
Digesting the Elephant — Experiences with Interactive Production
Quality Path Tracing of the Moana Island Scene

Ingo Wald1,2 Bruce Cherniak1 Will Usher3,1 Carson Brownlee1 Attila Áfra1 Johannes Günther1 Jefferson Amstutz1
Tim Rowley1 Valerio Pascucci3 Chris R. Johnson3 Jim Jeffers1

(1)Intel Corp (2)now at NVIDIA (3)SCI Institute, University of Utah

Fig. 1. Left: An overview of the Moana Island Scene (39.3 million instances, 261.1 million unique quads, and 82.4 billion instanced quads). Right: A close-up of
the beach, with each primitive colored individually to try to convey the detail of this model. In this paper, we describe the steps taken to allow us to render
this model—in its entirety, without simplification, and with a high-quality path tracer—at interactive frame rates.

Abstract
New algorithmic and hardware developments over the past two decades
have enabled interactive ray tracing of small to modest sized scenes, and are
finding growing popularity in scientific visualization and games. However,
interactive ray tracing has not been as widely explored in the context of
production film rendering, where challenges due to the complexity of the
models and, from a practical standpoint, their unavailability to the wider
research community, have posed significant challenges. The recent release
of the Disney Moana Island Scene has made one such model available to
the community for experimentation. In this paper, we detail the challenges
posed by this scene to an interactive ray tracer, and the solutions we have
employed and developed to enable interactive path tracing of the scene with
full geometric and shading detail, with the goal of providing insight and
guidance to other researchers.

1 INTRODUCTION
Over the past two decades rendering technology has seen an aston-
ishingly fast shift towards ray tracing. While only a short time ago
production movie rendering predominantly used micro-polygon
rasterization, specifically Reyes [Cook et al. 1987], today virtually
all production renderers use some form of ray tracing [Burley et al.
2018; Christensen et al. 2018; Fascione et al. 2018; Georgiev et al.
2018; Keller et al. 2015; Kulla et al. 2018; Pharr 2018a]. In the past few
years even real-time rendering applications have begun to incorpo-
rate ray tracing effects [4A Games 2019; Electronic Arts 2019a,b].
This move toward ray tracing is driven by a number of factors: ray
tracing supports physically based lighting effects, which improves
artist usability and removes the need for approximations; scales well
with scene complexity; and maps well to thread parallelism. With
regard to the last two factors, significant improvements have been
made over the past two decades in both software and hardware to
enable real-time ray tracing.

© 2020 Copyright held by the owner/author(s).
Preprint submitted to ArXiv.

The push towards interactive ray tracing is most visible today in
scientific visualization applications [Parker et al. 2010; Wald et al.
2017] and games [4A Games 2019; Electronic Arts 2019a,b], where
compelling ray traced images can be rendered at moderate to real-
time framerates on current CPUs and GPUs, depending on themodel
size and shading complexity. However, production movie rendering
has largely remained an offline process, taking minutes to hours
per-frame. Artist tools typically use rasterization for interactive ren-
dering, resulting in a disconnect between the lighting and material
models used in the modeling tools and the final renders. This dispar-
ity in ray tracing performance is a result of the radically different
rendering demands of interactive applications and film. Interactive
applications are driven by hard real-time requirements, and leverage
a range of approximations or simplified models to produce convinc-
ing imagery with just a few samples per-pixel; however, production
renderers are driven by quality demands and prefer generality and
true realism, even if these require hundreds to thousands of samples
per pixel.

The demands placed on the ray tracer further diverge when con-
sidering the content each is tasked with rendering. While game
assets are modeled with a specific real-time frame budget in mind,
this is not the case for film, where assets are re-used to save artist
time or always modeled at high-quality. For example, if a scene in a
movie needs some shells on a beach and a shell model is available,
it is easiest to re-use this asset, even if it was originally created for a
close-up shot and consists millions of triangles and high-resolution
textures, while the new use case may be for hundreds to thousands
of sub-pixel objects. Similarly, assets tend to be modeled at high-
quality regardless of their initial planned size on screen, as the shot
may change to include a close-up of the asset.

As a result, movie content is often detailed to a degree that those
outside of film may view as extreme, with many thousands of trian-
gles projecting to each pixel [Fascione et al. 2018], tens to hundreds

ar
X

iv
:2

00
1.

02
62

0v
1 

 [
cs

.G
R

] 
 8

 J
an

 2
02

0



2 • Wald et al.

of gigabytes of textures, and orders of magnitude more instances
than a typical game has triangles. To quote Matt Pharr’s experi-
ence [Pharr 2018b] in getting PBRT to render Disney’s Moana Is-
land Scene, dealing with such content is akin to “swallowing an
elephant”, a surprisingly fitting description.

In this paper we follow Pharr’s example, but with the explicit goal
of enabling interactive rendering, without compromises in model
complexity or shading detail. We describe our experience in both
“swallowing the elephant”, i.e., loading and rendering it at all; and
“digesting” it, i.e., rendering it at interactive rates. We detail the chal-
lenges faced in terms of geometric variety and complexity, model
size, texturing and shading complexity, and performance; and how
we tackled these challenges to enable interactive rendering. Specifi-
cally, this paper aims to:

• Detail the challenges posed by production film assets to an
interactive ray tracer;

• Present our solutions for tackling these challenges to enable
interactive rendering;

• Summarize what is possible today for interactive rendering
of production assets, and briefly discuss future challenges.

2 PAPER OVERVIEW
The goal of this paper is to detail the challenges encountered and
solutions developed in our efforts to enable interactive rendering
of the Moana Island Scene—exactly as provided by Disney, without
simplification and with production-style path traced image quality.

In Section 3we give a brief overview of related work in production
rendering and to the Moana Island Scene, but defer specific related
work discussion to the relevant technical subsections throughout
Section 5. To properly motivate the trade-offs and design decisions
made in our approach, it is imperative to first convey the challenges
posed by the Moana Island Scene. Though the amount of detail
in a modern movie shot is clear even to those outside of graphics,
few researchers outside of the studios have had the chance to work
with production content. As such, the exact kind—and in particular
scale—of the challenges posed by production content is often not
well understood in the broader research community. To properly
convey these challenges we spend Section 4 describing the scene,
and the variety and scale of challenges it poses to a ray tracer.
Though other production content may pose a somewhat different
set of challenges, the Moana Island Scene provides a good proxy for
other such content.
In Section 5 we then describe our approach to handling these

challenges, and discuss the individual components of our final sys-
tem, with a focus on those which did not work out of the box, or had
to be added specifically for this work. In Section 6 we present per-
formance results of our final system, and end with a brief discussion
and summary (Section 7).

3 RELATED WORK
Early versions of the Moana Island Scene were made available to
researchers as early as late 2017, and the first public version released
in mid 2018. An illuminating summary of some of the challenges
in dealing with the Moana Island Scene is available online through
Matt Pharr’s series of blog posts [Pharr 2018b] on “Swallowing the

Elephant”, which discusses the challenges encountered in getting
the model loaded and rendered offline using PBRT [Pharr et al. 2016].
In this paper we give a further in-depth discussion of the model

and the challenges it poses to a ray tracer, with a focus on interac-
tive ray tracing. We build our interactive renderer on top of Em-
bree [Wald et al. 2014] and OSPRay [Wald et al. 2017], for ray traver-
sal and rendering, along with Disney Animation’s Ptex library [Bur-
ley and Lacewell 2008] and principled BSDF [Burley 2012, 2015], for
texturing and shading.

Though the general inaccessibility of production assets outside of
the movie studios means that dealing with such assets is largely un-
charted territory for interactive rendering research, production ren-
derers deal with such content on a daily basis. An excellent survey
of production renderers was recently presented in the ACM Trans-
actions on Graphics Special Issue on Production Rendering [Bala
2018], which includes in-depth descriptions of some of today’s most
prominent production renderers: Autodesk’s Arnold [Georgiev et al.
2018] and Sony’s Arnold [Kulla et al. 2018], Disney’s Hyperion [Bur-
ley et al. 2018], Weta’s Manuka [Fascione et al. 2018], and Pixar’s
RenderMan [Christensen et al. 2018]. Many of these production
renderers have added some support for interactive model render-
ing (and in some cases, editing) over the past few years, typically
through some form of progressive re-rendering of lower resolution
images when a part of the scene or viewpoint changes.

4 THE CHALLENGE: THE MOANA ISLAND SCENE
The Moana Island Scene was publicly released in June 2018, and
comes with an extensive whitepaper describing the asset [Tam-
storf and Pritchett 2018], which mentions that the publicly released
version is only an approximation of the original content (e.g., sub-
division surfaces are represented by their base cages). The asset
comes in two separate compressed archives, together comprising
a total of 51 GB of compressed data (134 GB uncompressed). An
additional archive specifying the animation data is also provided,
containg 24 GB of compressed data (131 GB uncompressed).
Even without animation data the model is 134 GBs, split across

roughly three components: a version of the model in a proprietary
JSON-encoding, a version of the model converted to PBRT format,
and textures which are shared between both versions. The amount
of data needed to render the scene is less than the total 134 GBs, as
only one of the JSON or PBRT versions are needed.
The scene contains 3749 Ptex textures, comprising a total of

41 GBs of texture data. Of these textures roughly 4% are used for
displacement mapping, with the majority used for color mapping.
The JSON version of the scene contains 20 GB of JSON data

across 165 files which specify the shading information and scene
hierarchy, along with an additional 11 GB of Wavefront OBJ files,
which specify the polygon meshes referenced by the JSON files.
Virtually all polygons are quads, and correspond to the subdivision
base cages used in the original scene.
The PBRT export of the scene contains 39 GB of data across

495 files. There are a variety of differences between the PBRT and
JSON versions of the model, e.g., quad meshes are converted to
PBRT triangle meshes, materials are slightly different, etc., (for
more detail, see [Tamstorf and Pritchett 2018]); however, the overall



Digesting the Elephant • 3

Fig. 2. An overview over the Moana Island Scene, with a pseudo-color
“instance ID” shader to convey the large number of instances. Different
object colors indicate different instances.

scene structure remains the same. For the remainder of this section
we will refer to the PBRT version of the model; the JSON version
should produce similar numbers, with the exception that every pair
of triangles in the PBRT files corresponds to a single quad in the
JSON’s OBJ files.

4.1 Statistical Data
In terms of shading data, there are 95 different PBRT materials in
the scene, all using Disney’s principled BSDF [Burley 2015]. For
many of these materials the diffuse component is modulated by
the underlying shape’s Ptex texture. Finally, there is one textured
environment light source and 23 quad-shaped key lights, which for
a production asset is a rather modest number.
As for geometry, there are a total of 278 unique PBRT “objects”

(i.e., before instantiation), with a total of 1.9 M unique PBRT “shapes”
(mostly triangle meshes) which contain a total of 146 M unique
triangles. After instantiation these correspond to 39 M instanced
objects with 106 M shapes, containing 10 M curves and 164 billion
instanced triangles. There are an additional 375 K “ribbon” curves
(some round, some flat) with roughly 10 M cubic curve segments.
These curves are primarily used for grass and some palm fronds in
the scene. To emphasize the scale of the geometry in the scene, the
Moana Island contains more geometry instances (over 100 M) than
most scenes used in ray tracing research contain in final polygons
(also see Figure 2).

4.2 Beyond Statistics
While the statistics behind the scene are already impressive, raw
statistical information does not convey the true challenges posed by
how this translates to the scene geometry. An adequate description
is best provided through visual exploration in an interactive ses-
sion (see supplemental video on YouTube 1), and in text form will
necessarily fall short. However, to at least convey some of these chal-
lenges: a frequently occurring feature in the scene are significantly
overlapping or intersecting geometric shapes, either resulting from
two physical copies of the same logical asset (in particular, trees),
or finer detail levels added on top of coarser base geometry. The
latter case is encountered on the water and island surface geometry,
where a finer top surface was placed on top of coarser base one.

Another common feature in the scene are large variations in
the tessellation density of nearby objects (Figure 3), either due to
1https://youtu.be/JHyC7DE3mJ4

Fig. 3. Near and far views of the Moana Island, with a pseudo-color “primi-
tive ID” shader to convey the highly varying geometric density. Left: Detailed
individual twig, pebble and seed models sit on the coarser island terrain
mesh. Right: The ocean surface near the land is highly tessellated, with the
beach covered with the sub-pixel twigs, pebbles and seeds seen in the left.

Fig. 4. The size of instances and large amount of overlap among them pose
significant challenges to the ray tracer’s top-level BVH. Left: Individual
leaves of some bushes are instanced, and overlap significantly with each
other and geometry from other instances. Right: The large number of trees
instanced through the scene overlap significantly.

the relative sizes of the objects, e.g., 1k+ triangle twigs on a beach
tessellated according to a mile-sized island, or due to some view-
and curvature-adaptive tessellation of the water. The water sur-
face alone is a few million triangles, with some areas using almost
millimeter-scale tessellation. Some of these scale differences come
from instantiation (e.g., twigs, grains of sand), while some (e.g., the
water) are in the base geometry. Large and tiny geometric primitives
often overlap and, combined with the large number of long, thin
polygons (e.g., branches, roots), this poses a significant challenge to
the ray tracer’s acceleration structure.
The distribution of instances in the scene poses a similarly chal-

lenging situation. Some instances are large, both physically and in
number of primitives, such as some trees which consist of several
million triangles. As the entire geometry for the tree is in a single
BVH, these are simple cases for the ray tracer. However, other in-
stances are tiny, consisting of a single leaf or flower bud made of a
few dozen triangles. These small instances are then used thousands
of times, e.g., to place leaves on a bush, and significantly overlap
each other and other scene geometry (see Figure 4). Although each
instance is small, the extreme amount of overlap effectively disables
the top-level BVH’s ability to separate these objects. Moreover, many
instanced objects in the scene (e.g., trees) contain a large amount
of empty space, thus there is a high chance they will have to be
traversed by the ray tracer, but a low chance of intersecting them,
leading to a significant increase in traversal cost (Figure 4).

https://youtu.be/JHyC7DE3mJ4


4 • Wald et al.

Fig. 5. Pebbles, twigs, and flowers (left); and coral antlers (right); are mod-
eled at high detail and instanced, creating a massive amount of detailed
sub-pixel and off-camera geometry.

Beyond the challenges the scene poses to a ray tracer, the overall
level of geometric detail in the model is difficult to convey. For
example, there are millions of object instances modeled at high
detail which for anything other than a close-up shot will be sub-
pixel, off-camera, or occluded in the final frame (see Figure 5). For
those outside of production rendering it may be tempting to dismiss
such data as “extreme” or “overmodeled”. In practice, such assets are
a natural consequence of a workflow which prioritizes artist time,
asset re-use, and realism, where scenes are assembled from many
smaller high-quality assets and through content generation tools
such as Disney’s Bonsai [Keim et al. 2016].

5 DIGESTING THE ELEPHANT
From the beginning, our goal was to enable interactive visual explo-
ration of the Moana Island Scene described in the previous section,
at full geometric and shading quality. Though we were initially
confident that Embree [Wald et al. 2014] and OSPRay [Wald et al.
2017] could handle such content out of the box, we found this to
not always be the case. The challenges we encountered in this work
can be roughly grouped into the following five categories: data
wrangling (i.e., dealing with dozens of gigabytes of input data); geo-
metric complexity and variety (i.e., non-triangular primitives); the
use of Ptex textures throughout the model; OSPRay’s path tracer’s
inability to handle the model’s shading demands (i.e., the principled
material); and the need to achieve interactive performance.

5.1 Data Wrangling
An often overlooked but crucial component when working with
large scenes is the ability to load the data at all, in a reasonable time
and memory budget. While not an issue for smaller scenes, in the
case of a production scene at the scale of the Moana Island, just load-
ing the data poses a real challenge. An excellent discussion of some
of these challenges can also be found in Matt Pharr’s “Swallowing
the Elephant” series of blog posts [Pharr 2018b], which covers the
challenges of loading the Moana Island Scene into PBRT.
Given both the JSON and PBRT versions of the asset2, we con-

ducted some early experiments using our open-source PBRT parser,
though quickly ran into its limitations. Attempts to load the orig-
inal JSON format directly proved similarly challenging. Though

2We were graciously provided some early versions before the public release, the latest
release of the asset also includes scripts to export an Embree XML version.

the whitepaper [Tamstorf and Pritchett 2018] provides some docu-
mentation about the JSON format, the nature of JSON as a purely
syntactical encoding makes it challenging to identify semantic re-
lationships between entities across the large number of files and
directories. This effort was further complicated by the fact that
there appears to be a form of multi-level instancing used in the
JSON version, though it was not always clear which directories
used instances in which way. As just reading the 20 GBs of JSON
data could take minutes, with little to verify the parser’s output,
debugging the JSON parser turned into a major issue.
Thus we returned to the PBRT version, and developed a work-

ing PBRT parser using the public PBRT v3 scenes for verification.
Armed with this parser we returned to the Moana Island Scene, and
began testing on subsets of the scene by manually editing the root
island.pbrt to remove objects the parser initially did not support
(e.g., curves) as they were gradually added in.

While our PBRT parser was now able to load the scene, parsing
larger and larger subsets of the scene quickly led to the parsing
time becoming a huge bottleneck. As PBRT is an ASCII format, a
significant amount of timewas spent performing billions of fscanfs
to read the geometry data. To alleviate this issue, we developed
an internal binary file format, BIFF3, which maintained the exact
same structure as the original PBRT files, but stored the geometry
data in a binary format which could be read directly with fread
instead. After converting the scene to BIFF, we were able to parse
the model (without textures) in just 15s, compared to 65 minutes
using our PBRT parser. The total scene load and setup time to create
the geometries, build the BVHs and so on takes approximately 6
minutes.

5.2 Geometry Types, Complexity, and Memory
Consumption

With our parser now able to load the triangle meshes in the scene,
we loaded these into OSPRay and Embree to render them. Though
the model also contains 3 M Bézier curve segments, these are clearly
dwarfed by the 164 billion triangles (after instantiation), and thus
we began with just the triangle data. Our initial tests rendered
the meshes colored by primitive, geometry, or instance ID using
OSPRay’s built in debug renderers (see Figures 2-5).

Though this approach worked reasonably well from a rendering
standpoint, it required a significant amount of memory just for
the geometry. Upon closer investigation, we found several ways of
reducing the memory consumed by the geometry. First, as PBRT
does not support quad primitives, the JSON-to-PBRT converter
exported each quad as a pair of triangles, along with filler texture
coordinates and additional data arrays to remap the triangle IDs to
quad IDs for Ptex texturing. Removing these arrays and computing
these values on the fly provided a significant reduction in memory
use. Second, we initially instantiated PBRT geometries rather than
objects. While this was not a problem for other PBRT models, on
the Moana Island this approach significantly increased the number
of instances in the top-level BVH, from around 39 M to over 100 M.

3A variant of the BIFF format and our PBRT parser are available on GitHub, at https:
//github.com/ingowald/pbrt-parser/

https://github.com/ingowald/pbrt-parser/
https://github.com/ingowald/pbrt-parser/


Digesting the Elephant • 5

Correcting the parser to instantiate PBRT objects instead provided
a further reduction in memory use.

Quads. Having already partially reverted the quad to triangle-pair
conversion by computing the texture coordinates and quad IDs on
the fly, the obvious next step to reduce memory use further was to
completely revert the tessellation, and render quads directly. From
the content side this was straightforward, as a visual inspection of
the PBRT files revealed that every pair of triangles formed a quad,
and thus could simply be merged back together when converting
the data to BIFF.
On the rendering side, however, this proved more challenging.

While Embree had recently added a quad mesh primitive in version
3, OSPRay was still on Embree 2, and did not support quads. As
OSPRay was initially developed for scientific visualization, where
quads are uncommon, this had not previously been an issue. Adding
support for rendering quads in OSPRay required upgrading OSPRay
to Embree 3, which, due to changes in how user geometry work
between Embree 2 and 3, and their extensive use throughout OSPRay,
was a significant effort. After upgrading to Embree 3 we added a
QuadMesh geometry to OSPRay which directly mapped to Embree’s
QuadMesh. Migrating to quads immediately halves the number of
geometric primitives, which also reduces the number of BVH nodes,
and thus build time and memory use. Upgrading to Embree 3 also
provided some additional upgrades to the underlying BVH as well,
improving performance further.

Curves. As with the quads, we initially skipped loading the Bézier
curves in the scene as Embree 2, and thus OSPRay, did not support
them. AlthoughOSPRay did have support for stream line geometries,
this geometry was designed for visualization applications and did
not support smooth cubic curves nor flat ribbon style curves, making
it unsuitable for representing grass and palm fronds. However, after
upgrading to Embree 3 we were able to use the new cubic curve
types which were recently added to Embree independently from
this work. Similar to adding quad support, all that had to be done
was add a new Curves geometry to OSPRay, which used Embree’s
curve primitive internally.
As a result of our efforts to reduce memory consumption when

loading and rendering the scene the full model can be rendered
on a workstation with 128 GB of RAM. As Embree and OSPRay
both allow for zero-copy sharing of the vertex, index, and other
data arrays with the application, passing the data to the renderer
requires no additional memory use; though Embree will require
some additional space to store the BVHs. After constructing the
BVHs the viewer requires a total of 100 GB to hold the geometry and
acceleration structures, and reaches a peak memory use of 104 GB
during the BVH build.

5.3 Ptex
Texture data is used heavily in production rendering, and the Moana
Island Scene is no exception: the diffuse component of nearly every
primitive in the scene comes from a Ptex texture. Although OSPRay
already supported textures, it only supported image textures, how-
ever Ptex is a geometry based texture format baked on top of the
underlying meshes [Burley and Lacewell 2008]. Not only does this

mean there is no reasonable way these textures could be converted
to 2D images for use in OSPRay, but that OSPRay’s entire view of
how textures can be applied to geometry—which was inherently
based on image textures—would have to change.
Previously, a texture in OSPRay would be given just the 2D UV

coordinates to be sampled and return back the computed color. How-
ever, in the case of a Ptex texture, we also need the primitive ID
(in Ptex terms, the “face ID”) to find the correct texture to sam-
ple, and the barycentric coordinates of the primitive. Modifying
OSPRay to pass this data as well was straightforward: rather than
passing just the UV texture coordinates to the texture, we pass it
the full intersection information, which includes the primitive ID
and barycentric coordinates. However, all of OSPRay’s rendering,
shading, and texturing code is written in ISPC, which operates on
multiple shade points in SIMD. While we now had the right data to
pass to Ptex for each sample, the library does not provide a SIMD
interface which can be called directly from ISPC.
To call back into the Ptex library we wrote a C-callable shim

function which could be called from ISPC with the data for a single
sample. In ISPC we then serialize the SIMD execution over the
active vector lanes using ISPC’s foreach_active construct, and
call our shim with the corresponding sample for the lane. While
this does lose the advantage of ISPC’s vectorization during texture
lookups, in a path tracer it is likely that different vector lanes will
sample different textures, impacting SIMD utilization regardless.
Further investigation into the potential for an ISPC version of Ptex
which can take advantage of SIMD for texture lookups remains an
interesting direction for future work.

On the C++ side of the Ptex texture object we use a PtexCache to
load and cache the texture data, which is shared across all textures
in the scene. The cache helps reduce memory use as the required
texture data is loaded on demand, though comes at the cost of
poor performance when first starting the viewer as frequently used
textures are first loaded into the cache.

5.4 Shading
Prior to this work, OSPRay had integrated a reasonably full-featured
path tracer. Though OSPRay was primarily designed for scientific
visualization, users’ needs beyond classical sci-vis had resulted in
this path tracer evolving to support various material types (e.g.,
glass, metal, plastic), different light sources and area lights, per-
formance optimizations for importance sampling, and progressive
refinement [Wald et al. 2017]. However, our hope that this path
tracer would meet the needs of the Moana Island Scene out of the
box was disappointed. The Moana Island Scene exclusively uses the
Disney principled BSDF, which could not be well approximated by
the existing materials in the path tracer. Proper support for the prin-
cipled BSDF was crucial to achieving the correct look for the scene
(see Figure 6), and thus we have implemented a slightly modified
and improved version of the Disney BSDF in ISPC for OSPRay. One
notable difference compared to the original version of the BSDF is
that we have made it both energy conserving and preserving [Hill
et al. 2017].

In its final version the path tracer can largely provide everything
the Moana Island Scene requires, achieving the desired look at



6 • Wald et al.

Fig. 6. Top: Rendering with the simplified material model OSPRay used
before this project. Bottom: The same, with the Disney principled material
model that we added for this project. Note the incorrect colors on the
Ironwood tree and the disappearance of the ocean in the top image.

Fig. 7. The material model and path tracer support high-quality path trac-
ing effects with progressive refinement, allowing interactive rendering of
the Moana Island Scene with full geometric and shading quality. To provide
interactive frame rates, we take one sample per-pixel each frame and accu-
mulate these frames over time to refine the image.

reasonable efficiency (see Figures 1 and 7). As with any path tracer
there is potential for even better sampling, importance sampling,
filtering, etc. In particular, scenes with many more light sources
than the Moana Island would likely require additional support for
improved sampling strategies.

5.5 Performance
OSPRay achieves interactive performancewhen rendering theMoana
Island Scene by leveraging a set of high-performance libraries, code,
and components. To leverage the SIMD capabilities on a single core
OSPRay uses Embree [Wald et al. 2014], which is vectorized inter-
nally, for ray intersections, and implements the remainder of the
renderer, material, and texture sampling code in ISPC [Pharr and
Mark 2012].

On a single machine (or node in HPC terminology) OSPRay uses
Intel’s Thread Building Blocks (TBB) for multi-threading, which
provides utilities for parallel for loops and asynchronous tasks.Work
is distributed among multiple threads by parallelizing the rendering
task over the tiles of the image, and processing them in a TBB parallel
for loop. Each thread then traces a packet of rays in SIMD, using
Embree to traverse the ray packet, and ISPC kernels to shade the
packet’s rays in parallel. The most similar production film renderer
to OSPRay is MoonRay [Lee et al. 2017], which uses larger ray
streams instead of SIMD-width packets to further improve memory
coherence.

To efficiently distribute rendering work and communicate across
multiple nodes on a cluster, OSPRay leverages a Distributed Frame-
Buffer [Usher et al. 2019] and MPI. Finally, to provide a high-quality
image at low sample counts OSPRay uses Intel’s Open Image De-
noise library [Intel 2019] for post-process denoising.

ISPC. ISPC is a compiler for a C-like language for writing single-
program multiple data (SPMD) kernels which are executed in SIMD
on the CPU’s vector lanes. The code is written as a serial program
which at runtime is executed in parallel, with a program instance
run per-CPU vector lane in a model roughly similar to GLSL, HLSL,
CUDA, and OpenCL. The group of program instances running on a
vector unit is referred to as a “gang”. In contrast to GPU program-
ming languages, ISPC runs on the CPU in the same memory space as
the calling program, and can share pointers with the “host” program
or even call back into the host code. Directly sharing pointers with
the rendering kernels is especially valuable for large scenes which
already struggle to fit in memory, as this removes the need to make
a copy of the data to pass to the compute device.

ISPC’s support for calling back into the host code directly is use-
ful for introducing vectorization into existing large codebases and
interfacing with non-vectorized code, without requiring a complete
re-write. As discussed in Section 5.3, in this work we leveraged this
capability to allow our rendering and shading code written in ISPC
to use the Ptex library for texturing. Although the program gang
must be serialized to call out to the serial host code, this enables
interoperability with existing code for texturing, on demand model
loading, etc., which would either be difficult or impossible to port
directly to ISPC.

Moreover, ISPC allows for easily writing portable vectorized code,
which is highly desirable when deploying renderers across a wide
range of hardware. This portability is achieved by compiling a multi-
target binary, which includes specialized code paths for each back-
end supported by ISPC. At runtime ISPC will then pick the cor-
rect code to run from this binary for the target architecture. The
portability and performance provided by ISPC have made it our
language of choice for implementing the core kernels of OSPRay,



Digesting the Elephant • 7

with higher-level scene setup, multi-threading, and multi-node code
implemented in C++.
Compared to alternatives for achieving vectorization on CPUs,

e.g. compiler pragmas, OpenCL, OpenMP, etc., we have found ISPC
to provide better and more reliable performance. A key drawback
of auto-vectorization and compiler pragmas is that they can easily
break when control flow diverges, and revert to fully scalar code.
In contrast, ISPC is explicitly a SPMD on SIMD model and will still
vectorize the code, though at the cost of introducing control flow
masking to handle possible divergence within a gang. Although
diverging control flow in ISPC comes with a cost, it is far more
desirable to pay this cost and keep the code vectorized than to fall
back to completely scalar code in most cases.

However, some caremust be takenwhenwriting high-performance
code in ISPC. While a complete discussion of performance consider-
ations is beyond the scope of this paper4, we discuss a few which are
directly applicable to the task of path tracing large, complex models.
To minimize control flow masking and allow greater use of scalar
registers, we recommended to use uniform variables wherever ap-
plicable. A uniform variable in ISPC is one which is the same across
all vector lanes, and can be placed in a scalar register. Moreover,
when a branch depends on a uniform variable the control flow
within a gang is known to not diverge, allowing the compiler to
avoid emitting control flow masking instructions.

We also recommend to use ISPC in 32-bit addressing mode. In this
mode, all pointers used in ISPC kernels map to 32-bit offsets relative
to a uniform 64-bit pointer. This allows the compiler to use faster
32-bit address computations and scatter/gather intrinsics, leading to
significant performance gains. However, when rendering large data
sets 32-bit offsets may be insufficient to access large data arrays of
geometry or texture data. In such cases we treat the single array as
multiple subarrays, each indexable by 32-bit offsets from a 64-bit
pointer, and use ISPC’s foreach_unique execution construct to
iterate over the unique subarrays being accessed by each program
instance. We found that even on the Moana Island Scene, there were
no objects large enough to require emulating 64-bit addressing in
this manner.

The Distributed FrameBuffer. To efficiently distribute rendering
work among nodes and combine the partial results produced by each
node, OSPRay uses a Distributed FrameBuffer [Usher et al. 2019].
The Distributed FrameBuffer (DFB) is a general framework for exe-
cuting image compositing and processing tasks for distributed ren-
derers through a distributed, asynchronous tile processing pipeline.
Along with standard image- and data-distributed rendering, the
DFB supports more advanced configurations where scene data can
be partially replicated among nodes, or some of the scene fully
replicated and combined with distributed geometry.

A “distributed renderer” implemented using the DFB consists of
a render, responsible for producing image tiles, and a tile operation,
which combines the tiles received for some image tile into a single
final tile. A tile operation can be a simple averaging to combine
multiple samples, or alpha-blended depth-compositing, e.g., for data-
distributed rendering. After the tile operation is run, additional post-
processing tasks can be performed, e.g., tone-mapping. The DFB
4See the ISPC performance guide: http://ispc.github.io/perfguide.html

Fig. 8. A crop of the Shot view, with and without denoising at one sample
per-pixel. At the start of the progressive accumulation the denoiser provides
a significant improvement in image quality, even at very low sample rates.

distributes the execution of the tile operations and post-processing
tasks among the processes by assigning tile owners to run tasks for
each tile in round-robin order among the nodes.
To render the Moana Island Scene in parallel on multiple nodes

we use the image-parallel renderer in OSPRay. The image-parallel
renderer works similar to other master-worker rendering archi-
tectures previously used in, e.g., Manta [Bigler et al. 2006] and
OpenRT [Wald et al. 2002]. This renderer is exposed through OS-
PRay’s MPIOffloadDevice, which transparently distributes the
scene data to a set of worker processes running on the compute
nodes. These workers then render the scene using the image-parallel
distributed renderer implemented with the DFB. The rendering work
is distributed among the nodes by assigning the image tiles round-
robin to each node to provide evenwork distribution for most scenes.
Each node then renders its assigned tiles in parallel using multiple
threads. At the end of the frame the final tiles are gathered onto the
head node to display the image.

Denoising. Beyond increasing compute power and improved effi-
ciency, arguably one of the biggest breakthroughs in recent years for
interactive path tracing performance was the introduction of denois-
ing techniques [Bako et al. 2017; Bitterli et al. 2016; Chaitanya et al.
2017; Mara et al. 2017; Schied et al. 2017]. Recent techniques based
on machine learning have been shown to be fast and capable of high
quality images with few samples per-pixel, see e.g., Chaitanya et
al. [2017] or Bako et al. [2017]. However, current approaches are not
without limitations when applied to interactive rendering of pro-
duction content. Real-time denoising techniques (e.g., [Chaitanya
et al. 2017; Mara et al. 2017; Schied et al. 2017]) can provide smooth
images with just a sample per-pixel, but are too approximate for
production; while denoising techniques for production rendering
(e.g., [Bako et al. 2017; Bitterli et al. 2016]) can provide better quality,
they require a higher initial sampling rate, more image features, and
do not run in real-time.
In this work we use Intel’s Open Image Denoise library [Intel

2019], which is a fast CPU implementation of a denoiser in the
spirit of Chaitanya et al. [2017]. To preserve as much image detail as
possible we provide not only color but albedo and normal buffers as
well to the denoiser. While at very low sample rates we do observe
visible blurring artifacts, in particular on trees, bushes, and reflec-
tions, these are preferable to the unfiltered image (see Figure 8).
As additional samples are accumulated over time and the image

http://ispc.github.io/perfguide.html


8 • Wald et al.

Fig. 9. The camera viewpoints used in our benchmarks. The Beach camera (left) contains a mix of geometries filling roughly the entire image and a range of
materials, and averages 252ms per-frame. The Palms camera (center) consists of diffuse materials, with a mix of large and sub-pixel geometry, and averages
183ms per-frame. The Dunes camera (right) consists of diffuse materials with a range of geometry covering the entire image, and averages 339ms per-frame.

converges, the better image quality provided to the denoiser results
in better handling of these fine detail features.
When run in parallel on multiple nodes the denoising is per-

formed on the head node after the image is rendered. This allows
the denoiser to access the entire image at once, but clearly poses a
scalablity issue for large images or expensive denoisers. To avoid the
workers remaining idle while the head node is denoising the frame,
we run the denoising in parallel to the rendering. When a frame is
finished we begin denoising it on the head node and immediately
start rendering the next frame on the workers. Distributing the
denoising work to be run in parallel across the workers through the
DFB would improve performance for large images and expensive
denoisers, though would require the workers to perform some form
of neighboring pixel exchange to provide the required data for the
denoiser. How this exchange can be done efficiently remains an
interesting follow-on effort.

5.6 USD Moana
Pixar’s Universal Scene Description format, USD, was designed
for fast loading, rendering, and collaborative editing of large-scale
production assets [Poh et al. 2018] which makes it a promising stan-
dardized alternative to using PBRT or our custom binary format.
Originally an internal scene graph format used by Pixar in produc-
tion, USD was recently released as an open source project, and has
subsequently seen a wide adoption across other studios and even
use within the game industry [Blevins and Murray 2018]. Due to
the lack of publicly available USD datasets for the wider community
to develop and test new techniques with, Disney began work on
an additional version of the Moana Island Scene converted to USD.
As of this writing, the USD version of the dataset remains a work
in progress, and does not yet match the full scale or correctness of
the publicly released JSON or PBRT versions of the model. It does,
however, present a widely used file format that exhibits significantly
improved loading times over pbrt and supports subdivision surfaces
which were missing in the pbrt conversion. We loaded and rendered
the USD Moana Island Scene using the OSPRay backend of the Hy-
dra rendering layer in USD, HdOSPRay5 (see Figure 10). The lack of
detail missing from only using the subdivision cages, a refinement
level of 0, compared to using a tessellation rate of 8 can be seen in
Fig. 11.

5https://github.com/ospray/hdospray

Fig. 10. A rendering of the work in progress USD Moana Island Scene using
HdOSPRay.

Fig. 11. Renderings of flowers using HdOSPRay and subdivision surfaces
with tessellation rates of 0, left, and 8, right.

6 RESULTS
We evaluate the performance of our renderer using the predefined
Shot, Beach, Palms, and Dunes camera positions provided in the
PBRT scene file. The camera positions chosen cover various config-
urations in terms of the directly visible geometries and materials,
covering a range of cost per-pixel (see Figures 1 and 9)

https://github.com/ospray/hdospray


Digesting the Elephant • 9

Fig. 12. Crops of two exemplary views on the cost-per-pixel spectrum. Left:
The Palms view is cheap on average with some hot spots, and achieves
5.46 FPS and 39.38 Mray/s. Right: The Dunes view is far more expensive on
average, and achieves 2.95 FPS at 36.32 Mray/s. Bottom: The same, colored
by cost per-pixel from dark (low) to light (high). Both images use the same
heat-map scale.

Table 1. Compute time breakdowns for each of the benchmarked views. We
find that the majority of time is spent in Embree performing ray traversal
and intersection tests, with sampling and shading BRDFs taking the bulk of
the remaining time. Surprisingly little time is spent in Ptex, which is likely
attributable to the texture caching performed by the library.

Component Shot Beach Palms Dunes
Embree (T. & I.) 67.28% 70.17% 71.20% 74.99%
PostIsec 7.10% 5.96% 6.99% 5.13%
Ptex 2.26% 2.89% 1.25% 2.27%
Sample & Shade 22.74% 20.45% 19.87% 17.21%
Other 0.62% 0.53% 0.69% 0.39%

The benchmarks are rendered at the film aspect ratio at a res-
olution of 1536 × 644 and a maximum path depth of five. We use
Ptex’s caching system to manage loading textures, and configure it
to allow for an unlimited amount of cache memory and 100 open
files. The Ptex cache does take some period to warm up, we found
that the first 25 to 30 frames take much longer than subsequent
frames, with the first few frames taking orders of magnitude longer
as frequently accessed textures are loaded into the cache. To bench-
mark the renderer after this warm up period we use the first 64
frames as warm up frames, and measure performance over the next
64. Our benchmarks are run using nine Intel Skylake Xeon nodes on
the Texas Advanced Computing Center’s Stampede2 system, with
one head node and eight worker nodes. Each node has two Intel
Xeon Platinum 8160 processors and 192GB of DDR4 RAM.

In terms of overall rendering performance, we find that eight
worker nodes are sufficient to provide interactive rendering. For
each camera position, we measured the average ray tracing time to

be: 207ms for Shot (36.95 Mray/s), 252ms for Beach (35.29 Mray/s),
183ms for Palms (39.38 Mray/s), and 339ms for Dunes (36.32 Mray/s).
The image denoising cost depends only on the number of pixels
being processed, and takes on average 130ms per-frame across all
the benchmarked views.
The ray tracing times correspond to larger differences in the

number of rays actually processed and shaded per-frame, due to
the differences in the scenes being rendered. In the Shot and Palms
views a large portion of the image only sees the background, and in
the Shot view additional camera rays reflect off the water surface
into the background. In contrast, the Beach and Dunes views are
largely filled with dense geometry with smooth materials, resulting
in a large number of diffuse bounces and thus rays traced (also see
Figure 12). For example, the average number of rays traced per-
pixel on the Palms scene is just 7.29, while the Dunes traces 12.45
per-pixel, corresponding to the lowest and highest average rays
per-pixel across the benchmarks, respectively.
To determine where time is spent within the renderer, we break

down the total compute time for each view by component in Table 1.
Across all scenes we observe that the majority of time (67-75%) is
spent in Embree, tracing rays and intersecting geometry, with the
second largest amount of time spent sampling and shading BRDFs.
The material model currently used in OSPRay’s path tracer returns
a set of BRDFs from the material; and with potentially different
materials hit by each ray in a packet and different sets of BRDFs
returned by these materials, the shading code can become quite
expensive and nearly serialized for a packet. The PostIsec time
measures the time spent computing the properties needed to shade
the BRDF, namely the surface normals, texture coordinates, and so
on.

The result we found the most surprising was how little time was
spent in Ptex after the warm up period. After the bulk of texture data
which is needed for the scene has been loaded into the cache, the
time spent sampling textures drops significantly. Even in the Beach
view, where a large portion of the scene is visible, Ptex lookups
only account for 2.89% of the total compute time for a frame. We do
note that this is not the case during the warm up frames, especially
when data is first being read from disk and cached. During the warm
up period the Ptex and Sample & Shade components together take
up the bulk of compute time, up to 75% in some cases, as required
texture data is fetched and cached.

7 DISCUSSION
In this paper we have presented the challenges encountered and
solutions developed to achieve interactive rendering performance
on the Moana Island Scene. Such production scenes present a sig-
nificant challenge to interactive rendering, from loading the data at
all, to rendering it interactively at full quality. As production scenes
of this scale are typically not available to the broader research com-
munity, we hope that by presenting our experiences and difficulties
in working with this asset, this paper can provide guidance to other
researchers beginning to work with the Moana Island Scene or other
similar production assets.

With tools and renderers capable of interactive rendering at full
geometric and shading quality on production scenes, artists will be



10 • Wald et al.

able to iterate more quickly on modeling and design of film assets.
To this end, we are working on integrating the rendering system
presented with production tools, and developing native support for
USD through HdOSPRay. As modeling tools for film become more
interactive, it is interesting to consider whether this faster feedback
loop between artist changes and results will change the underlying
assets, or the films themselves. Given the ability to truly explore
scenes interactively, directors may frame shots differently, or artists
be better able to adjust lighting and materials to achieve the desired
look.
Finally, while film resolutions are increasing, the rate at which

geometric and texture complexity is increasing far outpaces it. When
the renderer is only able to parallelize the rendering work over the
pixels and samples in an image, there is an inherent limit on the
amount of parallelism which can be extracted. To this end, it may
be valuable to consider data-distributed rendering of such assets,
where subregions of the data are assigned to different nodes, and
rays or data moved as needed during rendering. A data-distributed
approach may also allow for GPU-based interactive rendering of
such production scenes, where memory is more constrained than
on a CPU.

ACKNOWLEDGMENTS
The authors would like to thank Disney, and in particular Rasmus
Tamstorf, for making the Moana Island Scene publicly available, for
granting access to early versions and for assistance with the data.
The authors thank the Texas Advanced Computing Center (TACC)
at the University of Texas at Austin for providing HPC resources
that have contributed to the results reported in this paper.

REFERENCES
4A Games. 2019. Metro Exodus.
Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novak, Alex Harvill,

Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. "Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings". ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2017) 36, 4 (2017).

Kavita Bala (Ed.). 2018. Special Issue On Production Rendering and Regular Papers.
ACM Transactions on Graphics 37, 3 (2018).

James Bigler, Abe Stephens, and Steven G. Parker. 2006. Design for Parallel Interactive
Ray Tracing Systems. In 2006 IEEE Symposium on Interactive Ray Tracing.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David
Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted
First-order Regression for Denoising Monte Carlo Renderings. Computer Graphics
Forum (Proceedings of EGSR) 35, 4 (2016).

Alan Blevins and Mike Murray. 2018. Zero to USD in 80 Days: Transitioning Feature
Production to Universal Scene Description at Dreamworks. In ACM SIGGRAPH 2018
Talks (SIGGRAPH ‘18). ACM, New York, NY, USA, Article 53, 2 pages.

Brent Burley. 2012. Physically-based Shading at Disney. In SIGGRAPH 2012 Course
Notes “Practical Physically Based Shading in Film and Game Production”.

Brent Burley. 2015. Extending the Disney BRDF to a BSDF with Integrated Subsurface
Scattering. In SIGGRAPH 2015 Course Notes "Physically Based Shading in Theory and
Practice ".

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick
Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. 2018. The Design and Evolution
of Disney’s Hyperion Renderer. ACM Transactions on Graphics 37, 3, Article 33 (July
2018), 22 pages.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production
Rendering. Computer Graphics Forum 27, 4 (2008), 1155–1164.

Chakravarty R. Alla Chaitanya, Anton Kaplanyan, Christoph Schied, Marco Salvi, Aaron
Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. "Interactive Reconstruction
of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder". ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2017) 36, 4 (2017).

Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, An-
drew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister,
Brenton Rayner, Jonathan Brouillat, and Max Liani. 2018. RenderMan: An Advanced

Path-Tracing Architecture for Movie Rendering. ACM Transactions on Graphics 37,
3, Article 30 (Aug. 2018), 21 pages.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image Rendering
Architecture. In Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ‘87).

Electronic Arts. 2019a. Battlefield V.
Electronic Arts. 2019b. Project PICA PICA.
Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarzhaupt, Tomáš

Davidovič, Andrea Weidlich, and Johannes Meng. 2018. Manuka: A Batch-Shading
Architecture for Spectral Path Tracing in Movie Production. ACM Transactions on
Graphics 37, 3, Article 31 (Aug. 2018), 18 pages.

Iliyan Georgiev, Thiago Ize, Mike Farnsworth, Ramón Montoya-Vozmediano, Alan
King, Brecht Van Lommel, Angel Jimenez, Oscar Anson, Shinji Ogaki, Eric Johnston,
Adrien Herubel, Declan Russell, Frédéric Servant, and Marcos Fajardo. 2018. Arnold:
A Brute-Force Production Path Tracer. ACM Transactions on Graphics 37, 3, Article
32 (Aug. 2018), 12 pages.

Stephen Hill, Stephen McAuley, Alejandro Conty, Michal Drobot, Eric Heitz, Christophe
Hery, Christopher Kulla, Jon Lanz, Junyi Ling, Nathan Walster, Feng Xie, Adam
Micciulla, and Ryusuke Villemin. 2017. Physically Based Shading in Theory and
Practice. In ACM SIGGRAPH 2017 Courses (SIGGRAPH ‘17).

Intel. 2019. Intel Open Image Denoise. https://openimagedenoise.github.io.
Hans Keim, Maryann Simmons, Daniel Teece, Jared Reisweber, and Sara Drakeley. 2016.

Art-directable Procedural Vegetation in Disney’s Zootopia. In ACM SIGGRAPH 2016
Talks (SIGGRAPH ‘16).

Alex Keller, Luca Fascione, Marcos Fajardo, Iliyan Georgiev, Per Christensen, Johannes
Hanika, Christian Eisenacher, and Gregory Nichols. 2015. The Path Tracing Revolu-
tion in the Movie Industry. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ‘15).

Christopher Kulla, Alejandro Conty, Clifford Stein, and Larry Gritz. 2018. Sony Pictures
Imageworks Arnold. ACM Transactions on Graphics 37, 3, Article 29 (Aug. 2018),
18 pages.

Mark Lee, Brian Green, Feng Xie, and Eric Tabellion. 2017. Vectorized Production Path
Tracing. In Proceedings of High Performance Graphics (HPG ‘17).

Michael Mara, Morgan McGuire, Benedikt Bitterli, and Wojciech Jarosz. 2017. An
Efficient Denoising Algorithm for Global Illumination. In Proceedings of High Per-
formance Graphics (HPG ‘17).

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH).

Matt Pharr. 2018a. Guest Editor’s Introduction: Special Issue on Production Rendering.
ACM Transactions on Graphics 37, 3, Article 28 (July 2018), 4 pages.

Matt Pharr. 2018b. Swallowing the Elephant. https://pharr.org/matt/blog/2018/07/16/
moana-island-pbrt-all.html.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). (2016), 1200.

Matt Pharr and Bill Mark. 2012. ISPC: A SPMD Compiler for High-Performance CPU
Programming. In Proceedings of Innovative Parallel Computing (inPar).

Kiki Poh, Michael Kilgore, Tom Wichitscripornkul, and Gary Monheit. 2018. Using
USD Shading to Provide the “Extra” Touch on Incredibles2. In ACM SIGGRAPH 2018
Talks (SIGGRAPH ‘18).

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty R. Alla
Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn, andMarco
Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time Reconstruction for
Path-traced Global Illumination. In Proceedings of High Performance Graphics (HPG
‘17).

Rasmus Tamstorf and Heather Pritchett. 2018. Moana Island Scene. http://datasets.
disneyanimation.com/moanaislandscene/island-README-v1.1.pdf.

Will Usher, Ingo Wald, Jefferson Amstutz, Johannes Günther, Carson Brownlee, and
Valerio Pascucci. 2019. Scalable Ray Tracing Using the Distributed FrameBuffer.
Computer Graphics Forum (2019).

Ingo Wald, Carsten Benthin, and Philipp Slusallek. 2002. A Flexible and Scalable
Rendering Engine for Interactive 3D Graphics. Technical Report. Saarland University.

Ingo Wald, Greg P. Johnson, Jefferson Amstutz, Carson Brownlee, Aaron Knoll, Jim
Jeffers, Johannes Günther, and Paul Navrátil. 2017. OSPRay - A CPU Ray Tracing
Framework for Scientific Visualization. IEEE Transactions on Visualization and
Computer Graphics (2017).

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014.
Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH) 33 (2014).

https://openimagedenoise.github.io
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-all.html
https://pharr.org/matt/blog/2018/07/16/moana-island-pbrt-all.html
http://datasets.disneyanimation.com/moanaislandscene/island-README-v1.1.pdf
http://datasets.disneyanimation.com/moanaislandscene/island-README-v1.1.pdf

	Abstract
	1 Introduction
	2 Paper Overview
	3 Related Work
	4 The Challenge: The Moana Island Scene
	4.1 Statistical Data
	4.2 Beyond Statistics

	5 Digesting the Elephant
	5.1 Data Wrangling
	5.2 Geometry Types, Complexity, and Memory Consumption
	5.3 Ptex
	5.4 Shading
	5.5 Performance
	5.6 USD Moana

	6 Results
	7 Discussion
	Acknowledgments
	References

