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Abstract
This thesis is devoted to the study and optimization of solution approaches to the forward

problem of electroencephalography (EEG). We will investigate different numerical approaches
regarding time consumption and particularly accuracy, two aspects that are crucial for solving
the inverse problem of EEG, i.e., reconstructing source activity from measurement data. Several
studies have shown that the accuracy of the solution highly depends on a realistic modeling of

the human head. Besides others, two different numerical techniques are commonly used in
combination with realistically shaped head models nowadays: Boundary element methods

(BEM) and finite element methods (FEM). We will evaluate a recently proposed BE approach,
the symmetric BEM, and will demonstrate that it leads to a considerably improved accuracy in
multi-layer sphere models compared to former BE formulations. Furthermore, we will enhance
accuracy and speed of different FE approaches by the application of leadfield interpolation, a

technique originally proposed for the speed-up of BE calculations. Various investigations
regarding the accuracy of the FE approaches in multi-layer sphere models are carried out before

leadfield interpolation is applied to further optimize the results.
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Introduction

The human brain is a highly complex organ, being topic of research since ages. Though brain
research has already gained deep insight up to the brain’s fundamental functions, there are still
many open and only partially answered questions, like those for the emergence of emotions or the
origin of mental diseases, e.g., depression. Therefore, technologies that allow for the investigation
of the brain and its activity have been and still are developed. Besides cognitive science, many of
these inventions have become an important tool in clinical routine, e.g., in pre-surgical epilepsy
diagnosis.
The variety of different technologies allowing an investigation of the brain is large. Some of them
are designated to create images of the head’s anatomy, e.g., X-ray computed tomography (CT) or
magnetic resonance imaging (MRI), others allow to observe the characteristics of metabolism, e.g.,
positron emission tomography (PET), single photon emission computed tomography
(SPECT) or functional magnetic resonance imaging (fMRI); electroencephalography (EEG)
and magnetoencephalography (MEG) again are able to measure the simultaneous activity of
patches of neurons on a millisecond timescale.
The localization of primary or impressed currents, which cause the electromagnetic fields
recorded by EEG or MEG, demands the solution of the inverse problem of EEG/MEG, which
has to be carried out numerically. The forward problem of MEG is directly related to the forward
problem of EEG via the Biot-Savart law. Therefore, the accurate simulation of the potential
distribution induced by a certain source configuration, i.e., the forward problem of EEG, is
crucial. The comparison and optimization of speed and accuracy of different approaches to its
solution will be the main topic of this thesis.
Besides quasi-analytical solutions, requiring the assumption that the anatomy of a human head
can be approximated by a multi-layer sphere model, methods being able to take the head geometry
into account have been developed. Boundary element methods (BEM) can embed the realistic
shape of the head but are based on the simplification of considering the head as an isotropic,
homogeneous volume conductor having nested shell topography. Finite element methods (FEM)
show more flexibility, supporting nearly arbitrary geometries and both isotropic and anisotropic
conductivities. Furthermore, other solution approaches, e.g., finite difference methods or finite
volume methods, are used, see, e.g., [72, 28, 29, 43] and [10], respectively. The BE as well as the
FE methods can be implemented in different ways, which, again, have specific advantages and
disadvantages. Therefore, we will run several numerical experiments in different artificial setups
to demonstrate the strengths and weaknesses of the various approaches.
After shortly exposing the theoretical basics of the forward problem and sketching the derivation
of a quasi-analytical solution in Chapter 1, we will present a recently proposed BE formulation,
the symmetric BEM, promising a strong increase of accuracy, and examine its additional value
in a three-layer sphere model in comparison to the well-known double-layer BE method in
Chapter 2. We will give a short introduction to the different FE approaches, and run numerical
experiments in different multi-layer sphere models where we compare both the FE methods
among each other and to the symmetric BEM in Chapter 3, and aim to explicitly clarify the
pros and cons of the different FE approaches. We close with an application of leadfield inter-
and extrapolation, a technique originally designated to improve the accuracy and speed of BE
methods. We will combine leadfield interpolation and FE methods in order to mitigate some of
the specific drawbacks in Chapter 4.
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1 The EEG Forward Problem

In this chapter we will derive the partial differential equation (PDE), which is known as the
forward problem of EEG and depict solutions for few specific scenarios. We start with shortly
considering physiological explanations for the creation of electrical fields in the human brain.
Subsequently, we derive a simplification of the fundamental Maxwell equations, the so-called
quasi-static approximation, and conclude a Poisson equation with Neumann boundary conditions
for the electric potential. After presenting an adequate source model, we will shortly reflect an
analytical solution approach and introduce the model assumption of approximating the head’s
anatomy by a nested shell topography with piecewise homogeneous conductivities.

1.1 Physiological Background

The electrical potential differences at the head surface measured by an EEG are an effect of
electromagnetic fields induced by ion currents inside the brain. To understand the sources of this
bioelectromagnetism, we will shortly consider the basic structures and elementary processes inside
this highly complex organ. The human brain is composed out of 1011 up to 1012 elementary cells,
the so-called neurons [69]. Neurons are electrically excitable cells that communicate amongst
each other using electrochemical signaling. A typical neuron in the brain consists of three parts,
the soma, which represents the cell body, the dendrites, and one axon arising at the axon hillock
(see Figure 1.1). Each cell builds only one axon, which can reach a length between 1 µm (in
the brain) up to 1 m (in the spinal chord) and branch several times, whereas several dendrites
having a length of some hundred micrometers may develop. The neurons connect to each other
cultivating (complex) networks, communicating via chemical transmitters at the synapses, where
typically signals from the axon of one neuron are passed to a dendrite of another. Each neuron
has about 7,000 synaptic connections to other neurons [16].
The process of signal transmission between neurons bases on the rise and fall of electric potentials
at the cell membranes, established by the diffusion of ions through ion-channels. These potential
differences cause intra- and extracellular ion currents, i.e., currents flowing inside and outside
the neurons, respectively. According to the Maxwell equations of electrodynamic, the movement
of electric charges gives rise to electromagnetic fields propagating through the human body. Two
major patterns of membrane potentials appear in the signal transmission between neurons, action
potentials and post-synaptic potentials.
When a certain threshold potential at the axon hillock of the pre-synaptic neuron is exceeded,
the neuron “fires”, i.e., a sudden change of the membrane potential consisting in an abrupt rise

Figure 1.1: A human neocortical pyramidal neuron stained via Golgi technique. Source: Bob Jacobs,

Wikimedia Commons, CC-BY-SA-2.5; Released under the GNU Free Documentation License.
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followed by a fall of the same amplitude occurs. This action potential propagates along the
axon inducing the dumping of neurotransmitters at the pre-synaptic membrane of the affiliated
synapses. The diffusion of these transmitters through the neighboring post-synaptic membrane
causes a potential change, the post-synaptic potential, in the post-synaptic neuron. This (or the
sum of various) potential changes may, again, initiate an action potential in the post-synaptic
neuron, i.e., the signal is passed on.
Since action potentials are too short (0.5-2 ms), insufficiently synchronized, and the far-field
induced by the resulting ion currents is dominated by the quadrupole term they do not evoke
an exploitable EEG signal [52, 35]. In contrast, the simultaneous generation of post-synaptic
potentials with a duration of tens of milliseconds by some ten-thousand neighboring and similarly
oriented neurons, corresponding to a patch of few square millimeters cortex surface, results in a
measurable, dipolar electromagnetic field [46, 48]. The potential difference between the particular
dendrite and the soma induces a balancing flow of ions in the liquid between the neurons. The
highest concentration of similarly oriented neurons is given by the approximately 109 pyramidal
cells that are mainly found in the cortex, but also in the hippocampus and the amygdala. Thus,
the major contribution to the EEG signal originates from these areas.

1.2 Quasi-Static Approximation of the Maxwell Equations

We derive a quasi-static approximation of the Maxwell equations following the ideas of [30]. As
a first step we note that the permeability of the head’s tissue is that of free space, i.e., µ = µ0.
Then, the Maxwell equations take the form

∇ · E =
ρ

εrε0
, (1.1)

∇ ·B = 0, (1.2)

∇× E = −∂B
∂t
, (1.3)

∇×B = µ0J + µ0εrε0
∂E

∂t
, (1.4)

where E denotes the electric field, B the magnetic field, ρ the charge density, J the current density,
ε0 and εr the permittivity of free space and the relative permittivity, respectively, and µ0 the
permeability of free space. In the following, we will show that the quasi-static approximation, i.e.,
neglecting the temporal derivatives in the Maxwell equations, is a reasonable model assumption.
Using Ohm’s law, J = σE, in (1.4), we have

∇×B = µ0(σE + εrε0
∂E

∂t
). (1.5)

Since we can apply a Fourier decomposition to a general time dependent electric field, we have
no loss of generality when assuming a harmonic time dependency with angular frequency ω, i.e.
E(t) = E0 · e−iωt, in (1.5):

∇×B = µ0(σE − iεrε0ωE). (1.6)

Thus, for the quasi-static approximation to be valid, we need |εrε0ω| � |σ|, i.e., |εrε0ω/σ| � 1.
With σ ≈ 0.3 S/m, εr ≈ 105 and a frequency f = ω/2π ≈ 100 Hz, which is assumed as an upper
bound for frequencies in neuromagnetism [30], we have εrε0ω/σ ≈ 2 · 10−3 � 1.
To show that we can neglect ∂B/∂t in (1.3), we take the rotation of (1.3) and with (1.4) we have

∇×∇× E = − ∂

∂t
(∇×B) = −µ0

∂

∂t
(σE + εrε0

∂E

∂t
) = µ0(iσω − εrε0ω2)E. (1.7)

The solutions of this equation have a characteristic wavelength of λc = |µ0σω(1−εrε0ω/σ)|−1/2 ≈
65 m, which is much larger then the diameter of the human head, and the contribution to E can
be neglected.
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1.3 Derivation of the Forward Equation

With ∇× E = 0 we know that E is a gradient field and we can relate it to a scalar potential V :

E = −∇V. (1.8)

We split the current density J(x) into two parts. The primary current Jp(x) is an effect of
neural activity and spatially bounded in a small volume; the passive volume or return current,
Jv(x) = σ(x)E(x), flows in the whole medium as an effect of the macroscopic electric field:

J(x) = Jp(x) + σ(x)E(x) = Jp(x)− σ(x)∇V (x), (1.9)

with the macroscopic conductivity σ being either a non-negative scalar (isotropic case) or a
symmetric positive definite tensor (anisotropic case), i.e., σ : Ω→ R or σ : Ω→ R3×3, depending
on whether the anisotropy of, e.g., white matter is taken into account or not. We denoted the
head domain by Ω.

Remark 1. We assume that the head domain Ω is open and connected. We further assume that
∂Ω is sufficient regular (we will specify this with Definition 5).

Taking the divergence of (1.4), where we neglect the temporal derivative, together with (1.9)
and exploiting ∇ · ∇ ×B = 0 yields

∇ · (σ∇V ) = f = ∇ · Jp in Ω,
∂n(σV ) = 0 on ∂Ω = Γ,

(1.10)

where we introduced f as abstract source term. The actual definition of f depends on the choice
of a source model.
The forward problem of EEG now consists of finding a solution to the above equation system
(1.10) that lives in an appropriate function space. Classical solutions, i.e., solutions that
are sufficiently often differentiable, can only be found under very strong assumptions, e.g., a
continuous conductivity σ, which is no suitable assumption in our case. Therefore, we will search
for a solution in the Sobolev space H1(Ω). Existence and uniqueness of the solution of (1.10) can
be proven [47, 85]:

Theorem 1. (1.10) has an unique solution in H1
∗ (Ω) when f can be expressed as

f =
3∑
i=1

∂

∂xi
gi + g0, gi ∈ L2(Ω), (1.11)

where

H1
∗ (Ω) = {v ∈ H1(Ω)|

∫
Ω
vdx = 0}. (1.12)

(1.11) implies f ∈ H−1(Ω) and in terms of Jp we have ∂/∂xi(Jp)i ∈ L2(Ω). H1
∗ (Ω) is the quotient

of H1(Ω) taken by the space of constant functions supported on Ω, i.e., the resulting solution is
up to a constant unique in H1(Ω). The condition

∫
Ω vdx = 0 provides advantages for the proof of

this uniqueness, but is not feasible in the implementation of BE and FE methods and is usually
replaced by other conditions, e.g.:

• The value of the potential V is fixed at a certain position (node): V (x) = c, x ∈ Ω,

• The mean value of V on the surface of Ω is fixed:
∫
∂Ω V (x)dγ(x) = d.
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1.4 The Mathematical Dipole

Next, we need to model the source term f reasonably so that it represents electrical activity
in the brain. A widely used concept in bioelectromagnetism is the mathematical or current
dipole, which is a good approximation for a small source viewed from a relatively large distance
[15, 30, 60], since the far-field of a realistic source is mainly dipolar (cf. Section 1.1). For a dipole
at position x0 the mathematical dipole is defined by

Jp(x) = p · δx0(x), (1.13)

where δx0 is the Dirac delta distribution and p is the dipole moment. It can be illustrated as the
limit case of two electrical monopoles, a source and a sink, with charge q and distance vector d
that come infinitely close together in x0, while the dipole moment p = q · d is constant:

p = lim
‖d‖→0
q→∞

∫
x · (qδx0+d/2(x)− qδx0−d/2(x))dx = lim

‖d‖→0
q→∞

q · d. (1.14)

p can then be related to the dipole term in the multipole expansion of the source distribution
[35]. The corresponding source term f in (1.19) is given by f = ∇ · Jp = (p · ∇)δx0 . However,
since we have

δ(x) ∈ H−3/2−ε ∀ε > 0 and Dαδ(x) ∈ H−3/2−|α|−ε ∀ε > 0 (cf. [42]), (1.15)

the requirements of Theorem 1 are not fulfilled.
The treatment of these singularities is the main problem when applying direct finite element
methods to solve the forward problem in multi-compartment head models (see Chapter 3), while
it is less critical with boundary element methods. Even though less singular source models
using Whitney forms have been proposed [68, 53, 54], it is still today’s standard to use the
mathematical dipole as source model.
In the case of an unbounded, homogeneous medium with conductivity σ the resulting potential
V can be calculated using the fundamental solution of the Poisson problem:

Definition 1. We define

G(x) :=
1

4π‖x‖2

for x ∈ R3. (1.16)

Remark 2. G is the fundamental solution of the Poisson equation. It fulfills the property
−∆G(x) = δ(x) in a distributive sense.

Proof. cf. [35, 47].

For an isotropic conductivity σ, the solution is then given by the convolution of the source term
f and G:

V = − 1
σ
f ∗G. (1.17)

In the case of a mathematical dipole at position x0 we obtain

V (x) = − 1
σ

(∇ · Jp) ∗G(x) =
1
σ

∫
R3

(p · ∇)δx0(x− y) ·G(y)dy =

− 1
σ

∫
R3

pδx0(x− y) · ∇G(y)dy = − p
σ
∇G(x− x0) =

1
4πσ

p · (x− x0)
‖x− x0‖32

. (1.18)

See also [60].
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Figure 1.2: BE head model and topography

1.5 BE Head Model

When applying the boundary element methods, we will assume a simplified head model consisting
of the three compartments skin, skull and brain, each with constant isotropic conductivity. We
further assume a nested shell topology (also referred to as hollow ball topology), i.e., skull holes
caused by, e.g., the eye nerve, the brain stem or surgery, have to be neglected.
We will shortly indicate a simplified version of equation (1.10) for the special case of N nested
compartments; ΩN+1 denotes the outside of the head (ΩN+1 =

⋂N
i=1 Ω̄{

i ). We assume a constant
conductivity σi ∈ R in each head compartment Ωi so that ∇σ is non-zero only at the boundaries
Ω̄i∩ Ω̄i+1 = Si (see Figure 1.2 and Subsection 2.6.2). When we further assume that no sources lie
outside the head and that we have boundary conditions [V ] = 0 and [σ∂nV ] = 0 with σN+1 = 0
(where square brackets denote the jump of a function, see Definition 3), imposing the continuity
of the potential and the current (charge) flow across boundaries, this yields the set of equations

σi∆V = f = ∇ · Jp in Ωi, for all i = 1, . . . , N,
∆V = 0 in ΩN+1,

[V ]Ωj = [σ∂nV ]Ωj = 0 on Sj , for all j = 1, . . . , N.
(1.19)

Thus, we will have to solve the Poisson equation in each of the compartments. The solutions are
linked by the jump properties. Still, the solution is only known up to a constant, which has to
be fixed by an additional condition, examples were given in Section 1.3.

1.6 Analytical Solution

For some special geometries the EEG forward problem (1.19) can be solved analytically even
if the conductivity of the medium is not constant, e.g., for a multi-layer sphere model. The
analytical formulas allow for an easy calculation of the electric potentials under the constraint to
model the human head by nested spheres of piecewise constant conductivities (see Figure 1.2).
In practice, analytical solutions were (and still are) used to solve the forward problem of EEG
with the major drawback that the assumption of a spherical head is rather inexact. Thereby, the
model error exceeds the numerical errors of methods being able to solve the forward problem
for realistically shaped head models, e.g., those presented in Chapters 2 and 3. Nevertheless,
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analytical solutions are still required as an important tool to evaluate the accuracy of numerical
solutions.
Different formulas to obtain an analytical solution for the EEG forward problem have been
proposed. While first solutions were only valid for a constant number of spheres with isotropic
conductivities [22, 34], solutions that are able to handle arbitrary many spheres and with
restrictions even anisotropic conductivities are available nowadays [45, 44, 13, 91]. We will use
the solution derived in [45] throughout this thesis, which enables us to treat arbitrary many
spheres (and anisotropy; we however do not need this possibility in this thesis). We will shortly
present the necessary formulas subsequently.
We assume a model consisting of N nested shells with radii r1 < r2 < . . . < rN and constant
radial and tangential conductivities σrad(x) = σradj ∈ R+ and σtan(x) = σtanj ∈ R+ in each shell,
rj < x < rj+1. We further assume that the source at position x with radial coordinate xr ∈ R is
in a more interior layer than the measurement electrode at position yi with radial coordinate
yri ∈ R, i = 1, . . . , s, s being the number of electrodes. Then the potential evoked at yi by a
source at x with dipole moment p is given by

V (x, p, yi) =
1

4π
〈p, yi

S0

yri
+ x

(
S1

xr
− cosωx,yi

S0

xr

)
〉 (1.20)

with ωx,yi being the angular distance between x and yi,

S0 =
F0

xr
Λ

(1− 2Λ cosωx,yi + Λ2)3/2
+

1
xr

∞∑
n=1

[(2n+ 1)Rn(xr, yri )− F0Λn]P ′n(cosωx,yi), (1.21)

S1 = F1
Λ cosωx,yi − Λ2

(1− 2Λ cosωx,yi + Λ2)3/2
+
∞∑
n=1

[
(2n+ 1)R′n(xr, yri )− F1nΛn

]
Pn(cosωx,yi). (1.22)

Pn and P ′n denote the Legendre polynomial and its derivative, respectively, and can be computed
recursively; the coefficients Rn and their derivatives R′n can be computed analytically. The
definitions of F0, F1 and Λ are given in [45], as well as the exact derivation of the above formulas.
This results in the vector of electrode potentials (V ana)i = V (x, p, yi) for a dipole at position x
and with dipole moment p and electrode positions yi.



2 The Boundary Element Method

Boundary element methods are one possibility to overcome the restriction to a multi-layer sphere
model. Most BE methods are limited to a nested shell topology where the interfaces between
different compartments of isotropic conductivity may be realistically shaped (see Figure 1.2). A
reformulation of the forward problem into a boundary integral equation is the basis to apply BEM.
Afterwards, the resulting equations are discretized, i.e., the surfaces have to be triangulated and
the unknowns are approximated by (finite) linear combinations of basis functions.
For reasons of computational complexity, BE methods are commonly used in combination with
three-layered head models (see Section 1.5). Skull holes have to be neglected, amongst other
things, due to the restriction of current BE implementations to nested domain topologies. Since
the resulting surfaces of skin, inner skull and outer skull are relatively smooth, they can be
adequately modeled by a few hundred nodes, keeping the computational demand relatively low,
while at the same time the accuracy is strongly improved compared to spherical models [89].
The low computational demand was (and in some cases still is) a major advantage over FE
methods. In contrast, including the CSF compartment, which was shown to have an important
volume current tunneling function [76] and whose conductivity is inter-individually not varying
[4], is a challenging task when using BE methods. The cortex surface, which would be needed
to include the CSF compartment, has a complicatedly folded structure. A realistically shaped
triangulation of the cortex surface would require at least 15,000 to 20,000 nodes to model deep
sulci appropriately [79]. With 20,000 additional nodes, the computation time grows considerably,
making the integration of the CSF into a BE model not feasible yet [36]. The distinction between
skull spongiosa and skull compacta [12] is even more complicated, since the occurring domains
are not nested. Theoretically, it is possible to deal with such topologies, but an extension of the
framework would be necessary. In practice, other problems might occur, e.g., when generating
the corresponding surface meshes.
Our goal in this chapter is to derive a symmetric integral representation for the Poisson problem
as presented in [36], which requires miscellaneous preliminaries. We will compare the symmetric
BEM to the classical double-layer BEM regarding time consumption and accuracy, subsequently.
Therefore, we will briefly deduce the double-layer formulation and its discretization for reasons
of completeness before we run numerical experiments in a three-layer sphere model.

2.1 Representation Theorem for Harmonic Functions

We begin this chapter by proving a theorem that relates the limit values of a harmonic function
at a (closed) surface to the value of the function in- and outside this surface via the calculation of
specific integrals. This identity will be of great use later on: To derive the integral representations
that are underlying the BE methods, we will have to find tailored harmonic functions.
In a nutshell, we will first calculate a solution v for our source term f under the assumption
of an infinite, homogeneous conductor (see Section 1.4). We will then search for a harmonic
adjustment function u, i.e., ∆u = 0, to obey the boundary conditions so that the potential is
finally given by V = u+ v. The Representation Theorem will be an important tool to gain an
expression for u in terms of surface integrals.
Before indicating the Representation Theorem, we give some definitions and notations.

Definition 2 (Interior and exterior limits). The interior and exterior limits of a function

18
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f : R3 → R at an interface Γ, f−Γ and f+
Γ , are defined as

f−Γ (x) = lim
ε↗0

f(x+ εn), (2.1)

f+
Γ (x) = lim

ε↘0
f(x+ εn) for x ∈ Γ, (2.2)

with n being the unit normal vector to Γ at point x ∈ R3 (by definition pointing outwards, see
Figure 1.2).

Definition 3 (Jump of a function). The jump of a function f : R3 → R at an interface Γ is
defined as

[f ]Γ = f−Γ − f
+
Γ . (2.3)

Notation 1 (Normal derivative). In the following we denote the partial derivative of a function
f : R3 → R in the direction of the unit normal vector n, n · ∇f , by ∂nf .

Definition 4 (Hölder space). We define the Hölder space Ck+λ, it consists of functions having
derivatives up to order k so that the derivatives are Hölder continuous with exponent λ ∈ (0, 1).

Definition 5 (Regularity of surfaces). A subset S ⊂ R3 is called a regular surface, if for each
point p ∈ S there exists a neighborhood V ⊂ R3 of p and a map φ : U → V ∩ S of an open set
U ⊂ R2 such that

• φ is a homeomorphism,

• φ is continuously differentiable

• φ is a regular patch, i.e., its Jacobian has full range in every point p ∈ S.

We say that a surface S is of class Ck(Ck+λ), if each of the homeomorphisms as well as their
inverses are in the space Ck(Ck+λ). In the following we will demand a regularity of k = 1+µ, µ ∈
(0, 1).

We are now able to formulate the Representation Theorem:

Theorem 2 (Representation Theorem). Let Ω ⊂ R3 be a bounded open set with a regular
boundary Γ. Let u : (Ω ∪ (Ω̄){)→ R be harmonic, i.e.,

∆u = 0 in Ω,

∆u = 0 in (Ω̄){,

satisfy an outgoing radiation condition

lim
r→∞

r|u(r)| <∞,

lim
r→∞

r
∂u

∂r
(r) = 0,

(2.4)

and the traces of u, u−Γ and u+
Γ , (∂nu)−Γ and (∂nu)+

Γ all belong to C0(Γ).
For y /∈ Γ, the following representation formula holds:

u(y) =
∫

Γ
G(x− y) [∂nu(x)]Γ dγ(x)−

∫
Γ
∂nx(G(x− y))[u(x)]Γdγ(x). (2.5)

For y ∈ Γ

u−Γ (y) + u+
Γ (y)

2
=
∫

Γ
G(x− y) [∂nu(x)]Γ dγ(x)−

∫
Γ
∂nxG(x− y)[u(x)]Γdγ(x). (2.6)
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Remark 3. The assumption regarding the traces will prohibit sources placed on compartment
boundaries. This is no restriction in our case, since sources lying directly on boundaries are
physiologically not reasonable.

Before actually proving the Representation Theorem, some preliminaries are necessary. In effect,
the proof of the Representation Theorem itself will reduce to a few lines. First, we remind one of
the well known Green’s identities and indicate a lemma specifying requirements for the existence
of surface integrals over singular functions.

Lemma 1 (Green’s second identity). Let Ω be an open, bounded set; Γ := ∂Ω a regular surface.
Let φ, ψ ∈ C2(Ω) and continuously continuable on Γ. Then∫

Ω
(φ∆ψ − ψ∆φ)dx =

∫
Γ

(φ∂nψ − ψ∂nφ) dγ(x). (2.7)

Proof. cf. [19].

Remark 4. Let Γ ⊂ R3 be a regular surface, f : Γ→ R a function with a singularity in x0 ∈ Γ
and continuous in Γ\{x0}.
For |f(x)| ≤ C‖x− x0‖−λ2 with λ < 2 the improper integral of f on Γ exists.

Proof. cf. [26].

The next lemma will be the basis of the closing proof.

Lemma 2. Let Ω as in Lemma 1 and u harmonic in Ω. Then

−
∫

Γ
G(x− y)(∂nu)−Γ (x)dγ(x) +

∫
Γ
∂nxG(x− y)u−Γ (x)dγ(x)

=


−u(y) if y ∈ Ω,

−u−Γ (y)/2 if y ∈ Γ,
0, otherwise.

(2.8)

Proof. We have to distinguish two situations: y ∈ Ω and y ∈ Γ = ∂Ω.
1. y ∈ Ω : Let Bε be a ball with center y and radius ε so that Bε ( Ω. We apply Lemma 1 with
φ(x) = u(x) and ψ(x) = G(x− y) in Ω\Bε. G is obviously continuously continuable on Γ, u by
assumption. With ∆u = 0 in Ω and ∆xG(x− y) = −δ(x− y) (see Remark 2) this yields

0 =
∫

Ω\Bε
(u(x)∆xG(x− y)−G(x− y)∆xu(x)) dx

(2.7)
=
∫
∂(Ω\Bε)

(u(x)∂nxG(x− y)−G(x− y)∂nxu(x)) dγ(x),
(2.9)

where we replace u(x) = u−Γ (x) for x ∈ ∂Ω = Γ. Splitting up into the contributions on ∂Bε and
Γ gives us∫

Γ
G(x− y)∂nxu

−
Γ (x)dγ(x)−

∫
Γ
∂nxG(x− y)u−Γ (x)dγ(x)

−
∫
∂Bε

G(x− y)∂nxu(x)dγ(x) +
∫
∂Bε

∂nxG(x− y)u(x)dγ(x) = 0 (2.10)

Since u is harmonic in Ω, it is harmonic in B̄ε, too, and thus ∂nu(x) is bounded for x ∈ Bε. As
G(x− y) = 1

4πε for x ∈ ∂Bε we estimate∣∣∣∣∫
∂Bε

G(x− y)∂nu(x)dγ(x)
∣∣∣∣ ≤ 1

4πε
sup
x∈Bε

|∂nu(x)| ·
∣∣∣∣∫
∂Bε

dγ(x)
∣∣∣∣

= ε sup
x∈Bε

|∂nu(x)| .
(2.11)
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This tends to zero with ε→ 0. The second integral on ∂Bε has the value∫
∂Bε

∂nxG(x− y)u(x)dγ(x) =

u(y)
∫
∂Bε

∂nxG(x− y)dγ(x) +
∫
∂Bε

∂nxG(x− y)(u(x)− u(y))dγ(x). (2.12)

Using nx = (x− y)/‖x− y‖2 (since x ∈ ∂Bε(y)), we compute

∂nxG(x− y) = nx · ∇G(x− y) =
x− y
‖x− y‖2

· −(x− y)
4π‖x− y‖32

= − 1
4π‖x− y‖22

. (2.13)

and estimate∣∣∣∣∫
∂Bε

∂nxG(x− y)(u(x)− u(y))dγ(x)
∣∣∣∣ ≤ sup

x∈Bε
|u(x)− u(y)| ·

∣∣∣∣∫
∂Bε

1
4π‖x− y‖22

∣∣∣∣
= sup

x∈Bε
|u(x)− u(y)| ,

(2.14)

which tends to zero since u is harmonic and thus continuous, and

u(y)
∫
∂Bε

∂nxG(x− y)dγ(x) = u(y) · −1
4πε2

∫
∂Bε

dγ(x)

= −u(y).
(2.15)

2. y ∈ Γ : We integrate over Ω\Bε with Bε being a ball with center y and radius ε, again. Like
before, we split this integral into two parts on Γ\Bε and on ∂Bε ∩ Ω:∫

Γ\Bε
G(x− y)∂nxu(x)−Γ dγ(x)−

∫
Γ\Bε

∂nxG(x− y)u(x)−Γ dγ(x)

−
∫
∂Bε∩Ω

G(x− y)∂nxu(x)dγ(x) +
∫
∂Bε∩Ω

∂nxG(x− y)u(x)dγ(x) = 0. (2.16)

The third term can be treated similar to the first case and tends to zero for ε → 0. The first
and second term converge to the integrals over Γ, since the singularity at y is integrable due to
Remark 4. This is obvious for the first term, as |G(x − y)∂nxu(x)−Γ | ≤ C‖x − y‖−1

2 for x ∈ Γ
where we exploit that ∂nxu

−
Γ is continuous and thus bounded. We treat the second term making

use of
∂nxG(x− y) = nx ·

x− y
‖x− y‖32

. (2.17)

Due to the demanded regularity of Γ, there exists a neighborhood of y where x− y and nx are
never parallel, thus ‖nx · (x−y)‖2 < C1‖x−y‖1+µ

2 , µ > 0 [26], and |∂nxG(x−y)| < C1‖x−y‖2−µ2

hold locally. Then |∂nxG(x− y)u(x)−Γ | < C2‖x− y‖2−µ2 holds on Γ as u−Γ is continuous in Γ and
∂nG(x− y) is continuous in B{

ε .
Treating the fourth term as in the first case and directly using (2.13), yields∫

∂Bε∩Ω
∂nxG(x− y)u(x)dγ(x) =

u(y)
∫
∂Bε∩Ω

−1
4πε2

dγ(x) +
∫
∂Bε∩Ω

−1
4πε2

(u(x)− u(y))dγ(x). (2.18)

The second part converges to zero, while we compute for the first term:

u(y)
∫
∂Bε

−1
4πε2

dγ(x) = −u(y) · 1
4πε2

|∂Bε ∩ Ω|. (2.19)

Since for small ε, Bε is asymptotically cut into two halves of the same size by Γ, |∂Bε ∩ Ω|
converges to 4πε2 and thus this term takes the limit −u(y)/2.
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Reconsidering the Representation Theorem, we will extend the previous lemma to unbounded
domains (under certain assumptions).

Corollary 1. Lemma 2 also holds for a function that is harmonic in Ω̄{ with −u+
Γ instead of

u−Γ on the left hand side and u+
Γ instead of u−Γ on the right hand side if u fulfills the outgoing

radiation condition (2.4) and Ω is bounded.

Proof. We choose a ball BR with radius R around y large enough so that Ω̄ ∪ {y} ( BR. Using
Lemma 2 in BR\Ω̄ gives us

−
∫
∂(BR\Ω̄)

G(x− y)(∂nu−∂(BR\Ω̄)
)(x)dγ(x) +

∫
∂(BR\Ω̄)

∂nxG(x− y)u(x)−
∂(BR\Ω̄)

dγ(x) =

+
∫

Γ
G(x− y)(∂nu)+

Γ (x)dγ(x)−
∫

Γ
∂nxG(x− y)u+

Γ (x)dγ(x)

−
∫
∂BR

G(x− y)(∂nu)(x)dγ(x) +
∫
∂BR

∂nxG(x− y)u(x)dγ(x), (2.20)

since u−
∂(BR\Ω̄)

(x) = u+
Γ (x) and nx,Γ = −nx,∂(BR\Ω) for x ∈ Γ.

We show that the integrals on BR converge to zero for R→∞:∣∣∣∣∫
∂BR

G(x− y)(∂nu)(x)dγ(x)
∣∣∣∣ ≤ sup

x∈BR\Ω̄
|∂nu(x)| ·

∣∣∣∣∫
∂BR

1
4π‖x− y‖

dγ(x)
∣∣∣∣

≤ sup
x∈BR\Ω̄

|∂nu(x)| · 1
4πR

∫
∂BR

dγ(x)

= sup
x∈BR\Ω̄

|∂nu(x)| ·R

R→∞−−−−→ 0

, (2.21)

since G(x− y) = 1/4πR for x ∈ BR and u fulfills (2.4).∣∣∣∣∫
∂BR

∂nxG(x− y)u(x)dγ(x)
∣∣∣∣ ≤ ∣∣∣∣∫

∂BR

nx · x
4π‖x− y‖

u(x)dγ(x)
∣∣∣∣

≤ sup
x∈BR\Ω̄

|u(x)| · sup
x∈BR\Ω̄

‖x‖
4πR3

·
∣∣∣∣∫
∂BR

dγ(x)
∣∣∣∣

= sup
x∈BR\Ω̄

|u(x)| · supx∈BR\Ω̄
‖x‖
R

R→∞−−−−→ 0

, (2.22)

since ‖x‖/R r→∞→ 1 for x ∈ BR and u fulfills (2.4).

The proof of the Representation Theorem now consists in simply merging our preliminaries:

Proof of Theorem 2 (Representation Theorem). Using Lemma 2 in Ω, Corollary 1 in Ω̄{, and
taking the sum of both expressions gives us

−
∫

Γ
G(x− y)(∂nu)−Γ (x)dγ(x) +

∫
Γ
∂nxG(x− y)u−Γ (x)dγ(x)

+
∫

Γ
G(x− y)(∂nu)+

Γ (x)dγ(x)−
∫

Γ
∂nxG(x− y)u+

Γ (x)dγ(x)

= −
∫

Γ
G(x− y)[∂nu]Γ(x)dγ(x) +

∫
Γ
∂nxG(x− y)[u]Γ(x)dγ(x)

=

{
−u(y) if y ∈ Ω

−(u−Γ (y) + u+
Γ (y))/2 if y ∈ Γ.

(2.23)
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Having the topology of the BE head model in view (see Figure 1.2), we will extend Theorem 2
to a nested domain topology. We will compute the case of three domains here; the case of more
domains follows by iteration if needed.

Corollary 2. Let Ω1, Ω2 and Ω3 be disjoint open sets such that Ω̄1 ∪ Ω̄2 ∪ Ω3 = R3, separated
by regular boundaries ∂Ω1 ∩ ∂Ω2 = S1, ∂Ω2 ∩ ∂Ω3 = S2 and ∂Ω1 ∩ ∂Ω3 = ∅.
Let u : (Ω1 ∪ Ω2 ∪ Ω3)→ R be harmonic. Then Theorem 2 holds with Γ = S1 ∪ S2.

Proof. We apply Lemma 2 in Ω1 and Ω2 (where we keep in mind that the orientation of normals
on S1 is by definition outwards pointing when integrating on S1, but pointing from Ω2 to Ω1,
when integrating on S1 as part of ∂Ω2) and Corollary 1 in Ω3.
We have∫

∂Ω1

G(x− y)(∂nu)−∂Ω1
(x)dγ(x) +

∫
∂Ω1

∂nxG(x− y)u−∂Ω1
(x)dγ(x) =∫

S1

G(x− y)(∂nu)−S1
(x)dγ(x) +

∫
S1

∂nxG(x− y)u−S1
(x)dγ(x) =
−u(y) if y ∈ Ω1,

−u−Γ (y)/2 if y ∈ S1,

0 otherwise
(2.24)

∫
∂Ω2

G(x− y)(∂nu)−∂Ω2
(x)dγ(x) +

∫
∂Ω2

∂nxG(x− y)u−∂Ω2
(x)dγ(x) =

−
∫
S1

G(x− y)(∂nu)+
S1

(x)dγ(x)−
∫
S1

∂nxG(x− y)u+
S1

(x)dγ(x)

+
∫
S2

G(x− y)(∂nu)−S2
(x)dγ(x) +

∫
S2

∂nxG(x− y)u−S2
(x)dγ(x) =
−u(y) if y ∈ Ω2,

−u−Γ (y)/2 if y ∈ S2,

−u+
Γ (y)/2 if y ∈ S1,

0 otherwise

(2.25)

∫
∂Ω3

G(x− y)(∂nu)−∂Ω3
(x)dγ(x) +

∫
∂Ω3

∂nxG(x− y)u−∂Ω3
(x)dγ(x) =

−
∫
S2

G(x− y)(∂nu)+
S2

(x)dγ(x)−
∫
S2

∂nxG(x− y)u+
S2

(x)dγ(x) =
−u(y) if y ∈ Ω3,

−u+
Γ (y)/2 if y ∈ S2,

0 otherwise
(2.26)

Summing up the three contributions finishes the proof.

Instead of representing a known harmonic function by its jump at a surface Γ as in Theorem 2,
we are also able to obtain a (harmonic) function u defined on R3\Γ out of a continuous function
on the particular surface:
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Definition 6. The following integral expressions are called single- and double-layer potential
with density q and ϕ, respectively:

u(y) =
∫

Γ
G(x− y)q(x)dγ(x), with q ∈ C0(Γ), (2.27)

u(y) =
∫

Γ
∂nxG(x− y)ϕ(x)dγ(x), with ϕ ∈ C0(Γ). (2.28)

The relation between the densities q and ϕ and the jump terms [∂nu]Γ and[u]Γ will be resolved
in Corollary 3 and 4.

2.2 Properties of Single and Double Layer Potential

To gain the symmetric integral representation (see Section 2.3) we aim to express the adjustment
function u as the sum of a single- and a double-layer potential. In this section we will present
some continuity properties of these potentials that will be needed for the derivation of the integral
representation, and show that the representation in terms of a single- and double-layer potential
is unique. Additionally, we will introduce a set of operators corresponding to the single- and
double-layer potential and their derivatives, respectively.

Theorem 3. The single-layer potential (2.27) is continuous with respect to y in R3 (especially
when crossing the surface Γ). Its normal derivatives have discontinuities when crossing Γ. Their
limit values on both sides of Γ are

∂nu
−
Γ (y) =

q(y)
2

+
∫

Γ
∂nyG(x− y)q(x)dγ(x), (2.29)

∂nu
+
Γ (y) = −q(y)

2
+
∫

Γ
∂nyG(x− y)q(x)dγ(x), for y ∈ Γ. (2.30)

The double-layer potential (2.28) has a discontinuity when crossing Γ. If ϕ ∈ C0(Γ), the
corresponding limit values on both sides of Γ are

u−Γ (y) = −ϕ(y)
2

+
∫

Γ
∂nxG(x− y)ϕ(x)dγ(x), (2.31)

u+
Γ (y) =

ϕ(y)
2

+
∫

Γ
∂nxG(x− y)ϕ(x)dγ(x), for y ∈ Γ. (2.32)

The normal derivative of a double-layer potential is continuous when crossing Γ. It is given by
an improper integral and can be formally written as

∂nu(y) =
∫

Γ
∂2
nx,nyG(x− y)ϕ(x)dγ(x), for y ∈ Γ. (2.33)

Proof. cf. [26] or [47], Theorem 3.1.2.

Definition 7. Four integral operators (S, D, D∗, N ) on the surface Γ have appeared so far.
They are:

Su =
∫

Γ
G(x− y)u(x)dγ(x),

Du =
∫

Γ
∂nxG(x− y)u(x)dγ(x),

D∗u =
∫

Γ
∂nyG(x− y)u(x)dγ(x),

Nu =
∫

Γ
∂2
nx,nyG(x− y)u(x)dγ(x).

(2.34)
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Remark 5. The operator D∗ is the adjoint of the operator D with respect to the L2(Γ) scalar
product (defined by 〈f, g〉 :=

∫
Γ f(x)g(x)dγ(x), f, g ∈ L2(Γ)).

Proof. cf. [47], p. 116, 119.

Corollary 3. Any potential u that is the sum of a single-layer potential with density q and a
double-layer potential with density ϕ, i.e., u = Sq +Dϕ is such that q = [∂nu]Γ and ϕ = −[u]Γ.

Proof. Since the single-layer potential and the normal derivative of the double-layer potential are
continuous across Γ, the calculation of the jump terms reduces to subtracting (2.30) and (2.29)
and (2.32) and (2.31), respectively.

We will proof the uniqueness of this representation without exploiting the jump properties of
single- and double-layer potential as a consequence of Theorem 4 in Corollary 4. Therefore, we
will make use of the Calderon projectors:

Theorem 4. Let us denote by H the operator

H =
(
−D S
−N D∗

)
(2.35)

The associated operators

Cint =
I
2

+H, Cext =
I
2
−H (2.36)

are projectors and complementary, i.e., they satisfy

C2
ext = Cext, C2

int = Cint, Cint + Cext = I. (2.37)

They are called Calderon projectors.

Remark 6. The identities (2.37) are equivalent to the set of relations

H2 =
I
4

(2.38)

or more explicitly

DS = SD∗, ND = D∗N , (2.39)

D2 − SN =
I
4
, D∗2 −NS =

I
4
. (2.40)

Proof. cf. [47], Theorem 3.1.3.

Proof of Theorem 4. The proof follows [47], Proof of Theorem 3.1.3. Let us consider a potential
of the form

u = Sq −Dϕ, q, ϕ ∈ C0(Γ). (2.41)

We identify ϕ = [u]Γ and q = [∂nu]Γ corresponding to Theorem 2. We conclude the identities

u+
Γ = −

(
I
2

+D
)
ϕ+ Sq, (2.42)

∂nu
+
Γ = −Nϕ+

(
−I

2
+D∗

)
q. (2.43)

The first identity follows directly from (2.6) when exploiting the definition of [u]Γ = ϕ; the second
is gained when taking the normal derivative on both sides of (2.42) and interchanging integration
and differentiation.
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(2.42) and (2.43) can be shortened using the definition of H and Cext, respectively:[
−u+

Γ

−∂nu+
Γ

]
=
(
I
2
−H

)
·
[
ϕ
q

]
= Cext ·

[
ϕ
q

]
. (2.44)

We define a potential v given by
v = −S∂nu+

Γ +Du+
Γ . (2.45)

Theorem 2 shows that v vanishes in Ω and takes the value u in Ω̄{. Thus, the exterior limits of v
at the surface Γ are u+

Γ and ∂nu
+
Γ .

Applying Cext on ([v]Γ, [∂nv]Γ) = (−u+
Γ ,−∂nu

+
Γ ) yields (u+

Γ , ∂nu
+
Γ ) (replace ϕ and q by u+

Γ and
∂nu

+
Γ in (2.42) and (2.43), respectively). Therefore, Cext is a projector.

With Cext being a projector, Cint is a projector, too, as Cint = I −Cext. Cint projects to the kernel
of Cext and vice versa.

Corollary 4. The integral representation u = Sq −Dϕ is unique.

Proof. We note that the Calderon projectors Cint and Cext project the jumps of u and its normal
derivative at the boundary Γ, (ϕ, q) = ([u]Γ, [∂nu]Γ), to the unique interior and exterior limits of
u and ∂nu. The Representation Theorem shows that these limits already define u in Ω and Ω{,
respectively. We conclude that the integral representation u = Sq −Dϕ is unique.

Finally, we indicate some regularity properties of the integral operators in Definition 7, which
will be of use in Subsection 2.4.2.

Remark 7. The four previously defined integral operators have certain properties with regard to
the regularity of their arguments:

• the operator S increases the regularity of its argument by one,

• the operators D and D∗ do not change it,

• the operator N decreases the regularity of its argument by one.

Proof. cf. [47] Theorem 3.3.1, 3.3.2.

We further introduce restrictions of these operators:

Notation 2. The operator Si,j is a restriction of the operator S. It acts on a function u : Sj → R
and yields a function Si,ju : Si → R:

Si,j : (u : Sj → R)→ (ũ : Si → R),

ũ := Su|Si =
∫
Sj

G(x− y)u(x)dγ(x)

∣∣∣∣∣
Si

.
(2.46)

In the same manner we define Di,j, D∗i,j and Ni,j.
We will further use the notation S∂Ωi := Si,i + Si−1,i −Si,i−1 −Si−1,i−1 and analogous for D, D∗
and N .

2.3 Symmetric Integral Representation

We will now derive the symmetric integral representation for the EEG forward problem (1.19)
closely following the ideas of [36], and present the resulting matrix equations in a clearly arranged
way. The source singularity will be treated in the framework of Newtonian potentials (in this
case also called Coulomb potentials), which are, e.g., briefly described in [27].
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As already mentioned, the idea is to eliminate the singularity at the source position using the
fundamental solution of the Poisson equation. We compute a homogeneous solution v, which
takes the source term f into account, but does not respect the boundary conditions necessarily.
Then, we search for a harmonic function u so that V = u+v fulfills both the boundary conditions
and solves the Poisson equation σi∆V = f in every Ωi.
There are different possibilities to express the harmonic function u. Besides the possibility to gain
the integral representation for the single- or double-layer approach, we will choose a third way
exploiting both single- and double-layer potentials. For reasons of completeness, we will shortly
deduce the double-layer approach afterwards, since we want to compare the two approaches
regarding their accuracy later in this chapter.

2.3.1 Homogeneous Solution

To obtain the homogeneous solution of (1.19), we decompose the source term f into its
contributions from each of the Ωi, f =

∑N
i=1 fΩi with fΩi = f · 1Ωi and 1Ωi being the indicator

function of Ωi, i = 1, ..., N . By definition there are no sources in ΩN+1 and we assume that there
are also no sources directly on any of the boundaries Si = ∂Ωi ∩ ∂Ωi+1 (see Remark 3).
Since G is a fundamental solution for the Poisson problem (see Remark 2), we can calculate
the homogeneous medium solution for each partial source term fΩi using convolution, vΩi(x) =
−fΩi ∗G(x). Considering fΩi ≡ 0 in Ω{

i , the vΩi are obviously harmonic in Ω{
i , i = 1, ..., N .

Notation 3. We will use the abbreviation [. . .]i = [. . .]Si in the following. We will further use
the abbreviation [. . .]∂Ωi = [. . .]i · 1Si − [. . .]i−1 · 1Si−1 . If internal and external limit at a surface
Si coincide for a function f , we use the notation fSi for the joint limit. Thus, fSi : Si → R.

2.3.2 Symmetric Approach

We consider in each Ω1, . . . ,ΩN the function

uΩi =

{
V − vΩi/σi, in Ωi,

−vΩi/σi, in R3\Ω̄i.
(2.47)

Obviously, each uΩi is harmonic in R3\∂Ωi, since an application of the Laplace operator ∆ to V
and v yields the particular source distribution fΩi , which is non-zero only in Ωi and equal for V
and v. Considering the orientations of normals, the jumps of uΩi across Si satisfy the relations

[uΩi ]i = VSi , [uΩi ]i−1 = −VSi−1 , (2.48)

and the jumps of their derivatives satisfy

[∂nuΩi ]i = (∂nV )−Si , [∂nuΩi ]i−1 = − (∂nV )+
Si−1

. (2.49)

We define pSi = σi[∂nuΩi ]i = σi(∂nV )−Si . Since [σ∂nV ] = 0, we have pSi = σi(∂nV )−Si =
σi+1(∂nV )+

Si
at the interface Si.

uΩi is harmonic in R3\∂Ωi due to its definition and satisfies (2.4). Applying Theorem 2 yields
the internal limit of uΩi on Si:

(uΩi)
−
Si

=
[uΩi ]∂Ωi

2
−D∂Ωi [uΩi ]∂Ωi + S∂Ωi [∂nuΩi ]∂Ωi . (2.50)

We split up the jump terms across ∂Ωi = Si−1 ∪ Si into their contributions on each surface. We
further take into account identities (2.48) and obtain

(V − vΩi/σi)
−
Si

= (uΩi)
−
Si

=
VSi
2

+Di,i−1VSi−1−

Di,iVSi − σ
−1
i Si,i−1pSi−1 + σ−1

i Si,ipSi . (2.51)
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Similarly, we find the external limit

(V − vΩi+1/σi+1)+
Si

= (uΩi+1)+
Si

=
VSi
2

+Di,iVSi−

Di,i+1VSi+1 − σ
−1
i+1Si,ipSi + σ−1

i+1Si,i+1pSi+1 . (2.52)

We subtract (2.51) and (2.52); under the assumption that V is continuous across Si (see (1.19))
and exploiting that vΩi+1 and vΩi are continuous across Si, too, we gain

σ−1
i+1(vΩi+1)Si − σ

−1
i (vΩi)Si =

Di,i−1VSi−1 − 2Di,iVSi +Di,i+1VSi+1 − σ
−1
i Si,i+1VSi+1 − σ

−1
i Si,i−1pSi−1

+ (σ−1
i + σ−1

i−1)Si,ipSi − σ
−1
i+1Si,i+1pSi+1 , (2.53)

for i = 1, . . . , N . As internal and external limit of v do not differ, we do not explicitly distinguish
between the inner and outer limit values on the left hand side.
We evaluate the quantities (σi∂nuΩi)

−
Si

= (p− ∂nvΩi)
−
Si

and (σi+1∂nuΩi+1)+
Si

= (p− ∂nvΩi+1)+
Si

in the same manner, making use of the Representation Theorem and subtracting the resulting
expressions, and obtain

(∂nvΩi+1)Si − (∂nvΩi)Si =
σiNi,i−1VSi−1 − (σi + σi+1)Ni,iVSi + σi+1Ni,i+1VSi+1−

D∗i,i−1pSi−1 + 2D∗i,ipSi −D∗i,i+1pSi+1 , (2.54)

for i = 1, . . . , N .
We exploit these quantities for each surface Si, i = 1, . . . , N . After introducing the abbreviations

Ai :=
[
σi,i+1Nii −2D∗ii
−2Dii σ−1

1,2S11

]
, Bi,j :=

[
−σjNij D∗ij
Dij −σ−1

j Sij

]
, B∗j,i :=

[
−σjNji D∗ji
Dji −σ−1

j Sji

]
,

zi :=
[
VSi
pSi

]
, di :=

[
(∂nvΩi)Si − (∂nvΩi+1)Si

σ−1
i+1(vΩi+1)Si − σ

−1
i (vΩi)Si

]
,

σi,j for the sums σi + σj and σ−1
i,j = σ−1

i + σ−1
j , where Bi,j = B∗j,i, this yields the equation system


B∗1,0 A1 B1,2

B∗2,1 A2 B2,3

. . . . . . . . .
B∗N−1,N−2 AN−1 BN−1,N

B∗N,N−1 AN BN,N+1


T

·



z0

z1

z2
...

zN−1

zN
zN+1


z

=


d1

d2
...

dN−1

dN


d

(2.55)

We notice that terms corresponding to the non-existing surfaces S0 and SN+1 appear and have
to be set to zero. pSN must be set to zero, too, since σN+1 = 0 implies pSN = 0. Thus, the
vanishing conductivity is taken into account by deleting the last line and column of the matrix
(and the last entries of z and d). The equation system is then given by

A1 B1,2 0 . . . 0

B∗2,1 A2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . AN−1 (BN−1,N ):,1

0 . . . 0 (B∗N,N−1)1,: (AN )1,1


T̄

·


z1

z2
...

zN−1

(zN )1


z̄

=


d1

d2
...

dN−1

(dN )1


d̄

, (2.56)
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where the truncated matrices/vectors are given by

(AN )1,1 = σNNN,N , (BN−1,N ):,1 =
[
−σNNN−1,N

DN−1,N

]
, (B∗N,N−1)1,: =

[
−σNNN,N−1 D∗N−N−1

]
,

(zN )1 = VSN , (dN )1 = (∂nvΩN )SN .

The resulting matrix T̄ is tridiagonal, i.e., each surface only interacts with its neighbors, at the
cost of introducing two sets of unknowns, VSi and pSi . Therefore, the matrix is larger than those
for the double-layer approach, which will be derived later on. However, the resulting matrix
after the discretization of the equation system will additionally be symmetric (see Subsection
2.4.2). The resulting tridiagonal and symmetric structure (in contrast to the fully populated,
unsymmetric matrix of the double-layer approach) leads to a comparable number of elements
that actually has to be stored and calculated.

2.4 Discretization and Implementation of the Symmetric BEM

The symmetric BEM is implemented in the open-source software package OpenMEEG [1, 23, 36].
The description of discretization and implementation will follow these papers. To solve equation
(2.56) we turn it into a linear equation system. The first step is to divide the surfaces into
small regions, the so-called elements. Next, basis functions are defined, being non-zero only on
few elements. The potential V is then approximated by a (finite) linear combination of basis
functions. Finally, the continuous equation is integrated over a set of test functions, yielding a
linear equation system.

2.4.1 Discretization of the Boundaries

Surfaces are commonly represented by triangular meshes. As we lose regularity of the surfaces
when discretizing, we have to expand the results derived previously in this chapter (especially
Theorem 2/Corollary 2) to the concept of weak regularity. Illustratively, the concept of weak
regularity states that the set of singular points, i.e., the discontinuities of the surface, is of zero
measure. It is directly clear from this definition that the validity of the previous results is not
affected as long as we do not evaluate functions explicitly in the singular points (since the edges
of the surface triangles are of measure zero). Nevertheless, formulas to evaluate function values
in the singular points exist [41]. We will avoid this by using a Galerkin method for the symmetric
BEM, which does not evaluate functions pointwise (in contrast to, e.g., the collocation method,
which will be used with the double-layer approach).

2.4.2 Discretization of the Integral Equation

Our next step in order to solve the forward problem is to discretize the continuous integral
equations (2.56), and gain a set of discrete equations which can then be solved for the potential
V .
First, we will discretize the unknowns, using a finite number of basis functions. Since we have two
unknowns, the potential V and its derivative p, involved, we will choose the basis functions in a
way that represents their relation. Two commonly used sets of basis functions are the spaces P0
and P1, whose elements have the following properties (when defined on a triangulated surface):

Remark 8. A function ψi ∈ P0 is 1 on triangle Ti and 0 elsewhere:

ψi(x) =
{

1 if x ∈ Ti,
0 otherwise,

(2.57)
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A function φi ∈ P1 is 1 on vertex i, 0 on all other vertices and linear on each triangle:

φi(x) =

{
det(x1(Tj),x2(Tj),x)

det(x1(Tj),x2(Tj),x3(Tj))
if x ∈ Tj , Tj ∈ Ti,

0, otherwise,
(2.58)

where we introduced Ti := {Tk|i is vertex of Tk}, and xl(Tj), l = 1, 2, 3, are the vertices of
triangle Tj so that x3(Tj) corresponds to vertex i. The functions φi ∈ P1 are also called piecewise
linear Lagrange functions (hat functions).
In the following a superscript (l) will denote the surface Sl on which a function ψi or φi lives.

V will be approximated using P1 basis functions while P0 basis functions will be used for
approximating p. This is a reasonably choice, since p is the normal derivative of V and P0
functions are the restriction of the derivative of a P1 function to one triangle. This gives us

VSk =
∑
i

x
(k)
i φ

(k)
i , pSk =

∑
i

y
(k)
i ψ

(k)
i . (2.59)

Next, we will integrate each of the integral equations over test functions ϕ̃j . The easiest choice
for ϕ̃j would be Dirac functions δj , which would lead to the collocation method, giving us a
pointwise equality in few chosen points; usually the mass centers of the triangles (collocation with
piecewise constant interpolation) or the triangle vertices (collocation with linear interpolation).
With a Galerkin method, the pointwise equality is replaced by an equality in the mean sense.
Therefore, we choose P0 and P1 functions as test functions.
In order to balance the approximation errors for the potential and its derivative, we keep the
regularity properties of the integral operators exposed in Remark 7 in mind, since regularity is
closely related to the approximation order [67]. We reconsider that (2.53) concerns the potential
(a continuous function) and (2.54) the flow, i.e., the normal derivative of the potential. Thus, we
multiply (2.53) by P0 test functions ψi and (2.54) by P1 test functions φi.
We remind the definition of the L2-scalar product 〈., .〉 on a surface S:

Notation 4.

〈u, v〉 : L2(S)× L2(S)→ R,

〈u, v〉 :=
∫
S
u(x) · v(x)dx

(2.60)

and get the equations

〈σ−1
k+1vΩk+1

− σ−1
k vΩk , ψ

(k)
i 〉 =∑

j

x
(k−1)
j 〈Dk,k−1φ

(k−1)
j , ψ

(k)
i 〉+

∑
j

x
(k+1)
j 〈Dk,k+1φ

(k+1)
j , ψ

(k)
i 〉

+
(
σ−1
k + σ−1

k+1

)∑
j

y
(k)
j 〈Sk,kψ

(k)
j , ψ

(k)
i 〉 − σ

−1
k

∑
j

y
(k−1)
j 〈Sk,k−1ψ

(k−1)
j , ψ

(k)
i 〉

− σ−1
k+1

∑
j

y
(k+1)
j 〈Sk,k+1ψ

(k+1)
j , ψ

(k)
i 〉 − 2

∑
j

x
(k)
j 〈Dk,kφ

(k)
j , ψ

(k)
i 〉 (2.61)

and

〈∂nvΩk+1
− ∂nvΩk , φ

(k)
i 〉 =

σk
∑
j

x
(k−1)
j 〈Nk,k−1φ

(k−1)
j , φ

(k)
i 〉+ σk+1

∑
j

x
(k+1)
j 〈Nk,k+1φ

(k+1)
j , φ

(k)
i 〉

− (σk + σk+1)
∑
j

x
(k)
j 〈Nk,kφ

(k)
j , φ

(k)
i 〉 −

∑
y

(k−1)
j 〈D∗k,k−1ψ

(k−1)
j , φ

(k)
i 〉

−
∑
j

y
(k+1)
j 〈D∗k,k+1ψ

(k+1)
j , φ

(k)
i 〉,+2

∑
j

y
(k)
j 〈D

∗
k,kψ

(k)
j , φ

(k)
i 〉, (2.62)
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both for all k = 1, . . . , N .
We note that all scalar products on the right hand sides are of the same approximation order,
as result of the operator properties. In each case the scalar product of a function of the order
of a P1 function with a function of the order of a P0 function is executed. Furthermore, the
approximation orders of the left hand sides of the above equations are comparable.
If we express this set of equations in (already truncated) matrix form, cf. (2.56), we have

A1 B1,2 0 . . . 0

B∗2,1 A2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . B∗N−2,N−1 AN−1 (BN−1,N ):,1

0 . . . 0 (B∗N,N−1)1,: (AN )1,1


T

·


z1

z2
...

zN−1

(zN )1


z

=


d1

d2
...

dN−1

(dN )1


d

(2.63)

with

Ai =
[
(σi + σi+1)Ni,i −2D∗i,i
−2Di,i (σ−1

i + σ−1
i+1)Si,i

]
, Bi,j =

[
−σjNi,j D∗i,j
Di,j −σ−1

j Si,j

]
,

B∗j,i =
[
−σjNj,i D∗j,i
Dj,i −σ−1

j Sj,i

]
,

dk = [bk, ck]T , (bk)i = 〈∂nvΩk − ∂nvΩk+1
, φ

(k)
i 〉, (ck)i = 〈σ−1

k+1vΩk+1
− σ−1

k vΩk , ψ
(k)
i 〉,

zk = [xk, yk]T , (xk)i = x
(k)
i , (yk)i = y

(k)
i ,

and

(Nk,l)(i,j) = 〈Nk,lφ
(l)
j , φ

(k)
i 〉, (Skl)(i,j) = 〈Sk,lψ

(l)
j , ψ

(k)
i 〉,

(Dk,l)(i,j) = (D∗l,k)(j,i) = 〈Dk,lφ
(l)
j , ψ

(k)
i 〉.

With Dk,l = (D∗l,k)
T , we recognize Bi,j = B∗j,i. Thus, the matrix T is now tridiagonal and

symmetric. In order to set the matrix T up, both the integral operators and the scalar products
(each corresponding to the calculation of a surface integral) have to be evaluated. The execution
of Dk,l and Sk,l allows for an analytical solution for both kinds of basis functions [14, 77], while
the integrals resulting from the scalar products have to be computed numerically [70, 45]. The
Nk,l can be calculated from the intermediate results of calculating Sk,l by a formula given in [47]:

〈Nk,liφ(l)
r ,

jφ(k)
s 〉 = −(qr × ni)(qs × nj)〈Sk,lψ

(l)
i , ψ

(k)
j 〉. (2.64)

With an adequate choice of qr and αr, iφ
(l)
r (x) = (qr ·x+αr)ψ

(l)
i (x) corresponds to the restriction

of φ(l)
r to triangle Ti. One possible choice is αr = 1−∇φ(l)

r ·x3(Ti) (with x3(Ti) being the position
of node r, cf. Remark 8) and qr = ∇φ(l)

r . The same formula can, of course, be applied to jφ
(k)
s .

Summing up the contributions from the triangles on which φ
(l)
r and φ

(k)
s are supported yields

(Nk,l)(s,r).

2.4.3 Deflation

The potential V is only determined up to a constant until now, since we did not exploit the
condition

∫
Ω vdx = 0 or one of the possible alternatives given in relation with Theorem 1. Thus, T

is singular and the matrix equation (2.63) admits no unique solution, yet. Imposing an additional
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condition to remove this indetermination, and to gain an equation system with a unique solution
is called deflation [18].
We will additionally claim ∫

SN

u−SN (x)dγ(x) = 〈u−SN , 1〉 = 0, (2.65)

i.e., we establish a zero mean on the outermost surface. This condition is equivalent to
∑

i x
(N)
i = 0

in the discrete scenario (2.63). y(N), the result for ∂nu−SN , automatically fulfills this assumption
as a consequence of Stokes’ theorem and the fact that u is a harmonic function.
To achieve our demand we follow the ideas of [18]. We substitute NN,N by NN,N + ω · eeT ,
eT = (1, 1, . . . , 1) in the bottom right block of T , where we choose ω = (NN,N )(1,1) /MN with
MN being the number of unknowns, i.e., the number of vertices on the outermost surface. We
can avoid a costly calculation for the optimal ω, since the choice of ω is not crucial [55]. For a
regular mesh with elements of similar size and shape, the elements (NN,N )(i,i) are almost equal
and therefore we can simply choose the first element as an approximation. The resulting matrix
is regular and can be inverted. Therefore, the matrix is factorized using the Bunch-Kaufman
diagonal pivoting method [2] and subsequently inverted.

2.4.4 Adaptive Integration

Especially for sources close to a surface, setting up the elements of the right hand side vector
in (2.63), bk and ck, is crucial as the numerical evaluation of the scalar products may become
inaccurate. To avoid this problem, an adaptive integration scheme is implemented in OpenMEEG
[23]. During the integration, the triangles are subdivided until the required precision is achieved.
We will shortly deal with the influence of the adaptive integration in Section 2.6.

2.5 Double-Layer BEM

The boundary integral equation underlying the double-layer approach was described in [22, 3].
However, it can easily be derived in the theoretical framework we already introduced by choosing
the function ud = σiV − vd in every Ωi, vd =

∑N
i=1 vΩi and vΩi as in Subsection 2.3.1, as starting

point. Implying the boundary conditions of the forward problem (1.19) and the jump properties
of a double-layer potential (see Section 2.2), leads to the double-layer representation [36]

2
σj + σj+1

vd = V |Sj −
N∑
i=1

2 · σi+1 − σi
σj + σj+1

DjiV |Si on each Sj . (2.66)

If we assume that all sources lie in the same compartment (usually Ω1), we can rewrite vd = σ1V
∞,

where V∞ is the potential in an infinite homogeneous medium with the conductivity σ1. In the
case of a three- or four-layer head model, this is no restriction of generality.
(2.66) is discretized using collocation with linear interpolation (also called vertex method),
applying the piecewise linear basis functions defined in (2.58) and Dirac functions δ(k)

i that are
defined in the vertices i [89]. After approximating V by VSl =

∑
j x

(l)
j φ

(l)
j on each surface and

integrating against δ(k)
i this yields
I1 +A1,1 A1,2 . . . A1,N

A2,1 I2 +A2,2
. . . A2,N

...
. . . . . .

...
AN,1 AN,2 . . . IN +AN,N


I+A

·


x1

x2
...
xN


x

=


b1
b2
...
bN


b

, (2.67)
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where
(Ak,l)(i,j) = −2 · σl+1 − σl

σk + σk+1
(Dk,l)(i,j) = −2 · σl+1 − σl

σk + σk+1
〈Dk,lφ

(l)
j , δ

(k)
i 〉,

(Ik)(i,j) = δi,j , (bk)i =
2σ1

σk + σk+1
〈V∞, δ(k)

i 〉,

(xk)i = x
(k)
i .

We note that the scalar products with the delta distributions lead to an evaluation of the
particular expression in singular points and special care is needed accordingly. We will not
discuss this in detail here and only indicate that solutions to this problem exist [41].
The matrix equation could be solved directly by applying matrix inversion after a proper deflation.
However, the low conductivity of the skull in relation to brain and skin leads to an ill condition
of the matrix equation. To avoid arising numerical errors, the isolated problem or isolated skull
approach (ISA) was proposed [31, 41]. We decompose the potential vector xk = ωk + ωisok with
ωiso2 = . . . = ωisoN = 0 and ωiso1 being the solution of the integral equation for the isolated brain
compartment, i.e., we have to solve (2.66) with N = 1:

ωiso1 = H−1biso1 with H := I + 2D1,1, b
iso
1 =

σ1 + σ2

σ1
b1. (2.68)

The multi layer integral equation for the unknown ω can then be solved numerically more
accurately [31, 89]. This results in the numerically stable formula for the computation of the
potential vector x (in the three compartment case):

x = Cb (2.69)

with

C :=
σ2

σ1
(I +A)−1

I 0 0
0 I 0
0 0 I − 2H−1

+
σ1 + σ2

σ1

0 0 0
0 0 0
0 0 H−1

 . (2.70)

Again, this matrix is singular due to the fact that V is only known up to a constant and needs
to be deflated. This is done similar to Subsection 2.4.3 by replacing H with H + eeT /MN in
both terms on the right hand side. The inversion of the matrix is executed on the basis of a
LU-decomposition.

2.6 Experiments

We want to compare the results obtained with the symmetric BEM with the common double-layer
approach. The variety of different implementations of the double-layer BEM is huge. Some
examples are:

• double-layer approach using linear collocation: BEMCP [51], available from FieldTrip1 and
the default forward solver in SPM 2,

• double-layer approach using linear collocation and ISA: Dipoli [50], available from
FieldTrip, Helsinki BEM 3 [66], MNE 4 [66, 31], SimBio5 and ASA6 [64, 90, 89],

1http://fieldtrip.fcdonders.nl
2http://www.fil.ion.ucl.ac.uk/spm/
3http://peili.hut.fi/BEM/
4http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/MNE register/
5https://www.mrt.uni-jena.de/simbio
6http://www.ant-neuro.com/products/asa
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Figure 2.1: The 522 electrode sensor cap on the
2056 node surface mesh

Figure 2.2: The three-layer sphere model used for
the BE approaches

• double-layer approach using linear collocation, ISA and virtual mesh refinement:
CURRY 7 [20].

It was shown that the double-layer approach can be improved by means of a Galerkin instead of
a collocation approach [44]. Nevertheless, the collocation double-layer approach is applied by the
large majority of users, and we choose to compare the results of the double-layer BE approach
implemented in the SimBio-toolbox to those gained with the symmetric BEM implemented
in the OpenMEEG-toolbox. We will use a three-layer sphere model where a quasi-analytical
solution exists (see Section 1.6) and can be used as reference. The accuracy achieved by the
SimBio implementation in former comparisons was equal or slightly better compared to other
implementations of the double-layer approach [23].

2.6.1 Error Criteria

First we have to choose the discrete set of points in which we will evaluate the numerical solution,
i.e., the outcome of our BE/FE method, and the analytical solution (see Section 1.6) in order to
compute the numerical error. Due to the triangulation of the surfaces it would be conceivable
to evaluate the error function in the vertices or mass centers of the triangles either only on
surface SN or on all surfaces S1, . . . , Sn [36]. However, each choice would discriminate one of
the implementations, since the collocation method benefits from an evaluation in the collocation
points, i.e. the triangle vertices, while the galerkin method is less sensitive to the placement
of evaluation points and would thus benefit when the mass-centers are chosen. We avoid this
problem by choosing a more realistic way of comparison that does not take the geometry of the
surface triangulation into account.
We created an artificial sensor cap by distributing s = 522 electrodes uniformly on the outermost
surface SN (see Figure 2.1) where we used the approximation of point-like electrodes (see [65] for
other electrode models). The vector with the numerically calculated electrode potentials, V num,
is gained by applying a restriction matrix R to the potential at the surface nodes xN . In the
SimBio implementation it is simply searched for the mesh node closest to the sensor position
and its potential is returned as result at the sensor node, resulting in only one non-zero entry
per line in the restriction matrix R. The OpenMEEG implementation determines the triangle
which contains the sensor position, and calculates its potential with trilinear interpolation out

7http://www.neuroscan.com
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of the potential values at the triangle vertices so that up to three matrix entries per line may
be non-zero. The two ways lead to slightly different results and thus influence the error of the
two methods. However, for a growing number of mesh nodes on the outermost surface this error
converges to zero and becomes negligible in our case.
V num can now be compared to the analytical electrode potential V ana. Three error criteria are
commonly used to measure the accuracy of different solutions to the EEG forward problem:

RE(V num, V ana) :=
‖V num − V ana‖2
‖V ana‖2

, (2.71)

RDM(V num, V ana) :=
∥∥∥∥ V num

‖V num‖2
− V ana

‖V ana‖2

∥∥∥∥
2

, (2.72)

MAG(V num, V ana) :=
‖V num‖2
‖V ana‖2

(2.73)

with ‖u‖2 =
√∑s

i=1(ui)2 being the discrete l2 norm, s being the number of sensor nodes and
ui the i − th entry of vector u. The relative l2-error (RE) has the major drawback of not
differentiating between magnitude and topographic errors. This lack of information is cleared by
introducing the relative difference measure (RDM) and the magnitude error (MAG) [41]. Due to
the normalization of the potential the RDM measures only topography errors. It is bounded
above by 2. The magnitude error has an optimal value of 1 expressing how well the norm of
the numerical solution fits those of the analytical solution. Because of the differing influence of
topography and magnitude errors, we will mainly use the combination of RDM and MAG to
interpret our results in the following. Additional figures concerning the RE are shown in the
appendix (see Section A.2).

2.6.2 Evaluation Platform

We constructed an isotropic three compartment head model consisting of concentric spheres with
radii 80 mm, 86 mm and 92 mm to evaluate the two BE approaches. We chose the commonly
used conductivities of 0.33 S/m, 0.0042 S/m and 0.33 S/m for the three compartments (see
Table A.1). The spheres were discretized using 2056 vertices per layer, leading to an overall
vertex number of 6152 (see Figure 2.2). Meshes with the same cumulative number of vertices,
but different numbers of vertices on the particular spheres, led to worse results (see Figure A.2).
The majority of previous studies used only one set of dipoles placed on a ray from the center of
the sphere to the outer [36, 89] with the drawback that the resulting error may highly depend
on the mesh structure as it has a non-negligible effect whether the ray is pointing towards a
triangle vertex or a triangle center. Hence, a conclusion with regard to the absolute accuracy is
difficult. To avoid this, we generated a set of 125 randomly distributed unit vectors and placed
dipoles in each direction in steps of 1 mm starting at a radius of 2 mm up to a radius of 77 mm.
This corresponds to a maximal eccentricity, i.e., the quotient of source radius and radius of the
innermost layer, of 96, 25% in the three layer case; in the (later examined) four layer case the
most eccentric sources are only 1 mm below the cortex surface, leading to a maximal eccentricity
of 98, 72%. For each dipole position we computed results for both radial and tangential sources.
The orientations of the tangential dipoles were, again, distributed randomly. The resulting
orientations are shown in Figure 2.3. On this basis, we hope to deduce a more general result
regarding the accuracy of the numerical solutions.
As indicated, we choose RDM and MAG as evidence. Two types of diagrams will be used. One
will depict the arithmetic mean of the error for all dipoles with the same radius as a common
lineplot, allowing no detailed analysis but giving a rough overview. The other applied type are
so-called boxplots. The black dash marks the median of the errors at the particular radius, the
box envelopes the upper and lower quartile and the errorbars show the minimal and maximal
error. See, e.g., the left and right column of Figure 2.5 for a line- and a boxplot, respectively.
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Figure 2.3: Distribution of the 125 dipoles and
their tangential moments
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Figure 2.4: Computation times of the different BE
approaches for 19,000 dipoles

Besides the numerical errors, we will observe the time effort of the different solution approaches,
since a maintainable time consumption is an important criterion when considering the practical
usage of realistic head models. A well-balanced comparison would need to oppose the accuracy
of the different approaches while the overall computation time is kept constant or just the other
way round. However, this is difficult to realize so that we will choose different references in
our experiments, i.e., we simply use the same BE model to compare the BE approaches and
we will keep the (unique) setup time constant when comparing BE and FE approaches. All
measurements regarding computation time were carried out on a PC with an Intel Core2 Quad
Processor at 2.83 GHz with 8 Gb of RAM and Ubuntu 9.10 installed. All computations were run
in non-parallelized mode.

2.7 Results

As prearrangement, we evaluated the symmetric BE method implemented in OpenMEEG
with and without the use of adaptive integration (see Subsection 2.4.4). The results of these
computations are shown in Figure A.1. While the results for deep lying sources are more or
less identical, showing good precision and low variance, the adaptive integration has, as to be
expected, a huge effect for shallow sources, keeping the error and its variance small. Even though
the errors without adaptive integration are small, too, we notice that the adaptive integration
improves the stability of the method, avoiding the strong increase of the RDM for sources with
large eccentricities. The difference with respect to the mean error is moderate, but the boxplots
show some outliers with disproportional large errors when omitting the adaptive integration.
The gain in precision has the cost of a higher computation time for the calculation of a single
forward solution, since the numerical integration becomes more complex (see Table A.3, Figure
2.4). Nevertheless, we will use the adaptive integration in the following as its higher precision
justifies the additional time effort.
In Figures 2.5 and A.5 the results of the symmetric BEM with adaptive integration implemented
in OpenMEEG are opposed to those of the double-layer implementation in SimBio. We are
able to confirm the results of [23], finding that the symmetric BEM clearly outperforms the
double-layer BEM.
For very deep sources symmetric and double-layer BEM lead to similar results. Both
implementations have a negligible RDM error, the double-layer BEM shows even less variance
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Figure 2.5: RDM and MAG versus eccentricity. The upper graphs are showing the results for radial
dipoles, the lower graphs those for tangential dipoles. Note that the y-axes are scaled
individually. Larger versions of the boxplots are shown in Figures A.3 and A.4. The
maximal source eccentricity is 96.25%.
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than the symmetric BEM. With growing eccentricity the graphs concerning the mean error
show a clearly reduced increase of the RDM for the symmetric BEM compared to the common
double-layer implementation. Even for the most eccentric radial sources, the RDM stays below
0.01 while the variance is in a range of approximately 0.005. In contrast, the double-layer method
has a maximal RDM of 0.1 with a spread of nearly 0.09. For radial sources the differences are
less drastic but the symmetric BEM still leads to clearly better results.
Comparing these results to Figure A.1 shows that the low RDM and its moderate increase
with growing eccentricity is mainly a result of the symmetric formulation of the boundary
integral equation (and not of the adaptive integration). The adaptive integration shows a
major contribution at large eccentricities preventing outliers as possible effect of disadvantageous
geometry. A notable result of the combination of adaptive integration and symmetric BEM is
that the magnitude error for both dipole orientations is nearly erased; the MAG is bounded
between 1.00 and 1.01 while it is mainly in a range of 0.95 to 0.98 for the double-layer approach.
With the contribution of the low MAG the symmetric BEM has an about ten times lower mean
RE compared to the double-layer approach (see Figure A.5).
When comparing the computation times of the three approaches we note that symmetric BEM
with adaptive integration has an overall time effort for 19,000 forward computations comparable to
those of the SimBio double-layer implementation. At the same time it is much more accurate. The
setup of the BE head matrix that only has to be done once per head model, is the by far most time
consuming part for the double-layer implementation, whereas setup and forward computations
have an almost equal time consumption for the symmetric BEM. Thus, the computation time
increases stronger with the number of dipoles than for the double-layer implementation. We find
one origin for this in the higher computational demand of the Galerkin method with adaptive
integration, in contrast to the relatively simple collocation approach, when setting up the right
hand side vector. Consequently, the symmetric BEM without adaptive integration performs a
single forward computation faster than the double-layer BEM, and still leads to better accuracies
than the double-layer BEM. In [23] it was assumed that the long setup time is the result of a slower
execution of algebraic routines in SimBio (possibly due to a less sophisticated implementation).
Other implementations of the double-layer BEM with linear collocation are clearly faster than
the symmetric BEM implementation of OpenMEEG. Nevertheless, the OpenMEEG symmetric
BEM implementation is claimed to be the “fastest solver method for a prescribed accuracy”.



3 The Finite Element Method

In contrast to the boundary element method described in Chapter 2, where we reformulated the
forward problem (1.19) as a boundary integral equation and thus only needed to discretize the
surfaces of the brain compartments, finite element methods are applied directly to the “original”
PDE (cf. Section 1).
FE methods have some advantages compared to BEM, e.g., the possibility to model anisotropic
conductivities or to deal with arbitrary complex geometries. In our field of application this can
be useful when modeling the CSF [4, 76, 56, 82], taking into account white matter anisotropy
[71, 81, 33, 82, 29, 25], the three layeredness of the skull [59, 11, 12] or when facing anatomical
anomalies in clinical applications, e.g., non-negligible skull holes due to surgery [49, 58]. The
huge time consumption, which prevented the practical usage of FE methods for a long time, could
be heavily reduced by the introduction of transfer matrices that allow for a direct mapping of the
right hand side vector to the electrode potentials [83, 21]. Furthermore, the computational load
of the BEM grows heavily when modeling more than the commonly used three compartments,
especially when these have complex geometries like the cortex surface (which is needed to
incorporate the cerebrospinal fluid). In contrast, this can be carried out at negligible costs with
FE methods (see Section 3.6).
The main issue when realizing FE approaches to the EEG forward problem is the treatment
of the singularity caused by the model assumption of a mathematical dipole. Three solution
approaches are presented and evaluated in the next sections.
As a first step to apply FEM, the base domain is discretized into small regions; commonly
tetrahedra or cubes are used, though higher order elements exist. Next, a set of basis functions
is chosen, usually piecewise linear with support on only few elements, and the potential V
is projected into the space of basis functions, yielding an approximation by a (finite) linear
combination of basis functions. After treating the singularity caused by the point dipole and
setting up the right hand side vector we gain a linear equation system that has to be solved to
obtain the solution V .
We will apply different approaches to deal with the source singularity. For the subtraction
approach a strategy similar to the BE methods is chosen by previously subtracting a homogeneous
solution and calculating a correction potential to take the boundary conditions into account. We
will further use direct approaches, which aim at approximating the singularity locally.
Independent of the particular element type, we will use piecewise linear basis functions φi
throughout this section, having value 1 on node i, 0 on all other nodes and being piecewise linear
in each element. In all three approaches the source will be modeled as a mathematical point
dipole with moment p at position x0 as defined in Section 1.4.

3.1 The Partial Integration Direct Potential Approach

One possibility to handle the source term is partial integration [39, 87, 24]. We multiply equation
(1.10) by a basis function φi and integrate over the whole head domain Ω:∫

Ω
∇(σ∇V ) · φidx =

∫
Ω
f · φidx =

∫
Ω
∇Jp · φidx. (3.1)

Integration by parts applied to both sides of the equation yields

−
∫

Ω
(σ∇V ) · ∇φidx+

∫
∂Ω
σ∂nV · φidγ(x) = −

∫
Ω
Jp · ∇φidx+

∫
∂Ω
∂nJ

p · φidγ(x). (3.2)

39
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The partial integration on the right hand side has to be understood rather symbolically, since
the strong singularity inherent to Jp does not allow the application in a strict sense.
We use the Neumann boundary condition from (1.10) and the fact that the current density
vanishes at the head surface and obtain∫

Ω
(σ∇V ) · ∇φidx =

∫
Ω
Jp · ∇φidx

(1.13)
= p∇φi(x0) · 1i(x0), (3.3)

where 1i denotes the indicator function of element i. Approximating the potential V by its
projection to the space of basis functions, V =

∑
j xjφj , yields

∑
j

xj ·
∫

Ω
σ∇φj · ∇φidx = p∇φi(x0) · 1i(x0). (3.4)

We define the (symmetric) stiffness matrix K and the right hand side vector jpart,

Kji =
∫

Ω
σ∇φj · ∇φidx,

(jpart)i =

{
p · ∇φi(x0) if i ∈ {Nodes of element|x0 ∈ element},

0 otherwise.

The linear equation system
Kx = jpart (3.5)

with x = (x1, . . . , xN )T has to be solved. This can be done directly using iterative solvers, e.g.,
AMG-CG or IC(0)-CG [83, 39, 86]. A fast method to calculate the results for many sources is
presented in Section 3.4.
We note that the gradient of the linear ansatz functions, ∇φi, is constant inside an element for
tetrahedral meshes and thus the right hand side vector, too. It is not distinguished between
different source positions inside one particular element; this results in the same potential V for
all dipoles inside the particular element. However, for cube meshes the gradient of the trilinear
ansatz functions still depends on the position inside the cube. One can calculate that for dipoles
pointing in one of the Cartesian directions, the right hand side vector is constant when moving
the dipole position in the direction of its moment. We will keep this in mind when analyzing the
error distribution inside a particular element in Section 3.7. With the use of higher order ansatz
functions the spatial variability can be increased (also for tetrahedra).

3.2 The Venant Direct Approach

3.2.1 Dipole Modeling

The Venant approach transfers St. Venant’s principle, originally established for elasticity theory,
to electrostatics. The original conclusion is that complicated stress distributions can be simplified
under certain conditions without notable influence in a relatively large distance. Accordingly,
Venant’s principle allows us to replace a point dipole by a distribution of electrical monopoles
with very local extent and specific strength if the original dipole moment is conserved. Then, the
influence of the approximation on the electric field in a relatively far distance, e.g., at the EEG
electrodes, is negligible (see Appendix A.3.1). The theory for the approach implemented in the
SimBio-toolbox was described in [7, 62, 80] and we will follow these ideas.
We want to represent our point dipole by a set of electrical monopoles and make use of the
relation p =

∫
(x− x0)ρ(x)dx for the dipole moment [35]. We decide to place monopole sources

of strength qi only on the k − 1 neighboring FE nodes x2, x3, . . . , xk of the FE node x1 which is
closest to the dipole position x0 (but not on FE node x1 itself), i.e., we load the nodes sharing a
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vertex with x1. The distance between x0 and x1 can become arbitrarily small inducing a very
high load q at this position, which might lead to numerical instabilities, disposing us to place no
monopole at this position. The number of neighboring nodes is 27 for cubic meshes and usually
about 30 for tetrahedral meshes [7]. We approximate the source distribution by a monopole
distribution ρ =

∑k
i=2 qiδxi whose first moment, denoted 1T , reads

1T = p =
k∑
i=2

(xi − x0)qi =
k∑
i=2

∆xiqi. (3.6)

After scaling with a suitable reference length aref , chosen larger then twice the element edge
length so that ∆x/aref < 1 ∀i = 2, . . . k (see Appendix A.3.2), we formulate (3.6) for general
moments lT̄ , l ≤ 0,

(lT̄ )j =
k∑
i=2

(∆x̄i)
l
j qi, j = 1, 2, 3, (3.7)

with a bar indicating scaled variables. The use of higher order moments lT̄ is suggested in [57].
We indicate that these moments should not be confused with the higher moments of the common
multipole expansion. For l = 0, (3.7) is the sum of charges

∑k
i=2 qi, which must be zero since

the resulting far-field may not contain any monopole contributions. With the zeroth, all other
odd moments vanish, too. This implies

(0T̄ )j
(1T̄ )j

...
(nT̄ )j


t̄j

=


(∆x̄1)0

j (∆x̄2)0
j . . . (∆x̄k)

0
j

(∆x̄1)1
j (∆x̄2)1

j . . . (∆x̄k)
1
j

...
...

. . .
...

(∆x̄1)nj (∆x̄2)nj . . . (∆x̄k)
n
j


X̄j

·


q1

q2
...
qn


q

. (3.8)

We can compute the lT̄ up to l = 2 for the given dipole moment p:

lT̄ =
1− (−1)l

(2aref )l
· p. (3.9)

In the case of a point dipole all higher orders admit the limit zero, too. Further, we define the
matrix W̄j by (W̄j)(m,s) = (∆x̄m)r δm,s for r = 0 or r = 1. Then, the vector q is the result of
minimizing the functional

Fλ(q) = ‖t̄j − X̄jq‖22 + λ‖W̄jq‖22 (3.10)

with X̄j and t̄j defined as in (3.8). The first term measures the difference between the original
dipole moment and our approximation, while the second term penalizes loads of large absolute
value |qi| in a least square sense and ensures the uniqueness of the solution of minimizing Fλ.
Thereby, we avoid sources with large value that do not contribute to the far-field, so-called blind
sources. Differentiation with respect to the qi yields the solution of the minimization problem:(

X̄T
j X̄j + λW̄ T

j W̄j

)
q = X̄T

j t̄j , (3.11)

and as result for the vector q,

q =

 3∑
j=1

(
X̄T
j X̄j + λW̄ T

j W̄j

)−1

·
3∑
j=1

X̄T
j t̄j . (3.12)

The approximation order n is commonly not chosen larger than two. Order two results in a
spatial concentration of loads in the dipole axis compared to order one. The choice r = 1 effects
a spatial concentration of loads around the dipole node for large products ∆x̄iqi being penalized.
The parameter λ should be chosen as small as possible in order to approximate the desired
moments accurately, but large enough to avoid indetermination of the equation system.
We fix aref = 20 mm, n = 2, r = 1 and λ = 10−6 for our computations.
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3.2.2 Derivation of the Matrix Equation

We will only give a short heuristic derivation of the discretization here, more detailed ones are
found in the literature [7, 78]. The first Maxwell equation (1.1) stating that the divergence of
an electric field exposes sources and sinks of yonder allows us to replace the divergence of the
primary current Jp by the current sources. These current sources correspond to our previously
computed monopoles qi. Accordingly, we approximate the source term f = ∇Jp generated by
our primary current Jp through

∇ · Jp =
k∑
l=2

qlδxl . (3.13)

We insert this into (3.1), applicate partial integration on the left hand side and replace V by its
projection to obtain

∑
j

xj ·
∫

Ω
σ∇φj · ∇φidx =

∫
Ω
∇ · Jp · φidx =

k∑
l=2

∫
Ω
qlδxl · φidx =

k∑
l=2

qlδil (3.14)

where we use the fact that φi is 1 on node i and vanishes on all other nodes. This yields the
equation system

Kx = jven (3.15)

with the same stiffness matrix K as in Section 3.1 and the right hand side vector jven defined as

(jven)i =

{
ql if i = node(l),
0 otherwise.

(3.16)

3.3 The Subtraction Approach

When assuming that there exists a non-empty open neighborhood Ω∞ of the source with constant
isotropic conductivity σ∞, we can erase the singularity in a manner similar to Section 2.5
[6, 85, 17]. The case of an anisotropic conductivity is possible, too, but will not be treated here.
We split up the potential V and the conductivity σ into two parts:

V = V∞ + V cor, (3.17)
σ = σ∞ + σcor. (3.18)

The potential V∞ in an unbounded, homogeneous conductor can be calculated analytically,
applying (1.17): σ∞V∞ = −(∇ · Jp) ∗ G. Inserting the decomposition of V into (1.10) and
subtracting the homogeneous solution, results in a Poisson equation for the correction potential:

−∇ · (σ∇V cor) = f in Ω, f := ∇ · (σcor∇V∞), (3.19)
σ∂nV

cor = g on Γ, g := −σ∂nV∞. (3.20)

Multiplication with a basis function φi and partial integration gives us∫
Ω
σ∇V cor · ∇φidx =

−
∫

Ω
σcor∇V∞ · ∇φidx−

∫
∂Ω
σ∞∂nV

∞ · φidγ(x) +
∫
∂Ω
σ∂n(V cor + V∞) · φidγ(x), (3.21)

where we already reorganized terms and exploited (3.18). The third term vanishes as a
consequence of the Neumann boundary condition. Approximating V cor by a linear combination
of our basis functions, V cor =

∑
j xjφj , results in the equation system

Kxcor = jcor, (3.22)
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where K is defined as above and jcor is given by

(jcor)i = −
∫

Ω
σcor∇V∞ · ∇φidx−

∫
∂Ω
σ∞∂nV

∞ · φidγ(x), (3.23)

and needs to be calculated numerically [17]. Finally, the potential V is gained by adding up V cor

and V∞.
The subtraction approach is theoretically well understood, existence and uniqueness of a solution
and convergence of the solution can be shown [85, 17]. As the right hand side vector jcor has
many non-zero entries, the computational demands are higher than those of the Venant or the
partial integration approach.

3.4 Transfer Matrices

The equation systems resulting from the FEM, (3.5), (3.15) and (3.22), are of similar shape with
the same symmetric stiffness matrix K:

Kx = j. (3.24)

For n FE nodes the vector x has as many entries resulting in up to 3 million unknowns (for a 1
mm cubic headgrid). It is common standard to use precomputed leadfield matrices to solve the
inverse problem, relating the activity of dipoles at a chosen set of positions, the so-called influence
nodes, to the resulting potential at the EEG sensors. It is necessary to compute a forward
solution for potentially many thousand dipoles, and thus, to solve the above large equation
system just as often. The computation time for many dipoles can be drastically reduced by
exploiting the associativity of the matrix multiplication [83]. The basic idea is that it is not
necessary to compute the potential V for every node as we are only interested in the resulting
potential at the sensor nodes. To imply this, we introduce a restriction matrix R, which maps
the potential V to the particular potentials of the measurement sensors (stored in the vector
V eeg). We assign each sensor the potential of the FE node that is next to its position. Thus,
with s electrodes, we have a (s− 1)× n restriction matrix R (when assuming that the potential
at the reference electrode is fixed to zero). This yields

V eeg = R · x, (3.25)

where x is the solution vector of the FE method, thus containing the potentials of the FE nodes.
The matrix R has only one non-zero entry per line; R(i,j) = 1 means that FE node j corresponds
to electrode i + 1 if the reference electrode is defined as first electrode. Next, we define the
transfer matrix T ,

T = R ·K−1, (3.26)

that gives us a direct mapping of a right hand side vector j to the unknown electrode potentials,

Tj = (RK−1)j = R(K−1j) = RV = V eeg. (3.27)

Thereby, the calculation of the electrode potentials V eeg reduces to the multiplication of a fully
populated matrix with a sparse vector for the Venant and the partial integration approach and
with a fully populated vector for the subtraction approach. Furthermore, the homogeneous
medium solution V∞ needs to be calculated and summed up here, indicating that the speed-up
will not be as large as for the direct approaches.
Even though the inverse of the stiffness matrix K−1 exists, its calculation is not feasible, since
the sparseness of K will be lost while inverting. Instead, we express the transfer matrix T by a
matrix equation so that the computation of T reduces to numerically solving (s− 1) equation
systems. Multiplying equation (3.26) with matrix K from the right side and transposing gives us

KT T = RT , (3.28)
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where we exploited the symmetry of K. T can now be computed line by line solving (3.28) for
the column vectors of RT . As the resulting equation systems are large but sparse we use, again,
iterative methods for their solution.

(a) Venant (b) Partial integration

Figure 3.1: Distribution of loaded nodes. Red dots mark loaded nodes, the green filled dot the dipole
position and the green dot the FE node x1 next to the dipole position.

3.5 Distribution of Loaded Nodes for Shallow Sources

For the direct approaches, Venant and partial integration, the right hand side vector j is sparse.
Only few FE nodes are loaded, i.e., have non-zero entries. When sources are very close to
compartment boundaries, loaded nodes may lie directly on compartment boundaries or even
in the wrong compartment. This may affect the numerical accuracy heavily, especially when
the outer compartment has a significantly higher conductivity. For instance, we will assume a
conductivity of 1.79 S/m for the CSF in relation to 0.33 S/m for the brain. To demonstrate
this issue, an artificial scenario in a regular cube model is depicted in Figure 3.1, where the
distribution of loaded nodes for sources lying in cubes that are adjacent to a conductivity jump
is shown.
The actual influence cannot be estimated in advance. Nevertheless, we expect the partial
integration approach to be very sensitive to loaded nodes that are placed on compartment
boundaries. Since only eight entries in the right hand side vector are non-zero, few deficient
nodes may already have huge influence to the accuracy. Thus, we expect a raise of the numerical
error, as soon as dipoles are placed in the outermost layer of cubes. In contrast, the Venant
approach has 27 loaded nodes, permitting less influence of single nodes. As long as the node
closest to the source position, x1, is no surface node itself, we expect only moderate inaccuracies.
However, when x1 lies on a compartment boundary, the inaccuracies should be huge. We will
validate our assumptions in the next Section 3.7.

3.6 Experiments

We will compare the three previously derived FE approaches in three and four layer tetrahedral
sphere models and a four layer hexahedral sphere model in the following. We will use the results
gained in the three layer tetrahedral model to compare them with the results of the symmetric
BEM. Therefore, we will use the same dipole configuration and electrode cap as in Section 2.6.
Again, most previous studies using FE methods only used dipoles placed on only one or two rays
[84, 39, 17], whereas the influence of the local mesh geometry is expected to be even larger than
in the BEM case.
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Besides other reasons the use of the three layer tetrahedral mesh when confronting BE and FE
approaches serves clarity, since the process of creating a three layer tetrahedral head mesh in
practice has requirements comparable to those of BE model generation. Both times triangulated
surfaces of skin, outer skull and inner skull that need to be extracted out of, e.g., MR images,
and have to be closed and non-intersecting are basic. The gained surface meshes could then be
directly applied with BE methods, while for an application of FEM the whole volume has to be
tetrahedralized furthermore (see Subsection 3.6.2). The four layer tetrahedral model embeds an
additional surface representing the cortex surface. This has the consequence of a significantly
increased number of nodes and, thus, computation time in a BE model, while it is uncritical
in the FEM case. The extra surface can be easily embedded in the mesh generation without
demanding notably more nodes in the final mesh.
In contrast to these approaches, hexahedral FE meshes have the huge advantage that they can be
obtained directly from labeled MR images without further preliminaries. The surface generation
can be dropped by exploiting the coincidence between mesh elements and voxels. Thus, the
creation of hexahedral meshes needs less preliminary worksteps.
Since periodic oscillations have appeared when using the Venant and the partial integration
approach with hexahedral meshes [84, 38], we will study the distribution of the RE inside an
element more detailed than possible with usual diagrams (see Subsection 3.6.4). This is examined
as a preparation of Chapter 4.

3.6.1 Finite Element Model Generation

The three layer models have the same parametrization as the BE models (see Table A.1); the
additional CSF compartment in the four layer models has an inner radius of 78 mm and a
conductivity of 1.79 S/m (see Table A.2). Thus, the maximal source eccentricity is at 98.72 %.

3.6.2 Tetrahedra Model

In order to justify a comparison of the results of the FE approaches to those we achieved in the
previous chapter, the computational demand should not differ too much. We chose to adjust the
number of elements of the tetrahedral FE meshes so that the time consumption for the setup of
the transfer matrix and of the BE head matrix, which has to be carried out once per head model,
are expected to be roughly the same. The resolution of the grid for the subtraction approach
was chosen with the goal to have a similar accuracy for the three FE approaches. Due to the
high computational complexity of the subtraction approach the computation time for our set of
dipoles is expected to be much higher in this case.
We made use of the software Tetgen1 which implements a Constrained Delaunay
Tetrahedralization (CDT) [63]. Our starting point were surface meshes of the compartment
boundaries, similar to those in Subsection 2.6.2 but with a higher resolution of some ten thousand
nodes per surface. In practical usage this allows an adequate fitting to the head anatomy. On
this basis a tetrahedralization of the whole volume conductor conforming to the surface meshes
was generated.
Two different constraints were imposed to achieve a good mesh quality. The first constraint,
called quality constraint, influences the shape of the tetrahedra. By fixing an upper bound for the
ratio between the radius of the tetrahedras circumsphere and the length of its shortest edge, most
types of unwanted tetrahedra shapes can be excluded - apart from very flat tetrahedra. Those
can be avoided by the volume constraint, being an upper bound for the volume of a particular
tetrahedra. The volume constraint can be chosen independently for each compartment.
Different choices of the volume constraint for specific compartments - leading to variable mesh
densities - and their influence on the accuracy of the solution have been examined [58, 39].
While a homogeneous distribution of nodes over the whole volume is optimal for the Venant and

1http://tetgen.berlios.de/
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the partial integration approach, the subtraction approach performs best when modeling the
surfaces with a high resolution, implying no volume constraint in the innermost compartment
(which contains the source) and a very small volume constraint in the other compartments. This
creates a dense mesh at the compartment boundaries and the numerical accuracy and stability is
increased.
Following these results and our previous considerations we constructed two tailored FE meshes;
the chosen parameters and the resulting meshes are shown in Table A.4 and Figure A.6.

3.6.3 Hexahedra Model

In order to build up regular hexahedra meshes we generated an artificial MR image of a four
layered sphere (see Figure 3.2) having an isotropic resolution of 256×256×256 voxels, each voxel
containing a volume of 1 mm3. Exploiting the cubic voxel structure, we generated hexahedra
meshes using the software Vgrid2, which is an outcome of the SimBio project [32, 5]. We chose
an edge length of 1 mm so that each voxel forms one element. The elements are labeled according
to the corresponding voxels label.

Figure 3.2: The artificial MR image of a sphere used for the generation of the cubic models. Cut is
made through the x = 127 plane.

We further created a geometry-adapted hexahedral mesh. Regular hexahedra meshes do not
respect the geometry very well, e.g., so-called staircase effects may appear. To avoid these effects
we applied a node shift algorithm, allowing smoother and more accurate boundaries [8]. A
two-dimensional example of the node shift algorithm is illustrated in Figure 3.3. For a node on a
compartment interface the materials of the eight elements sharing the node are determined. If a
material is represented by three or less of the surrounding elements, the centroid (x, y, z) of the
elements being assigned to this minority material is calculated in a coordinate system relative to
the node. We chose a shift constraint of 0.49, thus the particular node is shifted by the vector

(∆x,∆y,∆z)T = (0.49 · x, 0.49 · y, 0.49 · z)T . (3.29)

Previous studies have shown that both the topography and magnitude error can be reduced by
a factor greater than 2 for tangential and greater than 1.5 for radial sources [80]. Hence, we
will use the geometry-adapted mesh if possible, i.e., if implemented. Since the use of node shift
meshes is not yet implemented for the subtraction approach, we will use ordinary cube meshes
there.
In Figure A.7 the created meshes are visualized, their parametrization is given in Table A.5.

2http://www.rheinahrcampus.de/∼medsim/vgrid/
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Figure 3.3: Node shift in two dimensions. On the left the staircase like boundary before the node shift,
on the right the smoothed boundary afterwards. The filled dots mark the centroids of the
elements belonging to the minority material.

3.6.4 Error Maps

In order to be able to visualize the already mentioned oscillations of the Venant and the
partial integration approach, we will create error maps. We distribute dipoles on a fine grid
(width d = 0.05 mm) on the surface of a small cubic domain having its bottom left corner at
(155, 155, 155)T (the center of the sphere is at (127, 127, 127)T ) and an edge length of 4 mm. At
each dipole position we calculate forward solutions in the three Cartesian directions and visualize
the relative error (RE) for each direction and the mean over the RE in the different directions.
Thereby, we hope to gain insight into the influence of the local mesh structure on the numerical
accuracy.
Due to the theoretical derivation, we expect minimal errors for the Venant approach when dipoles
are placed directly on FE nodes. This was experimentally verified and visualized for tetrahedral
models in [37]. In contrast, we assume the best results for sources placed in the center of an
element with the partial integration approach. Our estimation is that the constancy of the
solution inside the element leads to higher errors for source positions apart the element center.

3.7 Results

3.7.1 Tetrahedral Models

We will first examine the results attained with tetrahedral three layer models. As intended,
the setup time of the FE approaches differs hardly from those of the symmetric BE approach
(see Table A.6 and Figure 3.4). This gives us a reference point regarding the validity of our
comparison between BE and FE approaches. Nevertheless, a single forward computation is much
faster for the Venant and the partial integration approach than for the symmetric BEM. This is
not surprising, as it consists in the simple setup of the right hand side vector, which has only few
non-zero entries and can be calculated easily, and a following multiplication of a matrix and a
sparse vector, while the BE right hand side is dense and numerical integration is necessary for its
setup. Thus, the overall computation time for the direct FE approaches is clearly the shortest.
The subtraction approach has the by far highest time consumption. It benefits less from the
transfer matrix approach than the Venant or the partial integration approach, since the setup of
the right hand side is more complex in this case, requiring both a numerical volume and surface
integration. Furthermore, the singularity potential V∞ has to be calculated analytically in
addition to the numerical solution of V cor. We intend to reduce the computation time drastically
by the use of leadfield interpolation (see Chapter 4).
The MAG and RDM of the FE approaches are shown in Figure 3.5. Regarding the mean RDM,
the Venant approach performs best, the subtraction has a slightly larger error and the partial
integration approach has the largest mean error. All approaches show a tendency to have higher
errors for superficial sources. The MAG error is negligible for all approaches being bounded
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Figure 3.4: Computation times for the different FE approaches and the symmetric BEM. The
computation time of the subtraction approach exceeds the y-range (the computation time is
2579 min 18 s, cf. Table A.6).

between 0.995 and 1.01. A close look at the boxplots shows that the unsteady behavior of the
errors for the Venant and the partial integration observed in earlier studies results in a wide gap
between minimal and maximal error so that the boxes are widespread in y-direction. Especially
for the partial integration approach the RDM shows a relatively large difference between minimal
and maximal error of up to 0.04 at a particular radius, having some outliers with a RDM up to
four times higher for radial sources and nearly three times higher for tangential sources than
the other approaches. The errors of the Venant solution vary less with a maximal gap of 0.02
regarding the RDM. The maximal error is the lowest of the three approaches. The variance
appears to be nearly independent of the source eccentricity in both cases. Due to the analytical
treatment of the source singularity the subtraction approach does not show oscillatory behavior,
represented through a very smooth curve for the mean error with the errors at a particular
radius lying within a small band in the boxplot. Even though the variance grows for superficial
sources it is still beneath those of the other approaches. Apart from some outliers, none of the
FE approaches shows a remarkable sensitivity regarding the dipole orientation in the tetrahedral
model.
The symmetric BEM outperforms the three FE approaches, providing the clearly most accurate
solution in the three layer sphere model. While its MAG error is slightly higher, but still negligible,
the RDM is halved for eccentric sources. Reminding Figure 2.5, we notice that especially the small
variance of the error exposes the symmetric BEM. At the same time, the common double-layer
BEM performs worse than the FE methods particularly for eccentric sources. When examining
the approaches at a fixed overall computation time instead of a fixed setup time, the direct FE
approaches would probably achieve slightly better results, since meshes could be further refined.
However, these numerical differences are negligible when obeying the error aroused by neglecting
the distinction between different brain compartments, e.g., between CSF and grey and white
matter as we will see in the following.
Turning towards the four layer tetrahedral sphere model, we mainly see the results of the three
layer case approved (see Figure 3.6). The errors of the Venant and the subtraction approach
grow a little while we note that the result for the partial integration approach has slightly
improved even though the outermost sources at a radius of 77 mm lie only 1 mm below the CSF
compartment now. This is most likely an accidental effect of advantageous mesh geometries.
Besides, our considerations in Section 3.5 are demonstrated for the Venant approach at the
outermost sources, even though we have a tetrahedral model here. We find a huge magnitude
error especially for radial sources, while the RDM is more affected for tangential sources. In
contrast, the subtraction approach shows topographic inaccuracies for radial moments at the
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Figure 3.5: RDM and MAG versus eccentricity using the tetrahedral three layer FE models. The upper
graphs showing the results for radial dipoles, the lower graphs those for tangential dipoles.
Note that the y-axes are scaled individually. For a better readability the boxes for the
Venant and the partial integration are shifted slightly into positive and negative x-direction,
respectively. Larger versions of the boxplots are shown in Figures A.8 and A.9. The
maximal source eccentricity is 98.72%.
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most eccentric source position, performing worst of all approaches here, while the error of the
partial integration approach even reduces here, not showing the assumed inaccuracies.
To clarify the importance of modeling the CSF compartment, we introduced an additional error
curve named effect showing the pure analytical error of neglecting the CSF, i.e., we calculated
RDM and MAG of the three layer analytical solution in reference to the four layer analytical
solution. For both RDM and MAG the model error exceeds the errors of the three numerical
approaches by far. This has special importance when deciding whether to use a BE or a FE
method since embedding the cortex surface into BE models is not feasible with the current BE
implementations (and the processing power of today’s pcs) as we already explained.
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Figure 3.6: RDM and MAG versus eccentricity using the tetrahedral four layer FE models. The upper
graphs show the results for radial dipoles, the lower graphs those for tangential dipoles. The
curve marked effect shows the analytical error caused by neglecting the CSF compartment.
Note that the y-axes are scaled individually. For a better readability the boxes for the
Venant and the partial integration are shifted slightly into positive and negative x-direction,
respectively. Larger versions of the boxplots are shown in Figures A.11 and A.12. The
maximal source eccentricity is 98.72%.
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3.7.2 Hexahedral Models

Since the current implementation of the subtraction approach is unable to deal with node
shifting, we ran comparisons in a regular four layer cube model, first (see Figure 3.7). For deep
sources all approaches lead to similar results. The amplitude of the oscillation is comparable to
those observed with the tetrahedral models for the Venant and the partial integration approach,
resulting in a comparable spread in the boxplots. All approaches have a RDM below 0.03 up to
an eccentricity of over 0.92. For more superficial sources the results for radial dipoles become
more inaccurate with the partial integration approach performing worst. It shows the outliers
with the highest error while the accuracy is constantly good up to an eccentricity of 0.96 for
tangential sources. At the most eccentric set of sources the errors grow rapidly with, again, the
partial integration approach performing worst and the Venant approach providing the best result,
admittedly with maximal errors above 0.1.
We suppose the unfavorable influence of the effects discussed in Section 3.5 occurring here for
the direct approaches, again. The Venant approach is less affected than the partial integration
approach since our sources have a maximal distance of 77 mm to the sphere center, and thus
the dipole position should not be closest to a surface node, but might already be inside of a
surface element. Low errors at the highest eccentricity are probably the results of advantageous
geometry constellations. The subtraction approach is probably discriminated by the constant
mesh density, leading to inaccuracies for superficial sources.
The use of geometry-adapted hexahedra can clearly improve the numerical accuracy for the
Venant and the partial integration approach (see Figure 3.8), confirming the results of previous
studies [80]. Especially the MAG is improved, the mean is reduced by 0.03 to below 1.02. The
results comply with our expectations apart from the appearance of some outliers that lead to
worse results with the introduction of the geometry-adapted mesh. However, the major problem
of huge inaccuracies for very eccentric sources is still present. If we neglect the rapid growth of
errors for the highest eccentricities, the gained accuracies are comparable to those computed
with the tetrahedral model. The partial integration approach yields slightly improved results,
while those of the Venant approach are in an identical range.
We illustrated the mean RE, RDM and MAG (i.e., the Cartesian mean of the errors for dipole
moments oriented in the three coordinate directions) of the two direct approaches for highly
eccentric sources in the upper row of Figures A.27 and A.28. We find our previous considerations
approved with the partial integration approach, observing a sudden growth of errors when dipoles
are placed in the last layer of cubes. The results of the Venant approach are less clear. The MAG
shows the expected behavior of a sudden decrease of accuracy when the dipole position becomes
adjacent to boundary nodes, while RE and RDM show some irregularities. This might be an
admission to the simplifications in our setting, i.e., only observing mean errors and neglecting
the three dimensional grid structure. Nevertheless, we aim to eliminate these problems applying
leadfield extrapolation combined with cropped grids.

3.7.3 Investigation of Error Oscillations

We show error maps for the Venant and the partial integration approach in Figures A.20 and
A.21, respectively. As intended, the oscillations of the accuracy can be observed nicely.
The solution attained with the Venant approach oscillates strongly with a period of 1 mm, i.e.,
one edge length, in the two Cartesian directions when moving the source in the plane that is
perpendicular to the dipole moment. When displacing the dipole position in the other two planes
orthogonal to the Cartesian unit vectors the oscillations are clearly weaker. In this case the error
is constant when displacing the dipole into the direction of its momentum, while it oscillates
with a period of, again, 1 mm, in the orthogonal direction. Regarding the mean RE the maps for
dipoles oriented in the three Cartesian directions are nearly identical. Looking at a microscopic
period defined by a cube with edge length 1 mm and vertices in the cube barycenters, we have
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Figure 3.7: RDM and MAG versus eccentricity using the cubic four layer FE model without node shift.
The upper graphs show the results for radial dipoles, the lower graphs those for tangential
dipoles. Note that the axes are scaled individually. For a better readability the boxes for
the Venant and the partial integration are shifted slightly into positive and negative
x-direction, respectively. Larger versions of the boxplots are depicted in Figures A.14 and
A.15. The maximal source eccentricity is 98.72%.
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a constant error gradient in bottom left to top right direction. The error has its minimum at
the top right corner and grows continuously towards the bottom left corner. In the orthogonal
direction the error is nearly constant. The behavior of the error is expected to be mirrored on the
other side of the sphere. Thus, we assume a constantly low error when placing dipoles directly
onto the FE nodes, which was also our initial estimation.
The error distribution of the partial integration approach is contrary to those of the Venant
approach. The error is nearly constant when moving the dipole in a direction orthogonal to its
moment, while it oscillates when translating the dipole into the direction of its momentum. We
conclude that the independency of the right hand side vector from displacements in the direction
of the dipole moment is the origin of the oscillations. Hence, the oscillations have a period of 1
mm, again, resulting in continuous equi-error lines in the maps. Nevertheless, at first view the
resulting distribution of the mean RE looks very similar to those of the Venant approach, except
that it is shifted in all Cartesian directions by half an edge length. Therefore, we will choose
cube centers as dipole positions in Chapter 4 for the partial integration approach.
Looking at the mean relative error in more detail, we notice that the straight equi-error lines of
the Venant approach are bent towards the bottom left corner for the partial integration approach.
Accordingly, we expect a bigger gain of accuracy through leadfield interpolation for the partial
integration approach, where we will choose sources placed at cube barycenters and vertices as
interpolation basis for the partial integration and the Venant approach, respectively.
Our results are compatible to previous studies where the Venant solution showed oscillatory
behavior for tangential sources while the partial integration solution did for radial sources [84].
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Figure 3.8: RDM and MAG versus eccentricity using the cubic four layer FE model with node shift.
The upper graphs show the results for radial dipoles, the lower graphs those for tangential
dipoles. Note that the axes are scaled individually. For a better readability the boxes for
the Venant and the partial integration are shifted slightly into positive and negative
x-direction, respectively. Larger versions of the boxplots are depicted in Figures A.17 and
A.18. The maximal source eccentricity is 98.72%.



4 Leadfield Interpolation

Two challenges turned up when applying FE methods to solve the forward problem: One is
the high computational demand of the subtraction approach, making it impossible to calculate
forward solutions with an adequate high model resolution, e.g., 1 mm cubic, in an applicable
time. Our second concern is the oscillation of the accuracy when using the Venant or the partial
integration approach. While the behavior of the error is unsteady for tetrahedral meshes, it is
clearly periodic for cube meshes [39, 84] and we were able to make estimations concerning the
optimal dipole placement inside a particular element in the previous chapter.
Leadfield interpolation was proposed to reduce the computation time required to assemble a
leadfield with BE methods [88], following the assumption that the electrode potentials vary
continuously with the spatial coordinates when displacing the dipole inside a homogeneous
medium with constant conductivity. Instead of calculating a forward solution for each dipole
position, solutions on a predefined, (possibly) coarser grid are computed and solutions for
arbitrary dipole positions and orientations are gained using interpolation.
We will apply this idea with multiple intentions. The first is to speed up the subtraction approach.
Since the interpolation can be carried out very fast, the computation time mainly reduces to the
effort for computing the leadfield with influence nodes placed on a rectangular grid (which will be
denoted interpolation grid in the following), serving as basis for the interpolation. Using a coarse
grid, the number of forward solutions that has to be calculated numerically can be drastically
reduced to an acceptable level. Of course, the interpolation will not be exact and contributes to
the overall numerical error. Thus, coarseness of the grid and required computation time have to
be balanced.
Secondly, we want to reduce the oscillations occurring with the Venant and the partial integration
approach. Therefore, we will generate leadfields with dipole positions adjusted to the underlying
FE grid to reach minimal errors without oscillations. We will exploit our findings from Section
3.7 where we have analyzed the error distribution inside a single FE cube to estimate the optimal
placement of dipoles in relation to the FE grid. After constructing our interpolation grid, the
procedure is identical to the upper case. According to our results, we will use a grid where the
dipoles are placed directly onto the FE nodes for the Venant approach and a grid with the dipoles
placed in the barycenters of the cubes for the partial integration approach. The coarseness of
the grid is not too important in this case, as the computation of a single forward solution is very
fast for the direct approaches when using transfer matrices, while numerical errors induced by
the interpolation should be avoided where possible.
Beside the decrease of computation time, it was shown that leadfield extrapolation can increase
the numerical accuracy for superficial dipoles [88]. Therefore, the interpolation grid is cropped, i.e.,
shallow grid points exceeding a certain radius are removed since a higher eccentricity corresponds
to higher numerical errors as we have observed previously (cf. Figure 4.5).
Afterwards, for dipoles being located outside the grid, extrapolation is used. Of course, grid
cropping is only reasonable, as long as the interpolation error does not exceed the increase of the
numerical error. We will examine the impact of the three aspired advancements in Section 4.3.

4.1 Interpolation Techniques

Our starting point is a leadfield, i.e., a matrix containing the sensor potentials for dipoles placed
on predefined positions and pointing in each of the three spatial directions, with the dipoles
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Figure 4.1: Leadfield interpolation

placed on a rectangular grid. On this basis the potential for arbitrary positions and finally dipole
directions will be interpolated. Two (closely related) interpolation techniques will be used.

4.1.1 Trilinear Interpolation

Due to its simplicity we choose trilinear interpolation, first. It needs very few computations and
is thus a very fast possibility for interpolation. Additionally, only one cubic element is needed
as basis, which can be of advantage when complex geometries have to be taken into account in
further numerical experiments, e.g., when using realistic head models with CSF compartment
(see Chapter 6).

We consider step sizes ∆x, ∆y and ∆z in our rectangular grid. For a source located inside a grid
cube, we denote by x1 the position of the vertex with minimal values in all three coordinates. The
remaining vertices are numbered as shown in Figure 4.1(a); the potential vector corresponding
to vertex i is denoted Vi, i = 1, . . . , 8. The potential at dipole position x0 is then given by the
sum of the potentials at the cube nodes multiplied by weighting factors ωi:

V int =
8∑
i=1

ωiVi. (4.1)

We introduce local coordinates of x0 inside the cube:

us =
(x0)1 − (x1)1

∆x
, vs =

(x0)2 − (x1)2

∆y
, ws =

(x0)3 − (x1)3

∆z
, (4.2)



58 4.1. INTERPOLATION TECHNIQUES

us, vs, ws ∈ [0, 1]. The weights are given by

ω1 = (1− us)(1− vs)(1− ws),
ω2 = us(1− vs)(1− ws),
ω3 = (1− us)vs(1− ws),
ω4 = usvs(1− ws),
ω5 = (1− us)(1− vs)ws,
ω6 = us(1− vs)ws,
ω7 = (1− us)vsws,
ω8 = usvsws.

(4.3)

If the source position x0 falls outside all grid cubes, we search the grid cube closest to x0 and
use this as a basis for extrapolation (see Figure 4.1(b)). Again, (4.1) is evaluated but the local
coordinates are allowed to be negative or greater than 1.

4.1.2 Beziér Interpolation

The Beziér interpolation is an expansion of trilinear interpolation that may take into account
more grid points and is therefore expected to lead to a more precise interpolation result (at the
cost of a higher computational complexity). We assume that x0 falls within a box of m · n · p
grid cubes, thus enveloping (m+ 1) · (n+ 1) · (p+ 1) nodes. The Beziér interpolation uses a basis
of Bernstein polynomials with degrees m, n and p along the corresponding axis. Let, again, x1

denote the corner of the box with minimal coordinates and (us, vs, ws) the local coordinates of
x0 given through

us =
(x0)1 − (x1)1

m∆x
, vs =

(x0)2 − (x1)2

n∆y
, ws =

(x0)3 − (x1)3

p∆z
. (4.4)

Accordingly, we have as correspondence between local and global coordinates of a grid point:ui = i/m
vj = j/n
wk = k/p

 and xi,j,k = x1 +

i ·∆xj ·∆y
k ·∆z

, i = 0, . . . ,m, j = 0, . . . , n, k = 0, . . . , p. (4.5)

The numerically calculated potential of a source with local coordinates (i, j, k) will be denoted
Vi,j,k. The potential at x0 is then interpolated via

V int =
m∑
i=0

n∑
j=0

p∑
k=0

ωi,j,kbi,m(us)bj,n(vs)bk,p(ws) (4.6)

with
bα,µ(t) =

µ!
α!(µ− α)!

tα(1− t)µ−α, α = i, j, k, µ = m,n, p (4.7)

being the Bernstein polynomial and the coefficients ωi,j,k being determined by

Ω = B−1L (4.8)

where:

Ω =


ω0,0,0

ω1,0,0

ω2,0,0
...

ωm,n,p

 , L =


V0,0,0

V1,0,0

V2,0,0
...

Vm,n,p

 ,
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B =


b0,m(u0)b0,n(v0)b0,p(w0) b1,m(u0)b0,n(v0)b0,p(w0) · · · bm,m(u0)bn,n(v0)bp,p(w0)
b0,m(u1)b0,n(v0)b0,p(w0) b1,m(u1)b0,n(v0)b0,p(w0) · · · bm,m(u1)bn,n(v0)bp,p(w0)

...
...

. . .
...

b0,m(um)b0,n(vn)b0,p(wp) b1,m(um)b0,n(vn)b0,p(wp) · · · bm,m(um)bn,n(vn)bp,p(wp)

 .
Again, extrapolation is executed by locating the box of m · n · p grid cubes next to the source
position and allowing local coordinates with values that are negative or greater than one. The
matrix B is independent of the grid location and the source location x0 and needs to be calculated
and inverted only once.
For m = n = p = 1 the matrix B becomes the identity matrix and the Beziér interpolation
coincides with the trilinear interpolation. Thus, we will not always distinguish between trilinear
and Beziér interpolation in the following; trilinear interpolation is then considered as Beziér
interpolation of order zero.

4.1.3 Arbitrary Dipole Directions

To gain the interpolated potential evoked by a dipole with arbitrary direction at position x0,
we make use of the linear combinability of solutions of (1.10). Thus, the potential is calculated
as linear combination of the results for dipoles pointing in the three spatial directions that are
stored in the leadfield. These have to be weighted by the value of the dipole momentum in the
respective direction.

4.2 Implementation

We integrated both trilinear and Beziér leadfield inter- and extrapolation into the SimBio-toolbox,
restricting the Beziér interpolation to cubic boxes, i.e., m = n = p. The implementation is
straightforward. As there are different choices of the particular box possible when using Beziér
interpolation of order two and higher, we decide to make use of the box whose barycenter is
closest to x0. The same choice is made when using trilinear interpolation and x0 falls outside all
grid cubes.

4.3 Experiments

We will first evaluate the leadfield interpolation using analytically calculated leadfields. This
allows us to analyze the numerical error evoked by the interpolation without having to obey other
influences. Trilinear as well as Beziér interpolation of order two, three and four will be considered.
Beside the differences between the two interpolation techniques and orders of interpolation,
we will be interested in the convergence of the results for grids with different step sizes, the
computation time of the different approaches and especially the effect of grid cropping, i.e., nodes
of the interpolation grid lying outside a certain radius will be removed. We will use grids with
step sizes of 4, 7 and 10 mm that were cropped at radii of 74, 75.5 and 77 mm. As we are not
interested in the specific error structure and for reasons of clarity, we will mainly observe the RE
in the first subsection of Section 4.4.
Subsequently, we will apply leadfield interpolation to leadfields calculated with the three FE
approaches and the four layer hexahedral mesh. As the computation time for a single dipole is
negligible for the Venant and the partial integration approach we will use grids with step sizes of
4 mm; for the more complex subtraction approach we will use step sizes of 10 mm. Different
radii of grid cropping between 70 and 75.5 mm will be tested.
We will further apply leadfield interpolation to leadfields calculated with the four layered
tetrahedral meshes with the goal of smoothening the unsteady error characteristic.
The different interpolation grids used in the following are listed in Table A.7.
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Figure 4.3: Computation times for the different
interpolation approaches for 19,000
dipoles using a 4 mm grid as basis.

4.4 Results

In Figure 4.3 and Table A.8 the computation times for the different interpolation orders are
shown. As to be expected, the computation time grows strongly with the order of interpolation,
since the number of nodes that are taken into account (and thus the number of terms that have
to be evaluated in (4.6)) grows cubic. For the highest considered order, Beziér interpolation
of order four, the interpolation of the results for our set of 19,000 dipoles requires more than
one hour of computation time. For this reason, order four interpolation is not further evaluated
when it comes to numerically computed leadfields, as the gain of accuracy does not justify the
additional computation time.

4.4.1 Analytically Calculated Leadfields

We first used leadfields calculated with the analytical solution (see Section 1.6) and interpolation
grids cropped at 74.0 mm with edge lengths of 4 and 10 mm to compare the different methods
directly. Our main interest concerns the effect of leadfield extrapolation. For deep sources the
behavior can be denoted good-natured, as it can be observed in Figure A.22. We observe that the
higher order Beziér interpolation benefits more from a finer grid than the trilinear. Using the 4
mm grid the maximal relative error stays below 0.013 with interpolation of order two and higher,
even for the highest eccentricity (corresponding to an extrapolation over at least 3 mm). Trilinear
interpolation results in a twice as high error; the induced error grows faster and especially earlier
than for higher orders, beginning at an eccentricity between 0.86 and 0.88. When using the
coarser grid as basis, the growth of the RE starts at considerable lower eccentricities for all
interpolation orders. The differences between the different interpolation orders are less drastic
here. The errors grow rapidly already below the cropping radius as a result of the inadequate
fitting of the 10 mm grid into the sphere geometry (see Figure 4.5).
Figures 4.2 and A.22 show the convergence of the relative error with decreasing grid size. For
deep sources the effect of a coarse grid is negligible as the RE is below 0.0025 for all orders
of interpolation and eccentricities below 0.8. This is different for eccentric sources, where the
maximal relative error halves for sources positioned at the highest eccentricity when reducing the
grid size from 10 mm to 4 mm for trilinear interpolation; it even drops to its seventh part for order
four Beziér interpolation. We conclude that the effect of a finer grid becomes more important
when higher interpolation orders are used. A possible explanation is that the interpolation
nodes have a huge extent for high interpolation orders and coarse grids, e.g., forming a box of
40 mm× 40 mm× 40 mm for interpolation of order four and a 10 mm grid; actually, only few
boxes of these shape are contained in the grid, necessitating extrapolation into relatively large
distances.
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Figure 4.4: RE versus eccentricity for 4mm grid. Note that the axes are scaled individually. The boxes
are slightly shifted from their original x-position for a better readability. The maximal
source eccentricity is 98.72%.
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Figure 4.5: The 4 mm (left) and 10 mm (right) interpolation grid. The cubes inside a radius of 74 mm
are grey, blue cubes are added when cropping at a radius of 75.5 mm and red cubes at a
radius of 77 mm. Slice is made through the x = 127 mm plane.

A second effect observable for deep sources in these figures is a slight oscillation of the mean RE.
It is probably evoked by the paraxial alignment of the grids and their symmetry relative to the
center of the sphere, having a node (4 mm, 10 mm) or the barycenter of a cube (7 mm) sited at
the origin. Particularly for the trilinear interpolation on the 10 mm grid it is nicely visible that
the error drops in the vicinity of a node. For more eccentric sources the oscillation is hidden by
other error sources and the previous averaging.

Next, we want to explore the effect of grid cropping. We concentrate on Beziér interpolation of
order two and three from now on, since they represent the best compromise between accuracy
and computation time in our opinion. These orders will be exclusively used with numerically
calculated leadfields, where we will use grid cropping up to a radius of 70 mm, making the
application of trilinear interpolation not reasonable.

The RE stays below 0.01 for almost all sources and all applied cropping radii in the 4 mm case (see
Figures 4.4(b) and 4.4(c)). The differences between order two and three Beziér interpolation are
negligible. In both cases the increase of the RE when sources are more eccentric is considerably
lower than observed for the Venant or the partial integration approach with cubic meshes (Figure
A.19). Hence, grid cropping at a radius of at least 74 mm might enable us to reduce the errors
for sources with high eccentricity significantly. We will also use grids cropped at radii of 70 and
72 mm with the 1 mm cube model to discover whether a further improvement is achieved or if
the interpolation error exceeds the numerical error of the forward calculation.

Using the 10 mm grid the effect of grid cropping is weaker than in the 4 mm case. Since the 10
mm grid approximates the inner volume worse than the finer 4 mm grid does, there are many
source positions where extrapolation is already needed for a cropping radius of 77 mm, while
only few additional cubes are erased when the cropping radius is further decreased (see Figure
4.5). Therefore, the differences between the three different radii are reduced, being below 0.01
regarding the maximal RDM. Comparing these results to Figure 3.7 we decide to use a grid
cropped at a radius of 74 mm with the subtraction approach. With the coarse grid size of 10
mm we will have to observe whether a noticeable interpolation error is introduced.
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(c) RE for order three Beziér interpolation for 10 mm grid cropped at different radii.

Figure 4.6: RE versus eccentricity for 10mm grid. Note that the axes are scaled individually. The boxes
are slightly shifted from their original x-position for a better readability. The maximal
source eccentricity is 98.72%.
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Figure 4.7: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the Venant approach. The upper graphs show the results
for radial dipoles, the lower those for tangential dipoles. Note that the axes are scaled
individually. The boxes are slightly shifted from their original x-position for a better
readability. The maximal source eccentricity is 98.72%.
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4.4.2 Numerically Calculated Leadfields

Hexahedra Models

Our examination of the error distributions in the previous chapter allows us to select the
positions of the grid nodes in a manner that promises an optimal interpolation result for the
direct approaches. Accordingly, we place the nodes of the interpolation grid directly onto FE
nodes for the Venant approach, while we choose cube barycenters for the partial integration
approach. We will choose cube barycenters for the subtraction approach, too, in order to avoid
possible numerical instabilities when sources are very close to FE nodes.
We will first examine the direct approaches. In order to estimate the cropping radius generating
an optimal extrapolation result, we calculated solutions with grids cropped at different radii (70
mm, 72 mm, 74 mm, 75.5 mm) with Beziér interpolation of both order two and three.
Looking at the numerical errors presented in the previous chapter we notice that the loss of
numerical accuracy is moderate up to an eccentricity of about 0.93, i.e., a radius of 72.5 mm, and
increasing more and more for higher eccentricities. We further note that the numerical instability
induced by loaded nodes close to a conductivity jump generates errors exceeding the error of
leadfield extrapolation over a distance of 5 mm by far. We conclude that a cropping radius of at
least 74 mm should lead to the best results.
Indeed, we found a cropping radius of 72 mm to perform best with interpolation of order two
and both direct approaches (see Figures A.23 and A.24). This is a remarkable result, since
extrapolation over a distance of more than 7 mm is executed for the most eccentric sources. For
interpolation of order three, the result can even be improved by further cropping, best results
(surely only for spherical models) are reached with a cropping radius of 70 mm.
We finally compare the best results of the different interpolation orders. For the Venant approach
we find order two with cropping at 72 mm and order three with cropping at 70 mm performing
almost equally well, the resulting diagrams are shown in Figure 4.7. Only a small improvement
of both RDM and MAG for deep sources as result of adjustedly choosing the interpolation nodes
is visible. This effect will be pointed out more explicitly later on. However, the errors for shallow
sources could be reduced drastically by avoiding loaded nodes being close to or placed in the
CSF compartment. We gain a RDM below 0.02 for radial and below 0.03 for tangential sources.
The MAG was strongly improved, either.
The results regarding RDM and MAG for the partial integration approach are nearly similar to
those achieved in the Venant case (see Figure 4.8). Since the original data had a worse accuracy
compared to the Venant case, the absolute improvement is even larger. Especially for the most
eccentric set of sources, we observe a considerable gain of accuracy. Due to the higher amplitude
of the oscillation, we observe a notable profit for deep sources, too. The results for the different
orders differ more in this case with order two performing clearly best for radial sources and order
three with a small advance for tangential ones.
To illustrate the use of leadfield interpolation for the Venant and the partial integration approach
with cubic meshes, we generated maps similar to those shown in the previous chapter (see Figures
A.25 and A.26). We used interpolation order two with a 4mm grid cropped at 72 mm in both
cases, since this combination effected the biggest gain of accuracy previously. The upper row
illustrates mean RE, RDM and MAG without leadfield interpolation, the lower one the result
after the interpolation. For both approaches the errors are clearly reduced by applying leadfield
interpolation; for the partial integration approach we achieve a nearly optimal result. The
oscillations are erased for each of the three error measures while the absolute errors are reduced
nearly to the minimum. As expected, the effect for the Venant approach is less impressive. While
the oscillations are equally well mollified, the error is located in the mid-range of the spectrum,
approving our assumption from the previous chapter.
Concentrating on the behavior for highly eccentric sources, we created Figures A.27 and A.28
where we exemplarily depict the result of leadfield extrapolation. In each of the three introduced
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Figure 4.8: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the partial integration approach. The upper graphs show
the results for radial dipoles, the lower those for tangential dipoles. Note that the axes are
scaled individually. The boxes are slightly shifted from their original x-position for a better
readability. The maximal source eccentricity is 98.72%.
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Figure 4.9: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the subtraction approach. The upper graphs show the
results for radial dipoles, the lower those for tangential dipoles. Note that the axes are
scaled individually. The boxes are slightly shifted from their original x-position for a better
readability. The maximal source eccentricity is 98.72%.
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error measures we find a significantly improved accuracy, gaining a RE below 0.03 directly
beneath the surface.
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Figure 4.10: RDM and MAG versus eccentricity with and without leadfield interpolation. The upper
graphs show the results for radial dipoles, the lower those for tangential dipoles. Note that
the axes are scaled individually. The dipoles were placed at (127, y, 127)T . The maximal
source eccentricity is 98.72%.

For the sake of comparability we also computed results in a single ray scenario similar to that
examined in [84] (cf. Figure 4.10). We placed sources parallel to the y-axis in 0.25 mm steps.
We can, again, nicely observe how the oscillations are smoothed, gaining a nearly optimal result
for sources close to the origin. With higher eccentricity the position of the minimal error inside a
cube apparently moves apart from our previous estimation leading to a minimal higher error.
We can once again observe the higher oscillation amplitude of the partial integration approach.
We note that the partial integration approach without interpolation was discriminated in this
scenario since its minimal error is reached in the cube barycenters, but this does not affect our
intended conclusion.

As final examination with cubic models, we evaluated leadfield interpolation in combination with
the subtraction approach, using a grid cropped at 74 mm as basis, results are shown in Figure 4.9.
Contrary to the direct approaches, the accuracy could be improved only for the most eccentric
sources. Indeed, it is already remarkable that we find only slightly higher overall errors when
reminding that we used a coarse 10 mm grid. Thus, we achieved an extreme speed-up - only
about 5100 sources instead of 19,000 sources had to be calculated - accompanied by a negligible
loss of accuracy and an improved result for very eccentric sources (see Figure 4.11(a)). Of course,
the speed-up increases when the number of forward calculations that have to be executed rises.
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Figure 4.11: Speed-up of the subtraction approach by the use of leadfield interpolation

Tetrahedra Meshes

When applying leadfield interpolation with tetrahedral meshes, we decided to neglect grid
cropping. Our main interest concerns the reduction of oscillations, while the numerical accuracy
was only problematic for very high eccentricities using the tetrahedral meshes. Thus, we choose
a cropping radius of 77.0 mm, the grid sizes remained unchanged.
Compared to the positive results for hexahedral meshes, the effect of leadfield interpolation for
tetrahedral meshes and the direct approaches has only poor relevance (see Figures 4.12 and 4.13).
The intended mollifying of the unsteady behavior of the direct approaches has not occurred, in
contrast we even have to accept a loss of accuracy for some sources. Leadfield extrapolation
could neither improve the result for high eccentricities nor for radial dipole moments, leading to
a more than twice as high RDM for the Venant and the partial integration approach. Only the
accuracy of the Venant approach with tangential sources was reduced by preventing outliers.
Using the subtraction approach we achieved a major speed-up by a factor of three at the cost of
only a moderate loss of accuracy, again (see Figure 4.11(b) and 4.14). Nevertheless, the accuracy
could not be further improved resulting in increased errors for eccentric sources.
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Figure 4.12: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the Venant approach and a tetrahedra model. The upper
graphs show the results for radial dipoles, the lower those for tangential dipoles. Note that
the axes are scaled individually. The boxes are slightly shifted from their original
x-position for a better readability. The maximal source eccentricity is 98.72%.
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Figure 4.13: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the partial integration approach and a tetrahedra model.
The upper graphs show the results for radial dipoles, the lower those for tangential dipoles.
Note that the axes are scaled individually. The boxes are slightly shifted from their
original x-position for a better readability. The maximal source eccentricity is 98.72%.
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Figure 4.14: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation
using a leadfield computed with the subtraction approach and a tetrahedra model. The
upper graphs show the results for radial dipoles, the lower those for tangential dipoles.
Note that the axes are scaled individually. The boxes are slightly shifted from their
original x-position for a better readability. The maximal source eccentricity is 98.72%.



5 Conclusion

The three major goals of this thesis were:

• Compare the accuracy of different numerical solution approaches in a three-layer sphere
model,

• analyze the oscillations and improve the accuracy of the direct FE approaches with
hexahedral models,

• reduce the computation time and improve the accuracy of the subtraction FE approach.

In Chapters 2 and 3 we showed that the symmetric BEM outperforms the common double-layer
BE as well as the FE approaches regarding accuracy in a three-layer sphere model, being the
most accurate solution approach in this scenario. The setup time was taken as reference to
provide a valid basis for the comparison. However, we demonstrated that the error induced by
neglecting the CSF compartment clearly exceeds the numerical errors of the FE methods and
found the Venant approach to provide the best compromise of accuracy and time consumption
for both tetrahedral and hexahedral four-layer sphere meshes. Furthermore, we were able to
confirm our previous estimation concerning the distribution of numerical errors and the optimal
placement of a dipole inside a single cubic element in Chapter 3. We provided an explanation for
the origin of the oscillations for the partial integration approach.
Applying our previous results, we were able to show that the oscillations of the direct FE
approaches with hexahedral meshes can be erased using leadfield interpolation in Chapter 4.
We increased the numerical accuracy for eccentric sources and, additionally, gained a slight
improvement for deep sources. We pointed out that leadfield interpolation can clearly reduce the
computation time when applied with the subtraction approach charging only a marginal loss
of accuracy for both tetrahedral and hexahedral meshes. In the case of a hexahedral mesh the
accuracy for highly eccentric sources can be improved, too. We found a nearly equal accuracy
and time consumption for Venant and partial integration approach in combination with leadfield
interpolation, clearly outperforming the subtraction approach.
We did not achieve the hoped for side effect of mollifying the irregular oscillations of the direct
approaches with tetrahedral meshes and were, furthermore, not able to achieve an increase of
accuracy for eccentric sources. We noted that the accuracy of the subtraction approach is clearly
affected by the missing implementation of node-shifted meshes, discriminating it against the
direct approaches.
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6 Outlook

The promising results concerning the use of leadfield interpolation achieved in this thesis have a
limited significance with regard to realistic head models. Therefore, further scenarios have to be
evaluated:

• Application of leadfield interpolation in a realistically shaped, isotropic four compartment
(i.e. skin, skull spongiosa, skull compacta, brain) head model,

• application of leadfield interpolation in a multi-layer sphere model with anisotropic white
matter, i.e., at least five layered,

• leadfield interpolation in a realistically shaped six compartment (skin, skull compacta,
skull spongiosa, CSF, grey matter, white matter) head model with realistic white matter
anisotropy.

In each scenario, the results will compete with the common BE and FE approaches. However,
the lack of an analytical solution constrains the possibilities to find “the optimal solution” in a
realistic head model.
Besides the combination of leadfield interpolation with Venant and partial integration approach,
the H-matrix implementation of the subtraction approach is expected to effect a further speed-up
and should be examined, also in combination with leadfield interpolation. The yet not achieved
mollifying effect for the direct approaches in combination with tetrahedral meshes might be
achieved by the implementation of further interpolation techniques that are not restricted to a
rectangular distribution of the interpolation nodes, e.g., 3D-splines or linear interpolation on the
basis of tetrahedral grids.
Aside leadfield interpolation, some ideas exist to further improve the direct approaches.
Especially the accuracy of the partial integration approach might be increased by the use
of higher order ansatz functions, aiming to fill the lack of spatial information (particularly in the
direction of the dipole moment) in a particular source element and to suppress the oscillations at
their origin, but also the Venant and the subtraction approach are expected to benefit from higher
order ansatz functions. Furthermore, the Venant approach might profit from an implementation
preventing the placement of monopoles in adjacent layers.
Perspectively, alternative dipole models have to be considered, since a better approximation of
an activated brain region may be achieved and the singularity at the source position may be
erased. One possibility to realize this goal are the already mentioned Whitney forms, further
ideas, e.g., the description of the source term using B-splines, might be implemented with the
partial integration approach.
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A Appendix

A.1 Tables

Table A.1: Parametrization of the isotropic three layer sphere model

Medium Brain Skull Scalp

Outer shell radius 80 mm 86 mm 92 mm
Conductivity 0.33 S/m 0.0042 S/m 0.33 S/m

Table A.2: Parametrization of the isotropic four layer sphere model

Medium Brain CSF Skull Scalp

Outer shell radius 78 mm 80 mm 86 mm 92 mm
Conductivity 1.79 S/m 0.33 S/m 0.0042 S/m 0.33 S/m

Table A.3: Computation times of the different BE forward solutions. Setup measures the time for
computing and inverting the BE head matrix. One forward computation consists of the
setup of the right hand side vector and the resulting matrix multiplication. Leadfield
indicates the overall time for 19,000 forward computations.

Forward Model Model Solver Setup Forward Leadfield

Double-Layer 2056-2056-2056 SimBio 198 min 58 s 100.9 ms 230 min 56 s
Symmetric 2056-2056-2056 OpenMEEG 115 min 39 s 296.9 ms 209 min 41 s
Symmetric 2056-2056-2056 OMEEG NoAd 115 min 39 s 69.4 ms 137 min 37 s

Table A.4: Tetgen parameters of the tetrahedral FE models

Model nodes elements quality constraint volume constraint / mm3

802k-4layer-dense 801633 4985234 1.1 1.12
818k-3layer-dense 818048 5097930 1.1 1.12
519k-4layer-sparse 518730 3159575 1.1 0.63 / -1
497k-3layer-sparse 497108 3027991 1.1 0.63 / -1

I
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Table A.5: Tetgen parameters of the cubic FE models

Model nodes elements edge length / mm node shift

1mm-3layer 3342701 3262312 1 no
1mm-3layer-ns 3342701 3262312 1 yes
1mm-4layer 3342701 3262312 1 no
1mm-4layer-ns 3342701 3262312 1 yes

Table A.6: Computation times of the different FE forward solutions. Setup measures the time for
computing the FE transfer matrix. One forward computation consists of the setup of the
right hand side vector and the resulting matrix multiplication. Leadfield indicates the
overall time for 19,000 forward computations.

Forward Model Model Setup Forward Leadfield

Venant 802k-4layer-dense 99 min 26 s 23.4 ms 106 min 51 s
Partial integration 802k-4layer-dense 98 min 58 s 65.1 ms 119 min 34 s
Subtraction 519k-4layer-sparse 76 min 30 s 10.5 s 3394 min 38 s
Venant 818k-3layer-dense 106 min 8 s 23.0 ms 113 min 25 s
Partial integration 818k-3layer-dense 107 min 23 s 65.8 ms 128 min 14 s
Subtraction 497k-3layer-sparse 73 min 14 s 7.9 s 2579 min 18 s
Venant 1mm-4layer-ns 192 min 57 s 166.2 ms 245 min 34 s
Partial integration 1mm-4layer-ns 183 min 43 s 224.8 ms 254 min 55 s
Subtraction 1mm-4layer 187 min 55 s 12.3 s 4075 min 3 s

Table A.7: Number of nodes for the different interpolation grids.

Forward approach Grid size Cropping radius Number of nodes

Venant 4 mm 70.0 mm 22,551
Venant 4 mm 72.0 mm 24,303
Venant/Sphere 4 mm 74.0 mm 26,745
Venant/Sphere 4 mm 75.5 mm 28,233
Venant/Sphere 4 mm 77.0 mm 29,807
Sphere 7 mm 74.0 mm 4,911
Sphere 10 mm 74.0 mm 1,743
Partial 4 mm 70.0 mm 22,475
Partial 4 mm 72.0 mm 24,429
Partial 4 mm 74.0 mm 26,538
Partial 4 mm 75.5 mm 28,150
Partial 4 mm 77.0 mm 28,896
Subtraction 10 mm 74.0 mm 1,716
Subtraction 10 mm 77.0 mm 1,887
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Table A.8: Computation times of the different interpolation approaches. Forward indicates the time for
the interpolation of one forward solution, leadfield indicates the overall time for 19.000
forward computations. An analytic leadfield with 26745 positions is used as basis.

Interpolation Order Forward Leadfield

Trilinear 1 0.9 ms 17 s
Bezier 2 11.9 ms 3 min 46 s
Bezier 3 59.7 ms 18 min 54 s
Bezier 4 267.2 ms 87 min 27 s

A.2 Additional Figures
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Figure A.1: RDM and MAG versus eccentricity for the symmetric BEM with and without adaptive
integration. The upper graphs show the results for radial dipoles, the lower graphs those
for tangential dipoles. Note that the y-axes are scaled individually. The maximal source
eccentricity is 96.25%.
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Figure A.2: RDM and MAG versus eccentricity for the double layer BEM with different nodes per
sphere configurations. First value gives the nodes on the inner, second on the mid, third on
the outer sphere. The upper graphs show the results for radial dipoles, the lower graphs
those for tangential dipoles. Note that the y-axes are scaled individually. The maximal
source eccentricity is 96.25%.
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Figure A.3: Large versions of the boxplots shown in Figure 2.5 for radial dipoles.
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Figure A.4: Large versions of the boxplots shown in Figure 2.5 for tangential dipoles.
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Figure A.6: The four tetrahedral FE models. The upper four images show the models that are
designated for Venant and partial integration approach, the lower four those for the
subtraction approach. The cut is made through the x = 127 plane.
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Figure A.7: The two cubic FE models. The upper two images show the model without node shift, the
lower two the model with node shift. The cut is made through the x = 127 plane.
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Figure A.8: Large versions of the boxplots shown in Figure 3.5 for radial dipoles.
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Figure A.9: Large versions of the boxplots shown in Figure 3.5 for tangential dipoles.
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Figure A.11: Large versions of the boxplots shown in Figure 3.6 for radial dipoles.
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Figure A.12: Large versions of the boxplots shown in Figure 3.6 for tangential dipoles.
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Figure A.14: Large versions of the boxplots shown in Figure 3.7 for radial dipoles.
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Figure A.15: Large versions of the boxplots shown in Figure 3.7 for tangential dipoles.
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Figure A.17: Large versions of the boxplots shown in Figure 3.8 for radial dipoles.
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Figure A.18: Large versions of the boxplots shown in Figure 3.8 for tangential dipoles.



XXII A.2. ADDITIONAL FIGURES

 0

 0.02

 0.04

 0.06

 0.08

 0.1 0
 0.2

 0.4
 0.6

 0.8
 1

RE

E
ccentricity

P
artial Integration

V
enant

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.86
 0.88

 0.9
 0.92

 0.94
 0.96

 0.98
 1

RE

E
ccentricity

P
artial Integration

V
enant

 0

 0.02

 0.04

 0.06

 0.08

 0.1 0
 0.2

 0.4
 0.6

 0.8
 1

RE

E
ccentricity

P
artial Integration

V
enant

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.86
 0.88

 0.9
 0.92

 0.94
 0.96

 0.98
 1

RE

E
ccentricity

P
artial Integration

V
enant

F
igu

re
A

.19:
R

E
versus

eccentricity
for

cubic
four

layer
m

odelw
ith

node
shift.

T
he

upper
graphs

show
the

results
for

radialdipoles,the
low

er
graphs

those
for

tangential
dipoles.

N
ote

that
the

axes
are

scaled
individually.

T
he

m
axim

al
source

eccentricity
is

98.72%
.



APPENDIX A. APPENDIX XXIII

z

y

x

y

x

z

0.
01

79

0.
01

74

0.
01

69

0.
01

64

0.
01

59

4
 m

m

M
ea

n
 R

E

z

y

x

y

x

z

0.
01

87

0.
01

79

0.
01

71

0.
01

63

0.
01

55

D
ip

o
le

 i
n
 x

-d
ir

ec
ti

o
n

z

y

x

y

x

z

0.
01

86

0.
01

78

0.
01

70

0.
01

62

0.
01

54

D
ip

o
le

 i
n
 y

-d
ir

ec
ti
o
n

z

y

x

y

x

z

0.
01

88

0.
01

79

0.
01

71

0.
01

63

0.
01

54

D
ip

o
le

 i
n
 z

-d
ir

ec
ti
o
n

F
ig

u
re

A
.2

0:
D

is
tr

ib
ut

io
n

of
R

E
fo

r
th

e
V

en
an

t
ap

pr
oa

ch
.

T
he

bo
tt

om
le

ft
co

rn
er

ha
s

co
or

di
na

te
s

(1
55
,1

55
,1

55
)T

.



XXIV A.2. ADDITIONAL FIGURES

z

y

x

y

x

z

0.0193

0.0186

0.0180

0.0173

0.0166

4
 m

m

M
ea

n
 R

E

z

y

x

y

x

z

0.0193

0.0184

0.0175

0.0166

0.0156

D
ip

o
le in

 x
-d

irectio
n

z

y

x

y

x

z

0.0193

0.0184

0.0175

0.0165

0.0156

D
ip

o
le in

 y
-d

irectio
n

z

y

x

y

x

z

0.0196

0.0186

0.0176

0.0165

0.0155

D
ip

o
le in

 z-d
irectio

n

F
igu

re
A

.21:
D

istribution
of

R
E

for
the

partial
integration

approach.
T

he
bottom

left
corner

has
coordinates

(155
,155,155)

T
.



APPENDIX A. APPENDIX XXV

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  0.2  0.4  0.6  0.8  1

R
E

Eccentricity

Trilinear, 10 mm
Trilinear, 7 mm
Trilinear, 4 mm

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.75  0.8  0.85  0.9  0.95  1

R
E

Eccentricity

Trilinear, 10 mm
Trilinear, 7 mm
Trilinear, 4 mm

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0  0.2  0.4  0.6  0.8  1

R
E

Eccentricity

Bezier2, 10 mm
Bezier2, 7 mm
Bezier2, 4 mm

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.75  0.8  0.85  0.9  0.95  1

R
E

Eccentricity

Bezier2, 10 mm
Bezier2, 7 mm
Bezier2, 4 mm

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0  0.2  0.4  0.6  0.8  1

R
E

Eccentricity

Bezier3, 10 mm
Bezier3, 7 mm
Bezier3, 4 mm

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.75  0.8  0.85  0.9  0.95  1

R
E

Eccentricity

Bezier3, 10 mm
Bezier3, 7 mm
Bezier3, 4 mm

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0  0.2  0.4  0.6  0.8  1

R
E

Eccentricity

Bezier4, 10 mm
Bezier4, 7 mm
Bezier4, 4 mm

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.75  0.8  0.85  0.9  0.95  1

R
E

Eccentricity

Bezier4, 10 mm
Bezier4, 7 mm
Bezier4, 4 mm

Figure A.22: RE versus eccentricity for different interpolation grid sizes cropped at a radius of 74.0
mm. Note that the axes are scaled individually. The boxes are slightly shifted from their
original x-position for a better readability. The maximal source eccentricity is 98.72%.
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Figure A.23: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation of
order two (left column) and three (right column) using a leadfield computed with the
Venant approach. The upper graphs show the results for radial dipoles, the lower those
for tangential dipoles. Note that the axes are scaled individually. The boxes are slightly
shifted from their original x-position for a better readability. The maximal source
eccentricity is 98.72%.
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Figure A.24: RDM and MAG versus eccentricity for leadfield interpolation with Beziér interpolation of
order two (left column) and three (right column) using a leadfield computed with the
partial integration approach. The upper graphs show the results for radial dipoles, the
lower those for tangential dipoles. Note that the axes are scaled individually. The boxes
are slightly shifted from their original x-position for a better readability. The maximal
source eccentricity is 98.72%.



XXVIII A.2. ADDITIONAL FIGURES

z

y

z

y

0.0179
0.0174

0.0169

0.0164
0.0159

Mean RE
B

ef
o
re

 i
n
te

rp
o
la

ti
o
n

A
ft

er
 i
n
te

rp
o
la

ti
o
n

z

y

z

y

0.00712

0.00659

0.00606

0.00553

0.00500

Mean RDM

z

y

z

y

1.0164
1.0160

1.0157

1.0154
1.0150

Mean MAG

Figure A.25: Improvement of accuracy through leadfield interpolation for the Venant approach. The
bottom left corner has coordinates (155, 155, 155)T .
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Figure A.26: Improvement of accuracy through leadfield interpolation for the partial integration
approach. The bottom left corner has coordinates (155, 155, 155)T .
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Figure A.27: Improvement of accuracy through leadfield interpolation for eccentric sources for the
Venant approach. The bottom left corner has coordinates (127, 174, 182)T . Dark grey
corresponds to the CSF, light gray to the skull compartment.
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Figure A.28: Improvement of accuracy through leadfield interpolation for eccentric sources for the
partial integration approach. The bottom left corner has coordinates (127, 174, 182)T .
Dark grey corresponds to the CSF, light gray to the skull compartment.



XXX A.3. MISCELLANEOUS

A.3 Miscellaneous

A.3.1 St. Venant’s principle for electrostatics

The law of St. Venant was originally stated in elasticity theory, saying that a system of forces
generating a particular stress distribution can be replaced by an equivalent system of forces
with a negligible influence in a relatively far distance as long as the extension of the forces is
matchable small or more specific

”... the strains that can be produced in a body by the application, to a small part
of its surface, of a system of forces statically equivalent to zero force and zero couple,
are of negligible magnitude at distances which are large compared with the linear
dimensions of the part.”[40]

We find reason to transfer this law to our specific application, i.e., the calculation of the electric
field induced by a point dipole, in the multipole expansion [35]. If we make sure to keep the first
and second moment of our source distribution, i.e., the sum of charges and the dipole moment,
respectively, constant, the influence of our redistribution decays with ∼ 1/r3 which is one order
faster then the decay of the dipole field. By taking higher orders into account (even though they
do not directly correspond to those of the multipole expansion in our case) the influence can be
further reduced.

A.3.2 Estimation of Scaling Parameter

We reflect the ideas of [57]. The choice of the scaling parameter is important for the correct
weighting of the different moments. While a large choice lets the zeroth and first moment dominate,
a small reference length favors the influence of higher moments. Under the
assumption of a cortex thickness of d1 = 3 mm [61] and a distance between cortex surface
and scalp electrodes of at least d2 = 15 mm, aref should lead to a reasonable approximation in a
sphere with a radius of 64 mm. Additionally, the reference length should be twice larger than
the edge lengths of the tetrahedra, which is uncritical for fine models like ours. Since we take a
sphere with a radius of 92 mm as reference, we choose to scale the reference length, aref = 20
mm.
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[27] W. Hackbusch. Hierarchische Matrizen: Algorithmen und Analysis. Springer, 2009.

[28] H. Hallez, B. Vanrumste, P. Van Hese, Y. D’Asseler, I. Lemahieu, and R. Van de
Walle. A finite difference method with reciprocity used to incorporate anisotropy
in electroencephalogram dipole source localization. Physics in Medicine and Biology,
50:3787–3806, 2005.

[29] H. Hallez, B. Vanrumste, P. Van Hese, S. Delputte, and I. Lemahieu. Dipole estimation
errors due to differences in modeling anisotropic conductivities in realistic head models for
EEG source analysis. Physics in Medicine and Biology, 53:1877–1894, 2008.
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[62] R. Schönen, A. Rienäcker, R. Beckmann, and G. Knoll. Dipolabbildung im FEM-Netz, Teil
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Hiermit versichere ich, Johannes Vorwerk, dass ich die vorliegende Arbeit selbstständig verfasst
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