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Abstract— The fusion of data from several neuroimaging
modalities may improve the temporal and spatial resolutionof
non-invasive brain imaging. In this paper, we present a novel
method for combining simultaneous electroencephalographic
(EEG) and magnetoencephalographic (MEG) measurements
within the framework of source analysis. This method repre-
sents an extension of a previously published spatio-temporal
inverse solution to the case of MEG or combined MEG-
EEG signals. Moreover, we use a state-of-the-art realisticfinite
element (FE) head model especially calibrated for the MEG-
EEG fusion problem. Using a real data set containing an
epileptic spike, we compare the source analysis results of the
spatio-temporal inverse solution to the results of the LORETA
method and to the findings from other structural and functional
modalities. We show that the proposed fusion method, despite
the low signal-to-noise ratio (SNR) of single spikes, produces
comparable results to the other modalities. Furthermore, it
correctly identifies the same source as the main generator for
the MEG and EEG spikes.

I. INTRODUCTION

Simultaneous recording of the electroencephalogram
(EEG) and the magnetoencephalogram (MEG) offers a good
example of multimodal imaging of the human brain. If used
independently, each modality produces measurements with
high temporal resolution and relatively low spatial resolution.
In order to improve the spatial resolution, source analysis
may be used to reconstruct the brain activity from surface
measurements. Since EEG and MEG signals offer comple-
mentary information about the same neuronal generators in
the brain, an even better spatial resolution is achieved by
combining the signals from both modalities within a source
analysis framework. Multimodal imaging by MEG-EEG fu-
sion results in a more stable reconstruction of brain sources
and opens the way to a wider application of these imaging
techniques in brain research and clinical neuroscience and
especially in the pre-surgical evaluation of epilepsy patients.

Source analysis aims at imaging the brain using surface
EEG and MEG measurements and requires the solution of the
MEG-EEG forward and inverse problems. The MEG-EEG
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forward problem consists of the calculation of the electric
potentials, in case of EEG, or the magnetic fields, in case
of MEG, on the head surface resulting from the activity of
a set of current dipoles in the brain with known location,
orientation and strength. The solution requires a model for
the geometries and conductivities of the intervening head
tissues. It has been shown that EEG is affected more by
the conductivity and geometry of the skin and skull in
comparison to MEG, while both of them are affected by
the properties of tissues inside skull (including inner skull
surface and anisotropy) [1]. Thus in order to combine those
two modalities the sensitivity differences should be consid-
ered using a sufficiently elaborate forward model. To this
end we use a 6-compartment anisotropic finite element (FE)
head model in this study.

The MEG-EEG inverse problem consists of estimating the
current density in the brain which generated a given set of
EEG or MEG recordings, or both, for a given head model.
Since the number of measurements is much smaller than
the number of sources, the inverse problem becomes ill-
posed and results in an infinite number of solutions. One
possibility to stabilize a solution is achieved by the LORETA
method [2], which imposes a spatial smoothness constraint
in order to regularize the inverse problem. This kind of
constraint, however, still ignores the time series aspect of
the measurements and the information contained therein.
As a remedy to this problem, a spatio-temporal solution to
the EEG inverse problem was presented in [3], based on
an estimation technique known as spatio-temporal Kalman
filtering (ST-KF). In this study, we propose an extension
of the aforementioned method to the case of simultaneous
MEG-EEG measurements.

II. M ETHODS

The measurement process can be modeled with the fol-
lowing equation:

Yk = KsJk + εk (1)

where Y = [YM YE ]
T describes the(NY × 1)-dimensional

measurement vector, whereNY is the total number of the
NM MEG and theNE EEG sensors.J denotes the current
density vector withNJ sources, defined on the 3D source
grid discretized from the brain’s gray matter. Each of the
Nv points of the source grid corresponds to the location of
the current density vectorj v = [ jx jy jz]

T which leads to
NJ = 3Nv sources.Ks is the(NY ×NJ)-dimensional lead field
matrix (LFM) which results from the solution ot the MEG-



EEG forward problem. This matrix is defined as

Ks =

[

SMKM

SEKE

]

whereSM = sY MINM andSE = sY E INE denote the LFM-scaling
matrices for MEG and EEG respectively;sY M and sY E are
the MEG and EEG scaling factors which will be estimated
from the measurements.KM is the (NM ×NJ)-dimensional
MEG-LFM while KE is the (NE ×NJ)-dimensional EEG-
LFM. ε = [εM εE ]

T describes the(NY ×1)-dimensional white
Gaussian measurement noise. Furthermore, it is assumed that
the measurement noise has zero mean and a diagonal(NY ×
NY )-dimensional covariance matrix

Σε =

[

ΣεM 0
0 ΣεE

]

whereΣεM = σ2
εMINM andΣεE = σ2

εE INE . The rest is padded
with zero matrices. For a more detailed description we refer
to [3] and [4].

A. LORETA

The LORETA method employs a spatial smoothness con-
straint to penalize spatially non-smooth source configura-
tions. At each time instantk, the estimated current density
is computed using:

Ĵk = min
J

(

‖Yk −KsJk‖
2+λ 2‖LJk‖

2
)

where λ 2 is the regularization parameter, in this paper
obtained by minimizing the the Akaike Bayesian Information
Criterion (ABIC)[3] ; L describes the(NJ ×NJ)-dimensional
discrete spatial Laplacian operator, which can be thought
of as a discrete approximation to the second-order spatial
derivative.

B. Spatio-temporal Kalman Filter

In order to impose a temporal smoothness constraint, in
addition to the spatial smoothness constraint of LORETA, a
model for the evolution of the current density in space and
time is described by the system equation:

Jk = AJk−1+ηk (2)

whereA is the(NJ ×NJ)-dimensional state transition matrix
andη represents the(NJ ×1)-dimensional system noise. Let
Ση denote the(NJ ×NJ)-dimensional system noise covari-
ance matrix. (1) and (2) represent a linear state space model,
such that the inverse problem is recast into a state estimation
problem. The reconstruction of the stateJ is then performed
using a modified Kalman filter.

Due to the high dimension of the state vector, additional
assumptions need to be made to simplify the computation of
the state estimates. First, we multiply the system equation
with the discrete Laplacian operatorL to effect a spatial
decoupling of the states and to obtain an approximately
diagonal system noise covariance matrix:

J̃ = LJ (3)

In the following, we will drop the tilde from our notation
but it should be understood that all equations refer to a
laplacianized state space. Additionally, we assign the same
system noise variance to all grid points:

Ση = σ2
η IN j

By the spatial whitening operation of (3) a practically in-
tractable high-dimensional state estimation problem is trans-
formed into a set of low-dimensional local state estimation
problems, located at each grid pointv. The interaction
between grid points is limited to immediate neighbors. We
simplify the model further by assuming the state transition
matrix to obey

A= a1INJ − b1L

thus assigning the sameself-dynamics parametera1 and the
sameneighbor-dynamics parameterb1 to all grid points, and
at each grid point to all three current components. Within (2)
the time lag both for self- and neighbor dynamics is limited
to 1, and only immediate neighbors are coupled.

Each temporal iteration step of the ST-KF begins by
estimating, for each grid pointv, the predicted state estimate:

ĵ v,k|k−1 = (a1I3)ĵ v,k−1|k−1+
1
6
(b1I3) ∑

v′∈N (v)

ĵ v′,k−1|k−1 (4)

where N (v) denotes the set of grid points which are
immediate neighbors ofv. The initial state estimatêj v,1|1 is
chosen to be zero. The respective state prediction covariance
matrix is given by

pv,k|k−1 = (a1I3)pv,k−1|k−1(a1I3)
T +σ2

η I3 (5)

Globally, the predicted measurement follows as

Ŷk = K̄sĴk|k−1

where K̄s denotes the laplacianized LFMKsL
−1. Now the

difference between the actual measurement and the predicted
measurement represents the measurement prediction error or
innovation

Rk = Yk − Ŷk

The innovation covariance matrix is then given by

ΣR =
Nv

∑
v=1

k̄s(v)pv,k|k−1k̄s(v)
T +Σε

Here k̄s(v) represents the contribution of the source at grid
pointv to the measurements. Consequently, the local Kalman
gain is given by

gv,k = pk|k−1k̄s(v)Σ−1
R

gv,k can be interpreted as a local inverse of the LFM. Finally,
the corrected state estimate at grid pointv is given by

ĵ v,k|k = ĵ v,k|k−1+ gv,kRk (6)

and its corresponding local state estimation covariance matrix
is given by

pv,k|k =
(

I3− gv,kk̄s(v)
)

pv,k|k−1 (7)



With (6) and (7) one loop of the temporal iteration step of
the ST-KF is completed, and the next loop starts again from
(4) and (5), replacingk by k+1.

After all time points have been processed by ST-KF, the
global state estimates need to be transformed back to the
delaplacianized state space, usingL−1J andL−1P(LT )−1.

C. Parameter Estimation

The optimal parameters, in the maximum likelihood sense,
are estimated by minimizing the Akaike information criterion
(AIC) as given by

AIC(a1,b1,sY M,sY E ,σ2
εM,σ2

εE) =−2
Nk

∑
k=1

(RkΣ−1
R Rk

+ log | ΣR |+NY log(2π))+2Npar

where Nk is the number of time points in the data and
Npar is the number of parameters, in this case 6. The LFM
scaling factorssY M,sY E introduced above and the system noise
covariance parameterσ2

η should not be optimized simultane-
ously since they represent the same degree of freedom. We
find it more convenient to assign this freedom to the LFM
and to keepσ2

η fixed at 1. We remark that the introduction
of separate parameters for MEG and EEG, instead of just
single parameters for LFM scaling and measurement noise
covariance, represents a major modification of the original
ST-KF algorithm. It is through this modification that MEG-
EEG-fusion becomes possible.

The optimization problem is solved by iteratively by
alternating between the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) secant and the Nelder-Mead simplex methods, in or-
der to avoid local minima. Since application of each method
requires multiple runs of the Kalman filter, the parameter
optimization step is, with respect to the computational time,
the most expensive part of the method.

D. Head Model

The head model was constructed using T1w(1.17×
1.042mm3), T2w

(

(1.17mm)3
)

and diffusion weighted
(DW)

(

(1.875mm)3
)

magnetic resonance images (MRI)
acquired with a Gyroscan Intera/Achieva system (3.0 Tesla,
System Release 2.5; Philips, Best, NL). The DW-MRI
was measured according to Stejskal-Tanner spin-echo EPI
sequence with a SENSE parallel imaging scheme in AP
direction (acceleration factor 2). 20 volumes with diffu-
sion sensitivityb = 1000 S/mm2 using diffusion weighted
gradients in 20 directions, equally distributed on a sphere,
were acquired along with ab = 0 S/mm2 volume. Another
b = 0 S/mm2 volume with reversed encoding gradients was
measured to be used in susceptibility correction.

T1w and T2w images were rigidly registered to each other
and used to segment the inner skull, outer skull and skin
using the FSL-BETSURF function [6]. White matter (WM),
gray matter (GM) and cerebro-spinal fluid (CSF) were
segmented using the FSL-FAST algorithm. To distinguish
between skull spongiosa and compacta, the skull estimate
was eroded by one pixel and a threshold-based segmentation

algorithm was used on the T2w image constrained by the
eroded skull.

The DW-MRIs were used to obtain WM and GM
anisotropy. After eddy current correction using FSL, the
images were corrected for susceptibility artifacts using the
two b= 0 images with reversed encoding gradients, using the
FAIR toolbox [5]. Consequently, the DW-MRIs were regis-
tered to the T2w image and the FSL-DTIFIT function was
used to construct diffusion tensors. The conductivity tensors
were estimated from the diffusion tensors as explained in
[1]. Then a 6-compartment geometrically adapted hexahedral
mesh with anisotropic WM and GM was built with SimBio-
VGRID. The LFMs for EEG and MEG were calculated using
the SimBio software with conductivitity values 0.43, 0.007,
0.025, 0.14, 0.33 and 1.79 S/mm for skin, skull compacta,
skull spongiosa, WM, GM and CSF, respectively [7].

III. A PPLICATION EXAMPLE : EPILEPTIC SPIKE

ANALYSIS

The ST-KF method was applied to MEG-EEG data from
a 19 years old female with severe drug-resistant epilepsy
caused by focal cortical dysplasia in the left mesial temporal
region. Epilepsy started at the age of 6 with auras, com-
plex focal seizures and secondary generalized tonic clonic
seizures. The patient had received 15 different anti-epileptic
drugs but never reached seizure freedom. The inter-ictal
EEG recordings showed continuous epileptiform discharges
over the left fronto-temporal region (electrodes FT9, F9 and
T9). Ictal EEG recording showed ictal activity in the left
frontal region. Positron emission tomography (PET) showed
hypometabolism in the left mesial temporal region. We used
the findings of structural and functional neuroimaging, as
well as results from LORETA, to validate the source analysis
results of the ST-KF.

The patient underwent 275-channel whole head MEG
(CTF, VSM MedTech Ltd.) and simultaneous 74-channel
EEG recording in a magnetically shielded room. The data
set included 500 seconds sampled at 1.2 KHz. Experienced
neurophysiologists inspected the MEG-EEG data and marked
the epileptic spikes common to EEG and MEG. The number
of channels was then reduced to 64 EEG and 64 MEG
channels, in order to save computational time. A 4-seconds
segment containing, after a 2-seconds pre-spike period, a
single FT9 spike, was selected for source analysis with
LORETA and ST-KF. The shape of the EEG spike appeared
more smeared than the shape of the corresponding MEG
spike; the MEG spike reached its peak 20 ms earlier than
the EEG spike. This may be explained by the attenuation
and smearing effects of volume conduction on the EEG
signal and by the different sensitivities of EEG and MEG to
tangential and radial source components. The MEG and EEG
channels with the strongest spike amplitude are depicted in
Fig. 1.

For comparison purposes, we created three data sets
including only the 64 EEG channels, only the 64 MEG
channels and the combined 128 MEG-EEG channels. For the
analysis by ST-KF, we used, for each data set, the 2-second



Fig. 1. The left figure shows the MEG and EEG channels with the strongest
spikes, where the red and green lines mark the MEG and EEG spike maxima,
respectively. The right figure summarizes the ST-KF source analysis results
for the EEG, MEG and combined MEG-EEG data sets. The upper row
displays the localization results at timeTM, while the lower row shows
results at timeTE . The axial slices are displayed with their respective z
coordinates in MRI space, which increases in the upward direction; the
strongest activation is color-coded in yellow.

pre-spike period for parameter estimation and performed
optimization until convergence of AIC. Furthermore, we
computed the current density estimates using LORETA. In
order to compare the source analysis results, we used the
spike maxima from the MEG at timeTM and the EEG at
timeTE , respectively (see Fig. 1). Visualizations were created
with the fieldtrip toolbox[8].

Using the MEG data set, atTM both methods localized the
source in the left lateral temporal lobe. Likewise for the EEG
data set, atTE both methods found a source in a very similar
location. Using the combined MEG-EEG data set, LORETA
and ST-KF correctly assigned the sources at the respective
spike maxima to the same regions as in the MEG and EEG
data sets. Furthermore, further activations in other regions
of the brain were considerably weakened. Fig. 1 shows the
localization results at timesTM and TE for the EEG, MEG
and combined MEG-EEG data sets using the ST-KF.

For ST-KF, AIC values were, for all three data sets,
substantially smaller than the corresponding ABIC values
of LORETA. From this it follows that the ST-KF, in the
statistical sense, explains the data better than LORETA.
Additionally, the source waveforms resulting from the ST-
KF method displayed higher temporal smoothness than the
respective waveforms resulting from LORETA. The expla-
nation for these results comes from the additional temporal
smoothness constraint used by the ST-KF in order to regu-
larize the inverse solution.

The single example provided above demonstrated the prac-
ticality of MEG-EEG fusion using ST-KF source analysis
and the plausibility of the localization, compared to the
results of other neuroimaging modalities. However, more
spikes need to be analyzed in order to obtain better estimates
of the sources generating the epilepsy in this case.

IV. CONCLUSION

In this paper we have addressed the problem of fusion of
simultaneously recorded MEG and EEG. We have demon-
strated that state space modeling provides a natural frame-

work for such fusion tasks, since it links the two different
recordings to a common source space, representing the neural
generators. Through the corresponding parameter matrices
of the state space model, both the spatial and the temporal
domain are represented well within the model. We have
shown that detailed individual anatomical knowledge can
be incorporated conveniently into state space modeling by
employing the corresponding LFMs as observation matrices
of the model. LFMs were modeled by a state-of-the-art 6-
compartment anisotropic FE model. Those parameters of the
state space model for which no prior information is available,
can be estimated from the data by minimum-AIC, a well
established statistical criterion.

The main difference to previous methods for estimating
neural sources, like LORETA, is given by the fact that state
space modeling makes explicit use of the temporal ordering
of the data, while LORETA results would be invariant under
temporal permutation. This enables us to use the available
information to much better extent.

We have demonstrated the practicality of the proposed
method by analyzing a single inter-ictal epileptic spike. The
ST-KF successfully assigned the spikes in MEG and EEG to
the same generating source within the brain, and the results
were comparable to those of other structural and functional
imaging modalities, like PET and MRI.

In the future we will analyze more inter-ictal spikes
from several patients. We will also investigate the effectsof
including more MEG and EEG channels into the analysis.
Furthermore we intend to improve the temporal regulariza-
tion by using more detailed dynamical models, employing
prior knowledge from brain physiology, and by adapting
the system parameters in space and time. The validation of
clinical data will also be improved by using post-surgical
results and invasively measured electrophysiological data.
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