usually implemented by

solving PDEs, and are thus computationally intense. Second,

most have initialization problems [4]: different initial curves

produce different segmentations.

Efficient implementation methods for the Chan-Vese models

are proposed in this paper. The methods do not have to solve

PDEs. The computational load of curve evolution is thus

greatly reduced. The proposed methods bear some similarities

to [14], but they are region-based rather than gradient-based.

It is more straightforward to build region information to

drive curve evolution. More complicated issues that are not

considered in [14], such as sensitivity to noise, are discussed.

The proposed methods are still sensitive to the selection of

initial curves, as are the Chan-Vese models, but they work

efficiently for images without strong noise. They can also deal

with complicated images such as triple junctions.

The paper is organized as follows. In section II, the Chan-

Vese models are introduced and their implementations are

discussed. Fast curve evolution methods that do not require

solutions of PDEs are proposed in section III. Experimental

results are given and analyzed in section IV. Section V

provides a summary with conclusions and future work.

II. INTRODUCTION TO THE CHAN-VESE MODELS

The bi-modal Chan-Vese model is reviewed first, followed

by the multi-phase Chan-Vese model.

A. The Bi-modal Chan-Vese Model

The Chan-Vese models [3] [16] are curve evolution imple-

mentations of a well-posed case of the Mumford-Shah model

[11]. The bi-modal Chan-Vese model [3] segments an image

by solving the PDE

ψt = δǫ(ψ)[µ · κ− (I − c1)
2 + (I − c2)

2] (1)

where I is the original image, ψ is the level set representation

of the evolving curve C, which means C = {(x, y)|ψ(x, y) =
0}. c1 and c2 are selected as the average values of pixels inside

and outside C, respectively. κ represents the curvature of the

evolving curve. δǫ(ψ) = ǫ/(π(ǫ2 + ψ2)) and ǫ is a positive

constant.

From (1), the evolution of the curve is influenced by two

terms. The curvature term κ regularizes the curve and makes

it smooth during evolution. The region term −(I−c1)
2 +(I−

c2)
2 affects the motion of the curve. The initialization of the

curve affects curve evolution through this term.

B. The Multiphase Chan-Vese Model

The bi-modal Chan-Vese model is applicable only for bi-

modal images. The multiphase Chan-Vese model [16] has

been proposed for more complex images. In this model, two or

more coupled curves evolve simultaneously to segment images

with multiple objects. Consider a four-phase Chan-Vese model,

in which two coupled curves ψ1 and ψ2 evolve according to

coupled Euler-Lagrange equations.

Suppose the initial curves divide the image into four regions:

R00 = {ψ1 < 0, ψ2 < 0}, R10 = {ψ1 > 0, ψ2 < 0}, R01 =
{ψ1 < 0, ψ2 > 0}, R11 = {ψ1 > 0, ψ2 > 0}, as shown in

Fig. 1 (A). Let c00, c10, c01, and c11 be the average intensities



inside R00, R10, R01, R11, respectively. The evolution of ψ1

and ψ2 follows the Euler-Lagrange equations:

∂ψ1

∂t
= δǫ(ψ1){νκ1 − ((I0 − c11)

2 − (I0 − c01)
2)H(ψ2)

(2)

− ((I0 − c10)
2 − (I0 − c00)

2)(1 −H(ψ2))}

∂ψ2

∂t
= δǫ(ψ2){νκ2 − ((I0 − c11)

2 − (I0 − c10)
2)H(ψ1)

(3)

− ((I0 − c01)
2 − (I0 − c00)

2)(1 −H(ψ1))}

where κ1 = ∇·( ∇ψ1

|∇ψ1|
) and κ2 = ∇·( ∇ψ2

|∇ψ2|
) are the curvatures

of the evolving curve ψ1 and ψ2. H(·) is the Heaviside

function: H(x) = 1 when x > 0 and H(x) = 0 when x < 0 .

It can be seen from (2) that the evolution of ψ1 determines

a boundary comprised of two parts: the part between R00 and

R10 where ψ2 < 0, and the part between R01 and R11 where

ψ2 > 0. The first part evolves due to region information in R00

and R10. The evolution of the second part is driven by region

information between R01 and R11. Similar observations can be

made for ψ2. In this manner, the multiphase Chan-Vese model

divides the image into several smaller regions and performs

curve evolution based on region information in these regions.

III. FAST CURVE EVOLUTION METHODS WITHOUT

SOLVING PDES

The Chan-Vese models are usually implemented by solving

PDEs, such as the level set equations [5] [12] and Poisson

equations [16]. These methods are computationally intense,

although they are theoretically sound. Fast implementation

methods are proposed for both the bi-modal and the multiphase

Chan-Vese models in this section. A mathematical analysis

of the region information in the bimodal Chan-Vese model is

provided first, which provides the concept for a fast implemen-

tation evolution method that does not require solving PDEs.

The proposed method is extended to the decoupled multiphase

Chan-Vese model, as provided in [4].

A. Region Information in the Bi-modal Chan-Vese Model

Consider a piecewise constant bi-modal image. Suppose

there are n1 pixels in the background of the image, among

which m1(0 ≤ m1 ≤ n1) pixels lie inside the initial curve.

Suppose there are n2 pixels in the foreground of the image,

among which m2(0 ≤ m2 ≤ n2) lie inside the initial curve.

All the pixels in the background (foreground) take u1(u2)

as their intensity values. Obviously, m1 + m2 > 0 for all

initializations.

Therefore, the region terms R = −(I − c1)
2 + (I − c2)

2

for points on the evolving curve in the foreground and the

background are,

(u2−c2)
2−(u2−c1)

2 = K0K2(m2n1−m1n2)(u1−u2)
2 (4)

(u1 − c2)
2 − (u1 − c1)

2 = −K0K1(m2n1 −m1n2)(u1 −u2)
2

(5)

where K0 = 1/{(n1 − m1 + n2 − m2)(m1 + m2)}, K1 =
(n2−m2)/(n1 −m1 +n2−m2)+m2/(m1 +m2) and K2 =
(n1−m1)/(n1−m1+n2−m2)+m1/(m1+m2), respectively.

K0, K1 and K2 are positive for any initialization.

From the equations (4) and (5), the following observations

can be acquired for the bi-modal Chan-Vese model: First, the

region term R = −(I − c1)
2 + (I − c2)

2 of the foreground

has the opposite sign to the region term of the background

for any initialization. Second, for any point strictly inside the

foreground or the background, its region term will has the

same sign as the terms for its neighboring points. Third, only

the boundary points will have neighboring points with region

terms different in sign.

B. Fast Implementation of the Bi-modal Chan-Vese Model

The observations shown in the last subsection hold for

all bi-modal images without strong noise. Furthermore, they

hold independent of the initial position of the evolving curve.

This information can thus be used to construct an efficient

implementation of the bi-modal Chan-Vese model. In the

implementation, a list of points on the curve C, instead

of a narrow band of points around the curve in classical

methods [5] [12], is utilized to represent the evolving curve.

The key idea is to evolve the curve C until it reaches a position

where neighboring points have region terms R different in

sign. The evolving curve is updated by removing the points

whose neighboring points have region terms with the same

sign (since these points are not boundary points) and inserting

neighboring points, based on the direction of curve evolution,

which is determined by the signs of ψ and R.

Without loss of generality, suppose the points in the region

inside the initial curve are set to have positive ψ values. For

any point in the list, if this point and all of its neighboring

points have positive region terms, i.e. R > 0, then from (1) the

ψ value of this point will increase and the curve will expand

at this point. We only need to remove this point from the list,

and add to the list those neighboring points lying in the region

outside the evolving curve C, i.e. those neighboring points that

have negative ψ values. Correspondingly, if a point in the list

and all its neighboring points have negative region terms, i.e.

R < 0, then the curve will shrink at that point from (1).

We need to remove this point from the list and add to the list

those neighboring points lying in the region inside the evolving

curve, i.e. those neighboring points that have positive ψ values.

Otherwise, this point and its neighboring points have region

terms different in sign, and the boundary has been reached.

The evolving curve will stop at this point. The computational

load of the proposed method is low since only a list of points

on the curve is updated based on region terms R. No PDEs

need to be solved.

Up to this point, the regularization term in (1) has not been

used in the proposed method. As proved in [8], curve evolution

based on curvature ∂C/∂t = κN is equivalent to a nonlinear

analogy to Gaussian smoothing. Thus, Gaussian smoothing

can be applied after each iteration of curve evolution to smooth

the curve.



C. Fast Implementation of the Multiphase Chan-Vese Model

It seems straightforward to extend the proposed method to

the multiphase Chan-Vese model. In this case, two or more

curves are initialized and then evolved according to the region

information. Gaussian smoothing is utilized to regularize the

evolving curves. However, the coupling between the evolving

curves in the multiphase Chan-Vese model, as can be seen

from (2) and (3), may cause the evolving curves to stop at a

local minimum [4] [16].

To illustrate this effect, Fig. 1(B) shows an image with

initialized curves. Let ψ1 be the red curve and ψ2 be the green

curve. Both ψ1 and ψ2 are initialized to be positive inside

the curve and negative outside the curve. Fig. 1(C) shows the

segmentation result using the coupled multiphase Chan-Vese

model. The blue lines in Fig. 1(C) means the red curve and the

green curve both stop there. It can be seen that segments of

the evolving curves do not correspond to object boundaries,

and only a local minimum is reached. (D) shows the final

location of the green segment of the evolving curve, which

corresponds to the portion of ψ2 in the region ψ1 > 0. This

part of the curve, which evolves under the direction of region

information in the area of ψ1 > 0, reaches its local minimum.

Similar results can be achieved for the other three parts of the

evolving curves.

This problem arises from the coupling of the evolving

curves. Decoupled models [4] have been proposed to solve

the problem. In this model, only one curve is evolved at a

time. The first curve ψ1 separates the original image into

two regions {ψ1 > 0} and {ψ1 < 0}. The second curve

ψ2 evolves based on the results of the first curve, and may

segment the original image into three or four regions, such

as {ψ1 > 0, ψ2 < 0}. This procedure is repeated until all

the objects in the original image are segmented. The evolving

curves in decoupled models are more likely to stop at object

boundaries because they do not evolve simultaneously.

Decoupled models in [4] reduce the effects of coupling, but

they solve PDEs for image segmentation, which is computa-

tionally intense. The fast implementation method proposed in

the above section can be extended for decoupled multiphase

models. Consider the four-phase case of the Chan-Vese model.

Two curves C1 and C2 are initialized, and evolve in consecu-

tive iterations. In each iteration, the implementation method for

the bi-modal case is utilized. For the first iteration, the curve

C1 evolves using region information R1 = ((I0−c11)
2−(I0−

c01)
2)H(ψ2)− ((I0 − c10)

2 − (I0 − c00)
2)(1 −H(ψ2)) as in

Eqn. ( 2). After the first iteration is completed, the other curve

C2 evolves using region information R2 = −((I0 − c11)
2 −

(I0−c10)
2)H(ψ1)−((I0−c01)

2−(I0−c00)
2)(1−H(ψ1)) as

in Eqn. ( 3). Gaussian smoothing is utilized for regularization.

IV. EXPERIMENTAL RESULTS

Experimental results from the proposed method are shown

in this section. The proposed method is implemented on a

computer which has two Intel(R) Pentium(R) 3.2GHz CPUs,

2G bytes RAM, and runs the Red Hat Enterprise Linux

operating system. The CPU times given in this paper are the

(A) (B) (C) (D)

Fig. 1

COUPLING BETWEEN CURVE EVOLUTION MAY ENLARGE INITIALIZATION

PROBLEMS. (A) MULTIPHASE CHAN-VESE MODEL. (B) INITIALIZATION.

(C) SEGMENTATION RESULTS. (D) SHOW THE POSITIONS OF ONE PART OF

THE EVOLVING CURVES IN (C).

sums of system CPU times and user CPU times. The system

CPU time is usually very small, typically 0.01 - 0.08 seconds.

The proposed method is efficient compared to the classical

method solving PDEs [5] [12], as can be seen from Fig.

2, which shows that the proposed method is 23 times faster

and achieves the same segmentation results. Fig. 2 (A)-(C)

demonstrate that the proposed method is able to automatically

handle topological changes.

The performance of the proposed method for the decoupled

multiphase model is illustrated in Fig. 3. For the initialization

in (A), the red curve as shown in (B) is evolved first, and

the result is shown in (C). The green curve shown in (D) is

evolved afterward, and its result is provided in (E). The final

segmentation of the original image is shown in (F). (G) and

(H) show another initialization and the segmentation result

separately. It can be seen that the initialization problem still

exists.

Fig. 4 shows segmentation results for complicated images.

Fig. 4 (A1) and (A2) show that the proposed bi-modal method

works for images with weak edges. The results in Figs. 4

(B1)(B2) demonstrate the ability of the method to handle

local variations. Fig. 4 (C1) - (C4) shows the segmentation of

triple junctions using the proposed method for the decoupled

multiphase Chan-Vese model.

The effects of noise on the proposed method are illustrated

in Fig. 5. Fig. 5 (A)-(C) show the segmentation of an image

with medium noise. Although the noise affects the process of

curve evolution, as can be seen in Fig. 5 (B), the object in

the image is successfully segmented in Fig. 5 (C). In this case

region information has to be updated after every iteration to

reduce the effects of noise, which is not required in the image

of Fig. 2. Fig. 5 (D) shows the curve evolution result after

100 iterations for an image with strong noise. The proposed

method fails in this case. The reason is that the noise in the

image is so strong that it changes the sign of the region term

R. The curve can not evolve in the proper direction from the

sign of R.

Fig. 6 demonstrates the performance of the proposed method

relative to the classical implementation of the bi-modal Chan-

Vese model on real images. (A1-D1) shows the images to be

segmented. (A2-D2) represents the initialized curves. (A3-D3)



are the segmented images using the proposed methods for the

bi-modal Chan-Vese models. (A4-D4) are the segmentations

using the classical bi-modal Chan-Vese models. It can be

seen that the segmentation results from the methods are very

similar, but the proposed method is much faster.

(A) (B) (C) (D)

Fig. 2

COMPARISON OF THE PROPOSED FAST CURVE EVOLUTION METHOD TO

THE CLASSICAL METHOD SOLVING PDES [5] [12]. (A) AN IMAGE (300 *

300) WITH INITIAL CURVE. (B) INTERMEDIATE RESULT USING THE

PROPOSED METHOD. (C) SEGMENTATION RESULT OF THE PROPOSED

METHOD, CPU = 0.51S. (B)(D) SEGMENTATION RESULT OF THE

CHAN-VESE MODEL BY SOLVING PDES, CPU = 11.98S. THE NEW

METHOD PROVIDES A 23 TIMES SPEED-UP.

(A) (B) (C) (D)

(E) (F) (G) (H)

Fig. 3

FAST IMPLEMENTATION OF THE DECOUPLED MULTIPHASE CHAN-VESE

MODEL. (A) AN IMAGE (300 * 300) WITH INITIAL CURVE. (B)(C) THE

FIRST ITERATION AND THE RESULT. (D)(E) THE SECOND ITERATION AND

THE RESULT. (F) FINAL SEGMENTATION. CPU = 0.514S. (G)(H)

ANOTHER INITIALIZATION AND ITS RESULT. CPU = 5.416S.

V. CONCLUSIONS AND FUTURE WORK

In this paper, fast implementation methods for the Chan-

Vese models are proposed that do not require solution of the

PDEs. These methods utilize region information to guide the

evolution of the evolving curves and Gaussian smoothing to

regularize them. Experimental results show that these methods

work very efficiently for images with no strong noise. If noise

is strong enough to change the signs of the region terms, the

proposed algorithm may fail.
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(A1) (A2) (B1) (B2)

(C1) (C2) (C3) (C4)

Fig. 4

FAST CURVE EVOLUTION FOR COMPLICATED CASES. (A1) AN IMAGE WITH

WEAK EDGES AND THE INITIAL CURVE (200 * 150). (A2) SEGMENTATION

RESULT OF (A1) USING THE BI-MODAL CHAN-VESE MODEL, CPU =

0.28S. (B1) A REAL IMAGE WITH THE INITIAL CURVE (200 * 133). (B2)

SEGMENTATION RESULT OF (B1) USING THE BI-MODAL CHAN-VESE

MODEL, CPU = 0.08S.(C1-C4) SEGMENTATION OF TRIPLE JUNCTIONS

(300 * 300) USING THE DECOUPLED MULTIPHASE CHAN-VESE MODEL.

CPU = 1.960S.

(A) (B) (C) (D)

Fig. 5

EFFECTS OF NOISE ON THE PROPOSED METHOD. (A) AN IMAGE WITH

MEDIUM NOISE. (B) CURVE EVOLUTION AFTER 44 ITERATIONS. (C)

SEGMENTATION RESULTS OF (A), CPU = 0.3S. (D) CURVE EVOLUTION

AFTER 100 ITERATIONS FOR AN IMAGE WITH STRONG NOISE. THE

PROPOSED METHOD FAILS IN (D).

(A1) (A2) (A3) (A4)

(B1) (B2) (B3) (B4)

(C1) (C2) (C3) (C4)

(D1) (D2) (D3) (D4)

Fig. 6

COMPARISON OF THE PROPOSED METHOD AND THE CHAN-VESE MODEL

FOR REAL IMAGES. (A1-D1) ORIGINAL IMAGES. THE SIZES ARE: (A1)

200 * 150, (B1) 200 * 150, (C1) 200 * 150, (D1) 149 * 121. (A2-D2)

INITIAL CURVES. (A3-D3) SEGMENTATION RESULT USING THE

PROPOSED METHOD. THE CPU TIME ARE: (A3) 0.34S, (B3) 0.124S, (C3)

0.303S, (D3) 0.148S. (A4-D4) SEGMENTATION RESULT USING THE

CHAN-VESE MODEL. THE CPU TIME ARE: (A4) 30.835S, (B4) 20.56S,

(C4) 18.316S, (D4)31.142S. THE PROPOSED METHOD WORKS ALMOST

100 TIMES FASTER IN THESE CASES.


