
On the Order of Accuracy of

the Generalized Interpolation Material Point Method

Philip C. Wallstedt

25 April 2008, 10:00 AM

University of Utah

Contents

1 Project Summary 3

2 Project Description 4
2.1 Introduction . 4
2.2 Verifying Accuracy with Manufactured Solutions . 6

2.2.1 Axis-Aligned Displacement in a Unit Square 7
2.2.2 Radial Expansion of a Ring . 8

2.3 Gradient Enhancement . 9
2.4 Alternative Time Integration Algorithms . 11
2.5 Results of Convergence Analysis . 11

2.4.1 USF - Update Stress First . 12
2.4.2 CD - Centered Difference . 12
2.5.1 Convergence for Axis-Aligned Displacement 13
2.5.2 Convergence for Expanding Ring . 14

2.6 Weighted Least Squares in the GIMP Framework . 15
2.6.1 Details of the Method . 16

3 Activity Schedule 19

List of Figures

1 Illustration of particle displacements at three representative times. 8
2 Illustration of particle displacements at three representative times. 9
3 Error for Degenerate Cases . 10
4 Error for Linear Function . 10
5 Temporal Convergence for Axis-Aligned Displacement 14
6 Spatial Convergence for Axis-Aligned Displacement 14
7 Temporal Convergence for Expanding Ring . 15
8 Spatial Convergence for Expanding Ring . 15
9 Comparison of Material Cover and Volume Partition Strategies 16
10 Comparison of Integration over Particle Volumes and Cell Volumes 17
11 Weighted Least Squares Performance for Axis-Aligned Displacement 18
12 Schedule of Active Research Components . 19

2

1 Project Summary

The Generalized Interpolation Material Point (GIMP) [7] method and its parent, the Material Point
Method [35, 38], are investigated for accuracy and stability and several improvements are developed
and verified. While displaying less accuracy than the Finite Element (FE) method, GIMP has
applicability on a wide range of problems, especially those involving contact and complex domains
such as foams and natural materials like wood or human tissue.

In order to confidently verify the GIMP algorithm, its implementation, and the improvements
developed for it, several manufactured solutions are created that are compatible with the assump-
tions made in the GIMP algorithm, especially the implied zero normal stress at all material bound-
aries. The solutions are developed following the de-facto standard for verification: the Method of
Manufactured Solutions (MMS) [20, 4, 32, 2].

A technique is developed that uses velocity gradient information that is already available (for
the calculation of rate of deformation) within the GIMP algorithm to improve the accuracy of ve-
locity projection, including the exact projection of linear velocity functions. The enhanced velocity
projection reduces the error of a solution by about forty percent for the cases discussed here, at
almost no additional computational cost.

A broad range of time integration schemes is explored and one critical change is investigated and
ultimately implemented in a 3D parallel fluid and solid-mechanics solver. The new time integration
strategy stores velocity information at half time steps, enabling central difference time updates of
all variables in the method. It is shown that second order spatial convergence is attained by making
this improvement to the temporal integration. Some analysis of the close link between temporal
and spatial effects in GIMP is also included.

A meshfree method is developed that provides compatible integration for the particles-in-a-
grid framework using a least-squares scheme, improving over the gaps and overlaps that occur in
native GIMP integration. The method developed in this proposal differs from typical meshfree
methods in that it discards nearest neighbor searches in favor of fast projections of information
to the Cartesian grid of GIMP. Such an approach is more compatible with modern cache-based
computer architectures and large scale parallel computing.

Intellectual Merit: For the first time manufactured solutions are developed that provide a
means by which to make precise measurements of accuracy for MPM and GIMP. The accuracy and
stability properties of several non-linear time integration schemes are demonstrated for the first
time, and one scheme is presented that induces second order spatial convergence. A new meshfree
method is developed that fits within the particles-in-a-grid framework of GIMP while bringing
additional smoothness and accuracy.

Broader Impacts: With the greater understanding and improvement of accuracy brought by
this proposal, GIMP can be used for larger classes of problems. While scores of researchers cur-
rently rely on the method for problems with complex domains and/or extreme impact-penetration-
deformation events, it will be opened to a much wider audience when it is better characterized. The
development of manufactured solutions for GIMP (submitted by the author for publication in [41])
will enable other researchers who use GIMP to verify their implementations and to make additional
algorithmic improvements. The manufactured solutions are also suitable for use by the meshfree
and general computational solid mechanics communities and represent fully-fledged examples for
the newly-standardized topic of verification [2]. They are more general and described in greater
detail than typical manufactured solutions that we can point to in the literature.

3

2 Project Description

2.1 Introduction

The Generalized Interpolation Material Point (GIMP) Method is a particle-in-cell method for solid
mechanics applications, described by Bardenhagen and Kober [7], that is a generalization of the
Material Point Method (MPM) of Sulsky et al. [35, 38]. MPM in turn was drawn from ideas in
FLIP [12, 13] and PIC [18, 19].

MPM and GIMP have been studied and used by numerous investigators, a subset of these impor-
tant contributions include: analysis of time integration properties by Bardenhagen [5]; membranes
and fluid-structure interaction by York, Sulsky and Schreyer [42, 43]; implicit time integration by
Guilkey and Weiss [17], as well as Sulsky and Kaul [36]; conservation properties and plasticity by
Love and Sulsky [27, 26]; contact by Bardenhagen et al. [6]; cracks and fracture by Nairn [29], and
local mesh refinement by Ma et al. [28].

MPM and GIMP are convenient because they allow easy discretization of complex geometries,
fast and straightforward contact treatments, robustness under large deformations and relative ease
of parallel implementation. However, GIMP has largely defied the types of rigorous analysis that
have been applied to say, the Finite Element Method (FEM). This is due, at least in part, to the
mixed Eulerian-Lagrangian nature of the method, in which particles carry all state data, while the
advancement of that state is carried out on the underlying grid.

GIMP improves spatial integration over MPM by treating particles as small blocks of material,
instead of as Dirac delta functions, which does a great deal to reduce the errors and instabilities
that potentially arise as particle distributions become disordered. Several variations of GIMP shape
functions Si(r) are used in practice; the variations can all be grouped together in the general 1D
form of Eq. 1 where x is position, i is the grid node index, p is the particle index, r = |xp − xi|, h
is the size of a grid cell, and lp is half-width of each particle. The first available choice in the list
is always used:

Si =

1− r2+l2p

2hlp
r < lp

1− r
h r < h− lp

(h+lp−r)2

4hlp
r < h + lp

0 otherwise

(1)

For (contiguous particle) cpGIMP the particle size is continuously updated according to the
local deformation gradient F on each particle: lnp = Fnl0p. For (uniform or Utah) UGIMP the
particle size is not changed: lnp = l0p, while for original Sulsky MPM lp = 0. Tensor products of
Eq. 1 are used to generate shape functions in 2D and 3D.

For each GIMP time step, velocity and acceleration are projected to the grid based on current
particle values of position, velocity, and deformation gradient.

vn
i =

∑
p Sipvn

pmp∑
p Sipmp

(2)

f int
i = −

∑
p

V 0
p |Fn

p |∇Sip · σ(Fn
p) (3)

an
i =

f int
i + f ext

i∑
p Sipmp

(4)

4

Then the grid velocity is updated in a forward Euler manner and the updated velocity gradient
is found.

vn+1
i = vn

i + an
i ∆t (5)

∇vn+1
p =

∑
i

∇Sipvn+1
i (6)

Finally, particle values of position, velocity and deformation gradient are updated.

xn+1
p = xn

p +
∑

i

Sipvn+1
i ∆t (7)

Fn+1
p = Fn

p +∇vn+1
p Fn

p∆t (8)

vn
p = vn

p +
∑

i

Sipan
i ∆t (9)

Tracking of particle edges, described by Ma et al. [28] offers a vehicle by which to improve the
size estimates of GIMP particles, although tracking the particle corners with sufficient accuracy
has proved challenging in general simulations. An enhanced scheme for projecting particle data to
the grid is described by Wallstedt and Guilkey here and in [40] which both reduces the error in this
operation, and also provides more predictable behavior.

Several types of time integration improvements have been explored in the literature such as
implicit integration [17, 36], central differencing [37, 41], and energy conservation effects [5, 26,
27]. But fundamental questions regarding the accuracy and stability of MPM and GIMP remain
unanswered. Indeed it has been shown that MPM and GIMP defy traditional linear stability
analysis methods [41].

In the last fifteen years a new class of “meshfree” methods has surged in popularity. Originating
with the work of Nayroles et al. [30], the Element Free Galerkin (EFG) method of Belytschko and
coworkers [11] set the stage for a large family of methods that was to follow such as the Meshless
Local Petrov-Galerkin method [3], Reproducing Kernel Particle Method [24], and hp-clouds [14],
to cite only a few. Common to these methods is the use of moving least squares [21] to ensure
that low-degree polynomials and other functions are reproduced exactly from scattered data points.
Dirichlet boundary conditions are a noticeable difficulty encountered with these methods [15], and
the methods are also considered to be about an order of magnitude slower computationally than
FEM. In order to mitigate these factors a hybrid combination of EFG and FEM was developed,
called XFEM [34], where meshfree sampling points are embedded within a typical FEM mesh in
certain critical locations such as cracks. Reproducibility is a central theme of meshfree methods
and its relation to consistency and completeness is discussed at length in [8]. Most meshfree
papers mention reproducibility and virtually all of them demonstrate first or second order numerical
convergence for their implementations. Overviews of meshfree methods are in [9, 16] and an in-
depth treatment of many methods is found in the text by Liu [23]. As part of the work proposed
herein certain ideas are taken from the meshfree literature, especially reproducibility through least
squares interpolation, and incorporated into the GIMP particles-in-a-grid framework to create a
more accurate method that still retains many of the advantages that GIMP has to offer.

Lastly we draw attention to the compelling need for verification of scientific computer codes [2].
Many classes of experiments cannot be performed, such as testing bullet impact damage on the

5

human body, and many are too expensive, such as shaking a building until it falls. The codes used
to simulate such phenomena require extraordinary predictive ability. The codes cannot merely
interpolate between existing experiments; rather they must provide reliable answers from first
principles. Therefore the demonstration of accuracy must be strong, thorough and objective. While
classic FEM enjoys this level of predictability for small deformations with smooth motion and well-
defined domains, GIMP has not been sufficiently-tested in this regard. Most papers using MPM
and/or GIMP have used “eye-ball norms”: visual comparison with experimental data or exact
solutions. We know of only a few spatial convergence measures in the literature and those were for
problems that were unrealistically simple; for example [7].

Broadly speaking, we can separate GIMP into spatial and temporal components such that
spatial components influence the integrals and derivatives in a particular time step and temporal
components define how the solutions advance from one time step to the next. In this proposal we
explore both spatial and temporal improvements and precisely measure the benefits of each by the
Method of Manufactured Solutions (MMS) [20, 4, 32].

2.2 Verifying Accuracy with Manufactured Solutions

MMS begins with an assumed solution to the model equations, and analytically determines the
external force required to achieve that solution. This allows the user to verify the accuracy of
numerical implementations and to find where bugs may exist or improvements can be made. The
critical advantage afforded by MMS is the ability to test codes with boundaries or non-linearities
for which exact solutions will never be known. It is argued [20] that MMS is sufficient to verify a
code, not merely necessary.

Although the usual purpose of MMS is to verify that a code’s stated order of accuracy is
observed in a particular implementation, we instead question assumptions of order and use MMS
here to discover what order of accuracy the GIMP method, as well as our codes, can achieve.

For this paper we define two non-linear 2D dynamic manufactured solutions, and use them for
subsequent testing. The solutions exercise the mathematical and numerical capabilities of the code
and provide reliable answers about its accuracy and stability.

Finite Element Method (FEM) texts often present Total Lagrange and Updated Lagrange forms
of the equations of motion. The Total Lagrange form is written in terms of the reference config-
uration of the material whereas the Updated Lagrange form is written in terms of the current
configuration. Either form can be used successfully in a FEM algorithm. Solutions from Updated
and Total Lagrange formulations are equivalent [10].

However, it turns out that it is necessary, or at least convenient, to manufacture solutions in
the Total Lagrange formulation. This might at first appear to conflict with the fact that GIMP is
always implemented in the Updated Lagrange form. But the equivalence of the two forms and the
ability to map back and forth between them allows a manufactured solution in the Total Lagrange
form to be validly compared to a numerical solution in the Updated Lagrange form.

The equation of motion is presented in Total and Updated Lagrange forms, respectively:

∇P + ρ0b = ρ0a (10)

∇σ + ρb = ρa (11)

where P is the 1st Piola-Kirchoff Stress; σ is Cauchy Stress; ρ is density; b is acceleration due to
body forces; and a is acceleration.

6

Many complicated constitutive models are used successfully with GIMP but for our purposes
the simple neo-Hookean is sufficient to test the nonlinear capabilities of the algorithm. The stress
is related in Total and Updated Lagrangian forms, respectively:

P = λlnJF−1 + µF−1
(
FFT − I

)
(12)

σ =
λlnJ

J
I +

µ

J

(
FFT − I

)
(13)

where u is displacement; X is position in the reference configuration; F = I+ ∂u
∂X is the deformation

gradient; J = |F| is the Jacobian; µ is shear modulus; and λ is Lamé constant.
The acceleration b due to body forces is used as the MMS source term. The source term

is manufactured such that the equations of motion are satisfied. We simply declare that the
displacement will follow some reasonable but probably non-physical path, such as a sine function,
and then determine the body force throughout the object that causes the assumed displacement to
occur.

The definition of error used later in this proposal is chosen with the Total versus Updated
Lagrange formulations in mind. On each particle the exact displacement in the Total Lagrange
form is related to the computed displacement in the Updated Lagrange form by measuring the
error δ as:

δp = ||(xp −Xp)− uexact(Xp, t)||. (14)

We define a single pessimistic, but trustworthy, measure of error for a complete solution as the
L∞ norm over all particles and all time steps:

L∞ = max(δp). (15)

Two 2D cases are drawn from the equation of motion and discussed in detail in the next two
sections.

2.2.1 Axis-Aligned Displacement in a Unit Square

Displacement in a unit square is prescribed with normal components only. Through this choice, the
corners and edges of GIMP particles are coincident and co-linear. This choice allows direct demon-
stration that GIMP can achieve the same spatial accuracy characteristics in multiple dimensions
that have been shown in a single dimension [7]. While it is not representative of general material
deformations, it does allow characterization of the error introduced via the inexact approximations
to GIMP, e.g., use of a constant sized particle characteristic function.

The plane strain displacement field is chosen to be:

u =

 Asin(πX)cos(cπt)
Asin(πY)sin(cπt)

0

 (16)

where X and Y are the scalar components of position in the reference configuration, t is time, A is
the maximum amplitude of displacement and c is wave speed such that c2 = E

ρ0
where E is Young’s

modulus; see Figure 1.

7

(a) t = 0 (b) t = 1
2c

(c) t = 1
c

Figure 1: Illustration of particle displacements at three representative times.

The stress is found by substituting deformation gradient into Eq. 12:

P =

 λ
FXX

K + µ
FXX

(F 2
XX − 1) 0 0

0 λ
FY Y

K + µ
FY Y

(F 2
Y Y − 1) 0

0 0 λK

 (17)

where K = ln(FXXFY Y) and the subscripts on u and F indicate individual terms of displacement
and deformation gradient (which is only non-zero on the diagonals) equations.

Acceleration is found by twice differentiating displacement Eq. 16 in time. Finally, substituting
stress P into Eq. 10 and solving for the body force b (used as the MMS source term) it is found
that:

b =

π2uX

ρ0

[
λ

F 2
XX

(1−K) + µ
(
1 + 1

F 2
XX

)
− E

]
π2uY

ρ0

[
λ

F 2
Y Y

(1−K) + µ
(
1 + 1

F 2
Y Y

)
− E

]
0

 . (18)

A 3D version of this problem has been developed and used to verify the correctness of the
University of Utah Uintah-GIMP implementation.

2.2.2 Radial Expansion of a Ring

Displacement is prescribed with radial symmetry for a ring as

u(R) = Acos(cπt)(c3R
3 + c2R

2 + c1R) (19)

where R (and θ) represent cylindrical coordinates in the reference configuration. A is the maximum
magnitude of displacement (10% of RO in this case), t is time, and c is the wave speed in the
material. See Figure 2 for an illustration of displacements.

The constants c3, c2, and c1 are chosen so that the field always provides for zero normal stress
on the inner (RI) and outer (RO) surfaces of the ring and so that u(RO) = A:

c3 = −2
R2

O(RO−3RI)
, c2 = 3(RO+RI)

R2
O(RO−3RI)

, c1 = −6RI
RO(RO−3RI) (20)

8

(a) t = 0 (b) t = 1
2c

(c) t = 1
c

Figure 2: Illustration of particle displacements at three representative times.

The neo-Hookean constitutive model of Eq. 12 with zero Poisson’s ratio is used to make
the manufactured solution tractable. This is deemed acceptable because behavior for non-zero
Poisson’s ratio has already been represented by the axis-aligned problem. Free surfaces provide the
complicating factor for this scenario.

We relate the Cartesian components of displacement in terms of the reference coordinates X
and Y where R2 = X2 + Y 2:

u =

 Acos(cπt)(c3R
3 + c2R

2 + c1R)X
R

Acos(cπt)(c3R
3 + c2R

2 + c1R)Y
R

0

 (21)

Equations for velocity, acceleration, and deformation gradient are straightforward to find by
differentiating Eq. 21 with respect to time and position. It is more difficult to solve Eq. 12 (with
zero Poisson’s ratio) for the MMS source term, and the resultant equations are quite unwieldy. We
use the Maple symbolic manipulation package to achieve a solution, and to generate C-compatible
source code. Additional detail can be found in [41].

2.3 Gradient Enhancement

Let us begin by examining the effect of particle position within grid cells. GIMP particles are
always initialized so they fill a cell in an equally-spaced manner with particle positions at particle
centers. As a solution progresses the particles move from their initial positions and some of them
cross into neighboring cells. The asymmetry of general particle positions introduces error into
larger-displacement solutions that does not show up for quasi-static problems.

Now we set aside the remainder of the GIMP time step and just focus on the velocity projection
of Eq. 2 By way of illustration the velocity projection errors for several simple 1D cases are related
in Figure 3. None of the four cases is able to correctly project a simple linear velocity function (nor
any higher degree function), which is analogous to a lack of consistency or completeness. Although
GIMP is a non-linear method and cannot be expected to strictly obey the Lax theorem, its inability
to exactly reproduce the simplest of functions is annoying, if not troubling.

In order to address this issue a method is developed in [40] and summarized here that uses the
velocity gradient information that is already available (for the calculation of rate of deformation)

9

within the GIMP algorithm to improve the accuracy of the velocity projection, including the exact
projection of linear functions. Within this method, each particle acts as though it is the only
particle within a cell and assumes that it must exactly project a linear function of velocity. Let
each particle carry velocity vp and velocity gradient ∂vp

∂x .
Particle p uses this information to suggest an extrapolated nodal velocity ve for each node to

which it would ordinarily contribute. Conceptually, these suggestions form a table in which the
extrapolation of velocity on particle p to node i is referred to in 1D as ve

ip.

ve
ip = ve − ∂vp

∂x
(xp − xi) (22)

Each row of the extrapolation table contains 2 entries for the 1D tent functions, 3 entries for the
1D GIMP functions, 4 entries for the 2D tent functions or 9 entries for the 2D GIMP functions,
and so on. The scheme continues to conserve momentum if xp =

∑
i xiSip, i.e., for isoparametric

trial functions. The table of extrapolated velocities is not stored in practice; rather each entry
is computed on-the-fly. The original velocity projection is then modified to use the extrapolated
velocities and the remainder of the time step proceeds as usual:

vi =

∑
p ve

ipmpSip∑
p mpSip

(23)

The 3D form for gradient-enhanced particles is simply:

ve
ip = ve −∇v · (xp − xi) (24)

The advantage of being able to reproduce linear velocity functions is highlighted with a 1D
study of velocity projection error. A global particles-per-cell (PPC) number is defined as the total
number of particles divided by the total number of cells in a 1D grid. For this test the particles
are always evenly spaced, but one by one additional particles are “squeezed” into the grid which
gradually raises the PPC. A plot is made of the maximum errors resulting from velocity projection
of a linear function over a range of global PPC numbers; see Fig. 4. When the number of particles
within one cell is an integer value then the velocity projection is exact. But for all other particle
arrangements some error is observed in the form of distinct “humps” where particles are arranged
in realistic (non-ideal) positions. However the error is substantially less for GIMP than for MPM.

Figure 3: Error for Degenerate Cases

MPM

cpGIMP

GEMPM

GEGIMP

Figure 4: Error for Linear Function

10

It was found in [40] that the upper bound of error for the projection of charge density in PIC, as
derived by Vshivkov [39] resembles several of the trends observed in velocity projection in GIMP.
The upper bound is:

δk ≤

(
3ρ2

avg

ρmin
+ h

ρ2
avgρmax

ρ3
min

∣∣∣∣∂ρ

∂x

∣∣∣∣
max

)
1

PPC2
+

h2

12

∣∣∣∣∂2ρ

∂x2

∣∣∣∣
max

(25)

where ρ is charge density and h is cell size. Vshivkov’s result suggests that the error occurs as a sum
of two terms that can act independently and which must both be driven toward zero. However, when
gradient enhancement is used (denoted by the GEMPM and GEGIMP series) then a linear function
is reproduced exactly, regardless of particle placement, as evidenced by the machine precision error
for the gradient enhanced cases.

Gradients of velocity are already present within the GIMP algorithm; they are calculated in
order to update deformation gradient. Instead of being discarded at the end of a cycle, the velocity
gradients can be saved and used as input for the next cycle at a very modest computational cost.

2.4 Alternative Time Integration Algorithms

The choice of time integration strategy originally implemented in Uintah was based on the perfor-
mance of MPM. It was chosen to offset discontinuities in the velocity field by updating stress first
(called the USF method) - before grid velocity is updated by the current acceleration. Subsequent
experience has shown that, with GIMP’s increased accuracy, a smooth velocity field is produced
and more accurate time integration results from updating stress last (USL) as described in Sec-
tion 2.1 and originally used in [35, 38]. A detailed analysis and comparison of USF and USL was
performed in [5]. By initializing velocity to a negative half time step the algorithm becomes a
centered-difference (CD) method [36] which gives second order performance for smooth problems.
The methods are compared briefly in Table 1.

For problems that start with non-zero acceleration, the initialization of velocity to a negative
half time step becomes non-trivial; if omitted, accuracy cannot be better than first order. If the true
solution is known at the negative half time step then it should be used. However, we have found
that it is convenient to simply halve the grid acceleration of Eq. 35 for the first time step: a0

i = 1
2a

0
i .

This correctly propagates the negative half time step initialization throughout the algorithm and
has not displayed any loss of accuracy in the tests that we have performed.

2.5 Results of Convergence Analysis

The order of accuracy of GIMP is measured using results from the manufactured solutions of
Section 2.2. This is the first time such data has been available for GIMP or MPM. The convergence
measures that follow do not merely verify a coded implementation of GIMP. They also help to
suggest a hypothesis for the accuracy of GIMP in general scenarios and illustrate the critical role
played by the contiguity or compatibility of integration.

Solution accuracy is examined by measuring the error in displacement, as defined by Eq. 15,
of computed solutions over ranges of mesh sizes and CFL numbers. The test code is configured so
that an error of one is returned whenever a particular solution crashes.

11

2.4.1 USF - Update Stress First

Velocity and its gradient are found at the
current time and used to update deformation
gradient to the next time step:

vi =

∑
p Sipvn

pmp∑
p Sipmp

(26)

∇vn
p =

∑
i

∇Sipvi (27)

Fn+1
p = Fn

p +∇vn
pF

n
p∆t (28)

A constitutive model finds stress as a func-
tion of the new deformation gradient, en-
abling calculation of internal force:

f int
i = −

∑
p

∇Sip · σ(Fn+1
p)V 0

p |Fn+1
p | (29)

Finally, acceleration is calculated and used
to update the position and velocity on the
particles:

ai =
f int
i + f ext

i∑
p Sipmp

(30)

xn+1
p = xn

p +
∑

i

Sip(vi + ai∆t)∆t (31)

vn+1
p = vn

p +
∑

i

Sipai∆t (32)

2.4.2 CD - Centered Difference

Velocity and acceleration are projected to
the grid based on current information. The
particle velocity lags behind by a half time
step [36].

v
n− 1

2
i =

∑
p Sipv

n− 1
2

p mp∑
p Sipmp

(33)

f int
i = −

∑
p

V 0
p |Fn

p |∇Sip · σ(Fn
p) (34)

an
i =

f int
i + f ext

i∑
p Sipmp

(35)

Now the grid velocity is updated in a central
difference fashion:

v
n+ 1

2
i = v

n− 1
2

i + an
i ∆t (36)

With smoother GIMP shape functions the
gradient of velocity can be found from up-
dated grid velocity:

∇v
n+ 1

2
p =

∑
i

∇Sipv
n+ 1

2
i (37)

Position and deformation gradient can now
be updated in a central-difference manner
because the updated grid velocity is ahead
by a half time step.

xn+1
p = xn

p +
∑

i

Sipv
n+ 1

2
i ∆t (38)

Fn+1
p = Fn

p +∇v
n+ 1

2
p Fn

p∆t (39)

The velocity update is also central difference;
velocity goes from time step n−1/2 to n+1/2
from the midpoint acceleration at n.

v
n+ 1

2
p = v

n− 1
2

p +
∑

i

Sipan
i ∆t (40)

Table 1: Comparison of USF and CD Time-Stepping Algorithms

12

2.5.1 Convergence for Axis-Aligned Displacement
Temporal convergence results for several interesting combinations of time integration algorithm and
shape function are plotted in Fig. 5.

One significant pattern is common to all the data series in the figure: Hardly any of the
combinations of time and space schemes displays temporal convergence. Most seem unaffected by
changes in CFL until some maximum stable CFL is reached after which the solution simply crashes.

However, USL-cpGIMP deviates from this pattern and displays clear first order temporal con-
vergence for CFL > 0.2. But for CFL < 0.2 the rate of convergence changes to zero. Later on we
will observe that spatial convergence for USL-cpGIMP also displays a change in convergence rate.

USF-cpGIMP converges in a crude way, but this signifies that it only holds together for very
low values of CFL. Although CD-MPM is able to solve the problem over a range of CFL values,
its error is more than two orders of magnitude greater than the CD-cpGIMP baseline. It has
been our experience that MPM produces poor quantitative convergence when high stress and
large deformation occur together. However, MPM performs acceptably with either high stress and
infinitesimal deformation or with low stress and high advection, deformation and contact.

The best algorithms from the figure all show up as horizontal lines: USL-cpGIMP, CD-cpGIMP,
and CD-GEGIMP. The slight difference between USL and CD – the half time-step initialization
– produces an order of magnitude reduction of error. GEGIMP improves over cpGIMP with a
roughly forty percent decrease in error, although at a cost of slightly reduced stability.

By improving the time integration algorithm to CD, temporal convergence is entirely eliminated;
the rate of convergence becomes zero. Our explanation for this unexpected behavior is that the
CD scheme reduces error from temporal sources to a low enough level that spatial error dominates
the results over the entire range of valid CFL numbers. Therefore we resolve that additional
improvements to GIMP should concentrate on improving the accuracy of spatial elements of the
algorithm. Although we have tried several higher-order time integration schemes (not described
here), none has improved overall accuracy above that provided by CD. We believe this strengthens
the resolution that spatial effects, and element integration in particular, should be the focus of future
research efforts. Later in this proposal we present a significant advance to spatial integration using
least squares interpolation.

The temporal convergence results suggest a strong coupling between temporal and spatial effects
that has been observed in GIMP in many ways. We next examine spatial convergence and how
it is influenced by the choice of time integration. Spatial convergence results are plotted in Fig. 6
using the same symbols as in Fig. 5.

Both USF-cpGIMP and CD-MPM display unsatisfactory performance in that they fail to show
convergence with decreasing cell size. However, we note with interest that neither method crashes,
rather both continue to provide solutions that are visually acceptable even when their fundamental
accuracy falters.

CD-UGIMP displays initially promising second order convergence, but accuracy is lost as the
mesh is refined, evidently due to the spatial integration error that results from constant sized
particles not filling the domain exactly.

Gradient Enhancement generates a reduction of error of roughly forty percent. However, this
is accompanied by reduced stability and a loss of accuracy at fine mesh resolutions. The cause
for this is not entirely explained although it is believed to be related to the gradients of velocity
becoming more delicate with higher resolution.

Finally, the CD-cpGIMP combination is satisfyingly second order in space. We are reminded

13

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.4 0.8

L
∞

 e
rr

or

CFL

CD-cpGIMP
CD-UGIMP

CD-GEGIMP
USL-cpGIMP
USF-cpGIMP

CD-MPM

Figure 5: Temporal Convergence for Axis-
Aligned Displacement

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1

L
∞

 e
rr

or

cell size h

Figure 6: Spatial Convergence for Axis-
Aligned Displacement

that this excellent behavior is only displayed for the special circumstances of the axis-aligned
problem where no gaps or overlaps exist in the cell integration. The behavior of a more realistic
problem is assessed in the next section.

2.5.2 Convergence for Expanding Ring
Temporal convergence results are generated for the expanding ring in Fig. 7. All solutions use 562

cells and A = 0.1 from Eq. 21. The curved surfaces of the ring are “stair-stepped” approximations
in the particle representation.

Temporal convergence trends are somewhat different for the expanding ring as compared to the
axis-aligned problem. UGIMP and Gradient Enhancement perform just as well as cpGIMP and
USL performs better, compared to CD, than it did for the axis-aligned problem. This suggests that
common factors dominate the results for all the methods and we believe that the most important
of these is the gaps and overlaps in the particle representation that cause inaccuracies in the spatial
integration due to non axis-aligned displacements in the ring.

The CD-MPM trend uses 25 particles per cell rather than four and requires significantly more
computational effort. Even with this extra advantage it only gives acceptable results where CFL
< 0.1. For reasons of poor performance the USF and MPM options are omitted from the spatial
convergence results shown next.

Spatial convergence for the ring is shown in Fig. 8 using the same symbols as in Fig. 7. All
solutions use four initially equally-spaced particles per cell with CFL = 0.4 and A = 0.1.

For the most part the trends display nominally first order convergence as compared to the second
order convergence for the axis-aligned solutions. USL has more error than CD simply because of
its first order initialization error, which is shown to decrease as time step sizes decrease. The loss
of convergence that we expect to see with UGIMP occurs only at high resolution – the finest mesh
size of the series.

The second order effects, seen in the axis-aligned problem, that differentiate USL, GEGIMP
and UGIMP from the CD-cpGIMP baseline are less evident as the error is now dominated by
the stair-stepped surface approximation and by gaps and overlaps among adjacent particles in the
spatial integration. Due to the deformation, the latter of these is not eliminated by a cpGIMP
treatment of the particle sizes.

Based on the preceding results and on experience with many other solutions in GIMP an

14

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.4 0.8

L
∞

 e
rr

or

CFL

CD-cpGIMP
CD-UGIMP

CD-GEGIMP
USL-cpGIMP
USF-cpGIMP

CD-MPM-PPC=25

Figure 7: Temporal Convergence for Ex-
panding Ring

 0.001

 0.01

 0.01 0.1

L
∞

 e
rr

or

cell size h

Figure 8: Spatial Convergence for Expand-
ing Ring

informal theory for accuracy in GIMP is presented. We emphasize that this does not rise to the
level of an estimate of theoretical accuracy and is not backed by analysis or discovery of an upper
bound for error. Rather it is offered as a guide and as a rule-of-thumb that ties together all the
results we have seen up until now. The informal theory is:

For large (and small) deformations GIMP is second order accurate in space when:
• Particles cover the material without gaps or overlaps
• Time integration is sufficiently accurate that spatial error dominates

For large deformations GIMP is up to first order accurate in space when:
• Particles initially cover the material but gaps and/or overlaps occur with deformation
• Particles are re-sized at every time step to better estimate the current deformation
• Time integration is sufficiently accurate that spatial error dominates

In the next section a method is presented that uses particle data within a weighted least squares
framework to improve the way that integration is performed over the material domain.

2.6 Weighted Least Squares in the GIMP Framework
Significant analysis and testing (see [33] and Section 2.5) has indicated that much of the error that
remains in GIMP, after temporal error is reduced to a subordinate role, comes from its spatial
integration procedure. The sides of cpGIMP and UGIMP particles are always assumed to lay in
coordinate planes even though this may allow gaps and overlaps to occur with realistic motion of
particles. Whereas the FEM covers the material with a mesh throughout the solution, GIMP only
covers the material at its initial configuration and thereafter the volume of material covered by
cells and the volume of material tracked on particles may differ; see Figure 9 for a comparison of
volume partitioning for FEM, GIMP, and the method of this proposal. Although this results in
inferior accuracy for GIMP compared to FEM, it also results in the major advantage of enabling
the method to work with very complex domains such as foams, composite structures, biological
materials, and material accretion or disintegration.

Therefore a method is proposed that uses the sampling points of GIMP to approximate the
surface of a material, then uses weighted least squares to generate a function over the grid which is
integrated by grid cells rather than particle volumes. Cells on the material boundary are subdivided

15

into elements with special integration rules. A method like this may offer some advantages of both
FEM and GIMP, or at least would allow easy transition between the two. For example, an over-
pressurized tank can be modeled with the high-order weighted least squares scheme until the tank
ruptures, and then the rupture surface and subsequent material disintegration can be modeled with
GIMP.

The method developed in this proposal discards the nearest neighbor searches of typical meshfree
methods in favor of the fast projections of information to a Cartesian grid used by GIMP. Such
an approach is more compatible with modern cache-based computer architectures and large scale
parallel computing.

The proposed method will retain desirable features of GIMP such as its smooth interface with
existing Cartesian fluid mechanics codes and parallelization frameworks, and convenient handling
of complex domains, extreme deformations, contact and material inter-penetration. Yet the new
method will draw additional accuracy from the improved material cover scheme and least squares
interpolation of meshfree methods.

The new method will be tested by comparison of results to known solutions, code verification
via the Method of Manufactured Solutions, and stability testing for response to perturbation.

2.6.1 Details of the Method
First, a conceptual overview of the method is presented and comparisons to GIMP and FEM are
highlighted. Then details of key equations are related.

The method relies on many framework features of GIMP. Points of information are positioned
within a fixed Cartesian grid; information is transferred to the grid in order to find gradients; then
the points of information change their position and properties based on an explicit time integration
update.

The key difference proposed is that cells are treated as finite elements and integration is per-
formed over cells, rather than using a single number on each particle to represent its value and
volume. Cells along the material boundary are divided into interior and exterior regions; the inte-
rior regions may be further split into triangles (or tetrahedra in 3D) and integrated by standard
Gauss quadrature.

While function values in GIMP are only defined on particle centers, functions are defined
throughout the material-covered region in the proposed method by means of weighted least squares
[31]. This is in contrast to the moving least squares of meshfree methods [9, 16, 23, 21] which do
not involve transfer of information to a grid.

Now we touch upon some of the mathematical details of the proposed method. We begin with

(a) Finite Element Volumes (b) GIMP Particle Volumes (c) WLS Cell Volumes

Figure 9: Comparison of Material Cover and Volume Partition Strategies

16

the WLS procedure, then show how it is used in a finite element context.
In 1D a quadratic function f(r) (or any function), where r = xp − xi, can be written as a

combination of a basis vector b = [1, r, r2] and coefficient vector c = [c0, c1, c2]:

f(r) = c0 + c1r + c2r
2 = b · c (41)

The function f(r) represents a best approximation to the particle quantities fp that fall within
the local region of a node. To find the coefficients c we minimize, with respect to c, the weighted
discrete L2 norm

L2 =
n∑
p

W [f(r)− fp]2 (42)

where the weight function W is a partition of unity with compact support, such as the typical
piecewise-linear shape function of MPM, and n is the number of points with non-zero weight near
node i. The weight function allows points to move from one cell to another smoothly.

The partial derivatives of L2 are taken with respect to the coefficients c, forming a small system
of equations. The coefficients come out of the sums and the equations can be put in matrix form
Mc = g so the coefficients become c = M−1g. The moment matrix M consists of weights and
point locations only; the load vector g contains all information about the specific value fp on each
point that contributes to the system. In this way the inverse (or LU factorization) of the moment
matrix can be stored for each point and then re-used to find the coefficients for several different
load vectors.

Grid values for density, stress, external force and other possible quantities are approximated
by WLS. Then for any quantity on the particles fp the value of the function f(r) on or near the
material is interpolated from nodes in the support as: f(r) =

∑
i Wi(r)b(r) · ci. Gradients are

calculated via the chain rule:

∂f(r)
∂r

=
∑

i

[
∂Wi(r)

∂r
b(r) · ci + Wi(r)

∂b(r)
∂r

· ci

]
(43)

The deformation gradient F can be found from the displacement gradient of the current config-
uration F = [I −∇u(x)]−1 where u is displacement. It can also be carried forward in time in the
manner of GIMP. Both options have been used successfully in 1D tests. The stress is drawn from
the constitutive model and is calculated at each Gauss quadrature point σq = σ(Fq). With the
integrals defined the method proceeds to solve the weak form of Eq. 11 in the customary manner
of GIMP and FEM.

(a) GIMP (b) WLS

Figure 10: Comparison of Integration over Particle Volumes and Cell Volumes

17

The new meshfree method is tested in 2D, but without the complication of a free surface, using
the axis-aligned manufactured solution presented in Section 2.2. Initial results for the new meshfree
method are excellent. The method demonstrates stability and converges as well as the CD-cpGIMP
baseline; see Figure 11.

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1

L
∞

 e
rr

or

cell size h

CD-cpGIMP
CD-MLS

Figure 11: Weighted Least Squares Performance for Axis-Aligned Displacement

Lastly we take up the subject of surface-finding for the proposed method and the way in which
surface cells are subdivided for integration purposes. This detail of the method is under active
development and several variations of surface-finding methods have been or will be tried. The
surface-finding routine related here works well in 1D; its application to multi-D is in progress.

A moving material boundary Γ is found by projecting the Jacobian J = det(F) from the material
points to the grid:

Γi =
1

PPC

∑
p

WipJp (44)

where PPC is the initial number of particles per cell. For Γ > 1/2 a point is inside the body;
otherwise it is outside. If a cell has at least one node inside and one node outside then it is a
boundary cell and is subdivided into interior and exterior pieces such that integrals of quantities
involving partial cells are correct. For a 2D cell there are 24 = 16 possible ways to subdivide it and
for a 3D cell there are 28 = 256 possible subdivisions. The Marching Cubes algorithm of Lorensen
and Cline [25] describes a way to process these various combinations quickly. The adaptation
required in this case is that volume regions are generated rather than the surface regions provided
by Marching Cubes.

Future investigations of this method will concentrate on robust surface approximations. A
wide of design choices is available, any of which will change the surface-finding directly or will
allow a particular surface-finding method to achieve stability and accuracy. Some design choices
that have been considered but not yet implemented are: use a 2D parabolic basis rather than
the current planar basis; use splines with wider support as weight functions; sample integrals at
particle positions rather than Gauss points; create special surface particles that carry nearest-
neighbors information; define a surface via the Point Set Surfaces of [22, 1]; and investigate implicit
surface and level set methods from the graphics community.

18

3 Activity Schedule

Figure 12 represents the time spent on each component of the research proposal. While most
components are never really completed, the black coloring indicates when a component is in the
forefront of research efforts and takes up a majority of my time.

Figure 12: Schedule of Active Research Components

19

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Computing and
rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics, 9,
2003.

[2] The American Society of Mechanical Engineers. Guide for Verification and Validation in
Computational Solid Mechanics, 2006.

[3] S. N. Atluri and T. Zhu. A new meshless local petrov-galerkin (mlpg) approach in computa-
tional mechanics. Comput. Mech., 22:117–127, 1998.

[4] B. Banerjee. Method of manufactured solutions. www.eng.utah.edu/ baner-
jee/Notes/MMS.pdf, October 2006.

[5] S. G. Bardenhagen. Energy conservation error in the material point method for solid mechanics.
Journal of Computational Physics, 180:383–403, 2002.

[6] S. G. Bardenhagen, J. E. Guilkey, K. M. Roessig, J. U. Brackbill, W. M. Witzel, and J. C.
Foster. An improved contact algorithm for the material point method and application to stress
propagation in granular material. Computer Modeling in Engineering and Sciences, 2:509–522,
2001.

[7] S. G. Bardenhagen and E. M. Kober. The generalized interpolation material point method.
Computer Modeling in Engineering and Sciences, 5:477–495, 2004.

[8] T. Belytschko, Y. Krongauz, J. Dolbow, and C. Gerlach. On the completeness of meshfree
particle methods. Int. J. Numer. Methods Eng., 43:785–819, 1998.

[9] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An
overview and recent developments. Comput. Methods Appl. Mech. Engrg., 139:3–47, 1996.

[10] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Struc-
tures. John Wiley and Sons, LTD, 2000.

[11] T. Belytschko, Y. Y. Lu, and L. Gu. Element-free galerkin methods. Int. J. Numer. Methods
Eng., 37:229–256, 1994.

[12] J. U. Brackbill and H. M. Ruppel. Flip: A low-dissipation, particle-in-cell method for fluid
flows in two dimensions. J. Comp. Phys., 65:314–343, 1986.

[13] J. U. Brackbill and H. M. Ruppel. Flip mhd: A particle-in-cell method for magnetohydrody-
namics. J. Comp. Phys., 96:163–192, 1991.

[14] C. A. Duarte and J. T. Oden. An hp adaptive method using clouds. Comput. Methods Appl.
Mech. Eng., 139:237–262, 1996.

[15] S. Fernandez-Mendez and A. Huerta. Imposing essential boundary conditions in mesh-free
methods. submitted to Elsevier Science, 2003.

20

[16] T. P. Fries and H. G. Matthies. Classification and overview of meshfree methods. Technical
Report 2003-3, Institut fur Wissenschaftliches Rechnen, Technische Universitat Braunschweig,
2004.

[17] J. E. Guilkey and J. A. Weiss. Implicit time integration for the material point method: Quan-
titative and algorithmic comparisons with the finite element method. International Journal
for Numerical Methods in Engineering, 57:1323–1338, 2003.

[18] F. H. Harlow. Hydrodynamic problems involving large fluid distortion. J. Assoc. Comp. Mach.,
4:137, 1957.

[19] F. H. Harlow. The particle-in-cell computing method for fluid dynamics. Methods Comput.
Phys., 3:319–343, 1963.

[20] P. Knupp and K. Salari. Verification of Computer Codes in Computational Science and Engi-
neering. Chapman and Hall/CRC, 2003.

[21] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Math.
Comput., 37:141–158, 1981.

[22] D. Levin. Mesh-independent surface interpolation. Advances in Computational Math., 2001.

[23] G. R. Liu. Mesh free methods: moving beyond the finite element method. CRC Press, 2003.

[24] W. K. Liu, S. Jun, and Y. Zhang. Reproducing kernel particle methods. Int. J. Numer.
Methods Fluids, 20:1081–1106, 1995.

[25] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. Computer Graphics, 21(4), 1987.

[26] E. Love and D. L. Sulsky. An energy-consistent material-point method for dynamic finite
deformation plasticity. International Journal for Numerical Methods in Engineering, 65:1608–
1638, 2005.

[27] E. Love and D. L. Sulsky. An unconditionally stable, energymomentum consistent implementa-
tion of the material-point method. Computer Methods in Applied Mechanics and Engineering,
195:3903–3925, 2006.

[28] J. Ma, H. Lu, and R. Komanduri. Structured mesh refinement in generalized interpolation
material point method (gimp) for simulation of dynamic problems. Computer Modeling in
Engineering and Sciences, 12:213–227, 2006.

[29] J. A. Nairn. Material point method calculations with explicit cracks. Computer Modeling in
Engineering and Sciences, 4:649–663, 2003.

[30] B. Nayroles, G. Touzot, and P. Villon. Generalizing the finite element method: diffuse approx-
imation and diffuse elements. Comput. Mech., 10:307–318, 1992.

[31] A. Nealen. An as-short-as-possible introduction to the least squares, weighted least squares and
moving least squares methods for scattered data approximation and interpolation. Discrete Ge-
ometric Modeling Group TU Darmstadt, http://www.nealen.com/projects/mls/asapmls.pdf,
May 2004.

21

[32] L. Schwer. Method of manufactured solutions: Demonstrations.
www.usacm.org/vnvcsm/PDF Documents/MMS-Demo-03Sep02.pdf, August 2002.

[33] M. Steffen, M. Berzins, and R. M. Kirby. Analysis and reduction of quadrature errors in the
material point method (mpm). International Journal for Numerical Methods in Engineering,
accepted for publication, 2000.

[34] N. Sukumar, N. Mos, B. Moran, and T. Belytschko. Extended finite element method for three-
dimensional crack modeling. International Journal for Numerical Methods in Engineering,
48:1549–1570, 2000.

[35] D. L. Sulsky, Z. Chen, and H. L. Schreyer. A particle method for history dependent materials.
Computer Methods in Applied Mechanics and Engineering, 118:179–196, 1994.

[36] D. L. Sulsky and A. Kaul. Implicit dynamics in the material-point method. Computer Methods
in Applied Mechanics and Engineering, 193:1137–1170, 2004.

[37] D. L. Sulsky, H. L. Schreyer, K. Peterson, R. Kwok, and M. Coon. Using the
material point method to model sea ice dynamics. Journal of Geophysical Research,
112:doi:10.1029/2005JC003329, 2007.

[38] D. L. Sulsky, S. Zhou, and H. L. Schreyer. Application of a particle-in-cell method to solid
mechanics. Computer Physics Communications, 87:236–252, 1995.

[39] V. A. Vshivkov. The approximation properties of the particles-in-cells method. Computational
Mathematics and Mathematical Physics, 36:509–515, 1996.

[40] P. C. Wallstedt and J. E. Guilkey. Improved velocity projection for the material point method.
Computer Modeling in Engineering and Sciences, 19:223–232, 2007.

[41] P. C. Wallstedt and J. E. Guilkey. An evaluation of explicit time integration schemes for use
with the generalized interpolation material point method. Journal of Computational Physics,
under review, 2008.

[42] A. R. York, D. L. Sulsky, and H. L. Schreyer. The material point method for simulation of
thin membranes. International Journal for Numerical Methods in Engineering, 44:1429–1456,
1999.

[43] A. R. York, D. L. Sulsky, and H. L. Schreyer. Fluid-membrane interaction based on the material
point method. International Journal for Numerical Methods in Engineering, 48:901–924, 2000.

22

