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Figure 1: Watercrossing simulation using 2.1 million particles. Rendered at 4K resolution with ambient occlusion and hard shadows in 2.4
seconds on 32 Xeon Phi KNL nodes of the Stampede2 supercomputer.

Abstract
Particle-based simulation models have assumed a significant role in the numerical computation of high-fidelity transient flow
and continuum mechanical problems. However, direct visualization of surfaces from particle data without intermediary discrete
triangulation remains a challenging task. We demonstrate a novel direct raytracing scheme for free surface intersection based
on anisotropic smoothing kernels. Our approach efficiently reduces the number of candidate kernels evaluated to converge to the
surface threshold, thereby running in image space rather than object space complexity. We conduct comprehensive benchmarks
with respect to data set size, scene complexity, visual fidelity and hardware setup. Our versatile system is suitable for both high
quality and interactive desktop rendering, scales reasonably well even with trivial parallelization and renders up to 170 million
particles on 32 distributed compute nodes at close to interactive frame rates at 4K resolution with ambient occlusion.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

The visualization of numerical simulation results based on mere
point clouds is a challenging task. Such data sets emerge
from Smoothed Particle Hydrodynamics (SPH) or Finite Pointset
Method (FPM) simulations, two particle-based simulation tech-
niques in the context of transient flow and continuum mechanical
problems. In scenarios with free surfaces or moving geometry, clas-
sical grid-based numerical procedures, e.g., Finite Elements or Fi-
nite Volumes, fail due to their inherent necessity for remeshing.

However, currently there exist few well-elaborated standard vi-
sualization approaches tailored to grid-free methods. A multitude
of contemporary rendering techniques are grid-based, and thus in-
appropriate for the evaluation and analysis of particle-based simu-
lation results. Furthermore, for high density point clouds with great
geometric complexity relative to the rastered image, it seems nat-
ural to stay within the context of point-based shape representation
and directly use the surface points as display primitives.

In this context, numerous visualization approaches for particle-
based surface reconstruction rely on scalar field visualization tech-
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niques. Using different kinds of overlapping basis functions, a
scalar field representation of the fluid volume is computed, and sub-
sequently used for direct volume rendering or isosurface extraction.
A particularly interesting approach for SPH settings was presented
by Yu and Turk [YT13], who have used each particle’s neigh-
borhood structure to compute anisotropic basis functions, thereby
capturing local particle distributions more accurately and enabling
smoother surfaces with distinct features. While the anisotropic sur-
face definition itself is sound and promising, Yu and Turk have
only used Marching Cubes for discrete triangulated surface extrac-
tion, thus preventing smooth visualizations which scale transpar-
ently with resolution. To achieve a pixel-accurate representation of
the surface, the required resolution for the MC grid is prohibitively
costly in terms of computational time for most relevant cases.

In this paper, we build upon the rich anisotropic kernel approach,
adapt and tune the surface definition to FPM-based fluid simula-
tions, and present a novel direct ray tracing scheme for on-the-fly
surface reconstruction. Specifically, after a brief review of rele-
vant prior work (Section 2) and a compendiary introduction to the
specifics of the FPM (Section 3), we make the following contribu-
tions:

• In Sections 4.1 and 4.2, we present an improved anisotropic
kernel-based surface definition that specifically targets FPM
simulations, incorporates automatic kernel scaling for variable
smoothing lengths and intuitive visuals for isolated particles, and
is easily parallelized.
• For this surface definition, we describe a novel direct ray tracing

scheme definition (Section 4.3). This on-demand two-pass iter-
ative sampling algorithm intelligently reduces intersection can-
didates for both opaque and transparent surface rendering, pro-
vides optimization opportunities for secondary rays, and allows
the dynamic mapping of particle attribute values on to the surface
using arbitrary transfer functions. Details of our implementation
within the OSPRay raytracer are outlined in section 5.
• We conduct and analyze comprehensive benchmarks to quan-

tify preprocessing and rendering times on different state-of-the-
art hardware setups, including workstation, standard cluster and
Xeon Phi accelerator systems, and demonstrate the applicability
of our approach to a variety of medium and large scale FPM data
sets (Section 6).

2. Related Work

The reconstruction, tracking and visualization of fluid surfaces has
been an object of research since the advance of fluid simulation
and computational fluid dynamics. In the context of mesh-based
simulation, various techniques for surface extraction have been de-
veloped such as level-set methods [OF03], particle level-set meth-
ods [ELF05], semi-Lagrangian contouring [BGOS06], volume of
fluid methods [HN81] and explicit surface tracking [M0̈9].

However, especially for transient flow and continuum mechan-
ical problems, particle-based simulation techniques such as SPH
or FPM are more versatile than their grid-based counterparts.
Different approaches have been investigated to reconstruct fluid
surfaces directly from their point-based representations, such as
splatting in combination with image-space curvature flow reduc-
tion [vdLGS09], collecting contributing particles using cylindrical

rays [SJ00], globally fitting smooth interpolants based on radial ba-
sis functions [TO02], or point-set surfaces based on local moving
least squares fits [ABCO∗01], which can also be used for adap-
tive advancing front surface triangulation [SFS05]. While point-
set surfaces work well for densely sampled surface representa-
tions, e.g., from laser scans, they fail in turbulent and noisy sce-
narios with increasing counts of isolated particles. High quality
volume rendering of particle data has been studied by Fraedrich
et al. [FAW10] and Hochstetter et al. [HOK16]. Goswami et
al. [GSSP10] present a voxel-based rendering pipeline on the GPU
which constructs a partial distance field for subsequent ray casting.
Reichl et al. [RCSW14] use binary voxel hashing to accelerate ray
casting of point-based fluids on the GPU.

We follow the well elaborated approach of defining the fluid sur-
face as an isosurface of a scalar field constructed from overlapping
basis functions. The use of simple isotropic basis functions dates
back to Blinn’s metaballs [Bli82], which typically result in blobby
surfaces. Zhu and Bridson [ZB05] extend this idea to compensate
for local particle density variations to create considerably smoother
surfaces. Adams et al. [APKG07] track the particle-to-surface dis-
tance over time to create smooth surfaces for both fixed-radius and
adaptively sized particles. Müeller et al. [MCG03] introduced the
idea of creating a normalized scalar field based on the density as es-
timated by SPH, which we also follow. Solenthaler et al. [SSP07]
propose a surface reconstruction technique based on considering
the movement of the center of mass to reduce rendering errors in
concave regions. Premžoe et al. [PTB∗03] use isotropic kernels
with interpolation weights stretched along the velocity field.

Owen et al. [OVSM98] inspired the use of anisotropic smoothing
kernels, which were later combined by Ding et al. [DTS01] with
variational implicit surfaces. Kalaiah and Varshney [KV03] have
applied principal component analysis (PCA) to extract anisotropy
from point clouds for point-based modeling, whereas Liu et
al. [LLL06] have used anisotropic smoothing kernels for material
deformation accuracy. Yu and Turk [YT13] have built upon these
previous works and extracted a surface from the resulting normal-
ized scalar field using the marching cubes algorithm [LC87]. Ando
et al. [ATT12] employed this to determine and visualize thin fluid
sheets in fluid simulations, while Macklin and Müller [MM13]
combined it with the splatting approach of van der Laan et
al. [vdLGS09] for their iterative density solver to achieve real-
time fluid simulation. Akinci et al. [AIAT12] parallelized marching
cubes-based surface extraction by considering only grid nodes in
a narrow band around the surface. Yu et al. [YWTY12] used the
anisotropic kernel method to construct an initial explicit triangle
mesh, which is advected over time to track the air/fluid interface.

We improve on Yu and Turk’s surface definition by presenting
a novel direct raytracing scheme for anisotropic smoothing ker-
nels in combination with a modified preprocessing procedure for
FPM simulations. We also incorporate a variant of velocity-based
stretching of isolated particles, which was shown by Bhatacharya et
al. [BGB11] for level-set surface approximation minimizing thin-
plate energy.
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(a) Sponza (b) Sloshing

(c) Dam Break (d) Water Crossing

(e) Droplet (f) Double Dam Break

Figure 2: Benchmark scenes rendered with ambient occlusion and shadows.

3. Finite Pointset Method

All simulations for this paper have been performed using MESH-
FREE, a CFD software developed by Fraunhofer ITWM. MESH-
FREE uses the Finite Pointset Method (FPM, [HJKT05, TAH∗07])
to solve the Navier-Stokes equations on a point cloud. As the equa-
tions are solved in the Lagrangian formulation, particles move with
the current local velocity in every timestep. In contrast to SPH tech-
niques [LL03], particles are only numerical points and carry no
mass, allowing to continuously adapt the point cloud by filling and
deleting points. Furthermore, this also permits local refinement of
the point cloud in areas of interest. Based on a generalized finite
difference scheme, the FPM in contrast to SPH supports physical
boundary and initial conditions, as well as many well known mate-
rial models like Darcy, Johnson-Cook, and Drucker-Prager.

Typical real-world simulations discretize using less than 500 000

particles, as there is always a trade-off between computation time,
accuracy and available resources. Lower particle counts are prefer-
able as the time step size decreases with a finer resolution due to
numerical requirements. For this paper we pushed the number of
particles far beyond this to prove that our visualization method will
be future-proof.

The visualization requires, per particle, information about posi-
tion, velocity, smoothing length and kind of boundary. The smooth-
ing length h controls the density of the point cloud; a distance of
about 0.4 · h among particles is ideal. The velocity information is
used to deform isolated particles according to their direction of
movement. Kind of boundary assigns each particle their type of
boundary, which is divided into inner points, isolated points, wall
points and free surface points. Isolated points are determined by
the number of their neighbors within their smoothing length, wall
points are permanently assigned by the FPM and the detection of
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free surface points is based on a local Delaunay tetrahedralization.
Our visualization treats both wall and free surface points in the
same way as boundary particles.

4. Surface Reconstruction

The proposed surface reconstruction pipeline consists of two steps:
preprocessing and rendering. The former includes several compu-
tationally intensive steps such as smoothing of particle positions
or computing anisotropy information based on local neighborhood
structures. The resulting anisotropic kernel representation is used
in the subsequent surface visualization via direct raytracing.

In Section 4.1 we will briefly recapitulate the mathematical foun-
dation of the surface definition based on anisotropic kernels, with
concrete algorithmic details and optimizations being presented in
the following Sections 4.2 and 4.3.

4.1. Surface Definition

Our surface definition is based on the approach proposed by Yu
and Turk [YT13], where a scalar field is constructed by over-
lapping anisotropic smoothing kernels representing the neighbor-
hood structure of each particle. In contrast to previous isotropic ap-
proaches, these anisotropic kernels capture local particle distribu-
tions more accurately, enabling smooth surfaces, thin streams and
sharp features in the reconstruction. We follow the original nota-
tion and mark contributed adaptions, optimizations and extensions
accordingly.

The surface is defined as an isovalue of the normalized scalar
field

φ(x) = ∑
i

1
ρi

W (x− x̄i,Gi), (1)

where ρi is the sum of the weighted contributions of nearby parti-
cles

ρi = ∑
j

W (x̄i− x̄ j,G j) (2)

and W is an anisotropic smoothing kernel of the form

W (r,G) = det(G)P(‖Gr‖). (3)

In the preceding equations, x̄i is a smoothed particle position, Gi
is a 3x3 linear transformation matrix and P is a symmetric decaying
spline with finite support. The linear transformation G rotates and
stretches the radial vector r to normalized isotropic kernel space,
making W (r,G) an anisotropic kernel with iso-surfaces of ellip-
soidal form.

The scalar field φ(x) is designed as a normalized density field
smoothing out the scalar value of 1 at each particle’s position over
a continuous domain. Thus, an isosurface of φ(x) gives a surface
representation encompassing the particles. We use a surface tresh-
old of 0.2 for all of our use cases.

Note that the original surface definition by Yu and Turk [YT13]
was designed for a SPH context and additionally included the mass
of each particle. However, since FPM works with massless particles
as transient nodes for computation these terms are not required in
our definition.

4.2. Preprocessing

For each simulation frame, a dedicated preprocessing step is per-
formed to compute the necessary data for the interactive surface
renderer such as per-particle anisotropy information. The complete
preprocessing procedure consists of several operations which will
be discussed in the following.

Build search structure. We use hash grids for fixed-radius near-
est neighbor searches, which are required in several pipeline steps.
In this first step, we construct a hash grid over the complete set of
fluid particles. Since nearest neighbor searches are the computa-
tionally most expensive operation during preprocessing, we try to
cache and reuse previous search results as often as possible. Note
that since FPM does allow a variable smoothing length (in contrast
to SPH), we use the average smoothing length for the bucket size
of the hash grid. Thus, the grid implementation needs to support
search radii potentially larger than the grid size.

Determine thick boundary. In contrast to Yu and Turk [YT13],
we do not use the complete particle set for kernel-based surface
evaluation, but consider only particles in a given vicinity of the sur-
face boundary, which we call the thick boundary. For this we use
the MESHFREE-provided classification of free surface particles.
However, if not already available, one could alternatively classify
boundary particles based on their neighborhood count. For each
boundary particle, we mark all particles within a radius rb as thick
boundary particles. rb should be chosen as small as possible to re-
duce the number of candidate ellipsoids which are traversed during
sampling, but at the same time large enough such that the surface is
sufficiently represented and inner spheres do not intersect the outer
surface. To this end, we empirically choose rb = 0.8 · hi, where hi
is the smoothing length of the i-th particle.

The classification into thick boundary and inner particles is cru-
cial to the subsequent preprocessing and the visualization. While
inner particles are directly used by the renderer as a means for fast
inner fluid traversal, only thick boundary particles are processed in
the remaining preprocessing pipeline. After classification, particle
data is regrouped such that inner and thick boundary particles re-
side in consecutive ranges, and search structure indexing is updated
accordingly.

Update search structure. After data restructuring, the neigh-
borhood hash grid is rebuilt to reflect the new particle indexing. In
addition to the full particle set hash grid, we also construct a smaller
additional hash grid only containing the thick boundary particles to
speed up the subsequent computation of connected components.

Compute connected components. In order to alleviate attrac-
tion effects between approaching fluid components, a connected
component analysis is performed on all particles in the thick
boundary. Two particles i and j are defined as being connected
if ‖xi − x j‖ ≤ rcc, where rcc = 0.45 · hi. We identify this value
since the dynamic point management algorithm of MESHFREE
typically results in particles with distance 0.4 ·hi to each other. We
use a straightforward union-find algorithm to compute connected
components and obtain a component id for each thick boundary
particle. We only need to consider thick boundary particles, since
components which are connected through inner particles necessar-
ily are connected through boundary particles. Thus, when checking

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Direct Raytracing of Particle-based Fluid Surfaces Using Anisotropic Kernels

for connected component equality, inner particles are always con-
sidered valid.

Smooth particle positions. To improve the visual quality of flat
surfaces, a single iteration of Laplacian smoothing is applied to the
thick boundary particle positions. The updated particle positions x̄i
are computed via

x̄i = (1−λ)xi +λ∑
j

wi jx j/∑
j

wi j, (4)

where λ ∈ [0,1] is constant describing the degree of smoothing and
wi j is a weighting function with finite support. Note that the up-
dated smoothed particle positions are only used by the visualization
pipeline and do not affect the underlying simulation. We typically
use a value of 0.9 for λ to apply a strong smoothing effect. How-
ever, we find that conglomerates of isolated particles tend to be
smoothed into a single particle, which can lead to visual artifacts.
Thus, we set λ to 0.1 for particles with less than 20 neighbors.

The particle smoothing adheres to the previously established
connected component labeling, i.e., for each particle only neigh-
bors which belong to the same connected component as the parti-
cle itself are considered. This is reflected in the following weighting
function

wi j =

{
1− ((‖xi−x j‖)/rs)

3 if ‖xi−x j‖< rs and ci = c j

0 otherwise
,

(5)
where ci denotes the connected component of the i-th particle and rs
is the search radius used for nearest neighbor searches during parti-
cle smoothing; we use rs = rb + rcc = 1.25 ·hi, since inner particles
are always considered part of each connected component. Thus,
when a particle approaches a surface belonging to another con-
nected component, the inner particles behind that respective thick
boundary are not considered for smoothing until the two connected
components are close enough to merge.

We cache neighborhood information determined during particle
smoothing in order to reuse them in the subsequent computation
of anisotropic smoothing kernels and normalization densities. Note
that this results in an approximation since particle positions have
been smoothed after neighborhood querying. However, our experi-
ments show that reusing unsmoothed neighborhood information as
an approximation has only negligible visual impact.

Determine kernel scaling factors. This step is a preliminary op-
timization for the subsequent computation of the actual anisotropic
kernels, where a scaling factor is used to keep the volume of
W (Equation 3) approximately constant for all particles with full
neighborhood. Yu and Turk [YT13] have used an empirically cho-
sen constant for all particles, which is dependent on the data set at
hand and furthermore only makes sense for SPH which has a con-
stant smoothing length. In contrast to this, we employ an automatic
randomized sampling strategy to derive a polynomial relationship
between local smoothing length and an optimal kernel scaling fac-
tor for a given particle.

To achieve this, we pick a random subset of inner particles and
perform for each particle a simplified variant of the anisotropic ker-
nel computation (the exact formulae will be outlined in the subse-
quent paragraph). For each particle, a covariance matrix C is con-

structed based on a local neighborhood query. Since inner particles
are expected to have a full isotropic neighborhood, a convenient
scaling factor for the particle at hand is computed based on the de-
terminant of the covariance matrix as ki

s =
3
√

det−1(C).

All resulting (hi,ki
s) pairs are collected and averaged into a fixed

number of buckets (20 in our experiments), and a least squares
polynomial fit of degree 4 is computed, which we denote by ks(h).
This polynomial relationship is used in the following anisotropic
kernel computation to pick a suitable kernel scaling factor for each
particle based on its respective local smoothing length.

Compute anisotropic kernels. The foundation of the
anisotropic kernel method is the determination of an anisotropy
matrix Gi for each particle that describes the particle density
distribution around it. By applying weighted Principal Component
Analysis (WPCA) to the neighborhood of each particle in the thick
boundary, the weighted covariance matrix Ci is constructed as

Ci = ∑
j

wi j(x j−xw
i )(x j−xw

i )
T /∑

j
wi j, (6)

where xw
i is the weighted mean defined as

xw
i = ∑

j
wi jx j/∑

j
wi j. (7)

Note that the weight function wi j (Equation 5) now uses the up-
dated particle positions originating from the preceeding smoothing
operation and still considers connected components. We reuse the
previously cached neighborhood information from the smoothing
step, but only consider neighbors within the search radius rs = hi.

After the weighted covariance matrix has been constructed, a
Singular Value Decomposition (SVD) is applied, yielding the prin-
cipal vectors of deformation in the particle set considered. Assum-
ing the SVD is denoted by Ci =RΣRT , where R is a rotation matrix
with principal axes as column vectors and Σ = diag(σ1,σ2,σ3) a
diagonal matrix with eigenvalues σ1 ≥ σ2 ≥ σ3, extreme deforma-
tions are prevented by restricting the proportions between largest
and smaller eigenvalues, i.e., σ̃2,3 = max(σ2,3,σ1/kr), where kr is
a scaling factor denoting the maximum ratio between largest and
smallest axis of the resulting ellipsoid. For our experiments we set
kr = 4.

Since the desired transformation matrix Gi is an inversion of the
modified covariance matrix, its computation can be expressed as

Gi =
1
hi

RΣ̃
−1RT , (8)

where

Σ̃
−1 =

1
ks(hi)

diag(
1

σ1
,

1
σ̃2

,
1

σ̃3
). (9)

In contrast to Yu and Turk [YT13], we do not represent isolated
particles with insufficient neighbors as simple spherical kernels,
but also transform those along each particle’s velocity vector vi
as given by the simulation. From our experiments this approach
leads to much more intuitive visuals for fast moving isolated par-
ticles such as splashing water droplets. Specifically, if a particle
has less than 20 neighbors, the normalized velocity vn = ‖vi‖/hi
is used to determine the major transformation strength as ma =

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.



T. Biedert et al. / Direct Raytracing of Particle-based Fluid Surfaces Using Anisotropic Kernels

Figure 3: Intersection scheme: anisotropic smoothing kernels
(blue), inner spheres (gray), sampling locations (red dots) and ac-
tual surface (black). The smoothing kernel of a candidate isolated
particle in front is intersected and sampled, but the surface thresh-
old is not reached until the surface of the fluid bulk is intersected.
In transparent rendering, a secondary ray is started, which utilizes
the inner spheres to reduce the number of required samples until
the exit intersection is reached.

1 + d ·min(vn,vmax)/vmax, where vmax is the maximum normal-
ized velocity and d is the maximum degree of deformation. For
our experiments we set vmax = 50 and d = 0.3. In order to preserve
volume during transformation, the corresponding orthogonal minor
transformation strength equals to mb =

√
1/ma. The final transfor-

mation matrix Gi is then

Gi =
1
hi

R(ex,vi) S−1, (10)

where R(ex,vi) is a matrix that rotates the x-axis ex onto vi, S =
kn diag(ma,mb,mb) is a scaling matrix and kn is a size factor for
isolated particles. We use kn = 0.35 to prevent isolated particles
from looking too bold.

Compute ellipsoid bounding boxes. Once all anisotropic trans-
formations Gi have been computed, tight axis-aligned bounding
boxes are constructed for each ellipsoid of influence as these are
needed by the BVH acceleration structure used in the renderer for
fast intersection candidate retrieval.

Using the standard derivation for tight bounding boxes around
ellipsoids using projective geometry, the desired axis-aligned
bounds can be computed as

x = px±
√
(G−1

i,11)
2 +(G−1

i,12)
2 +(G−1

i,13)
2

y = py±
√
(G−1

i,21)
2 +(G−1

i,22)
2 +(G−1

i,23)
2

z = pz±
√

(G−1
i,31)

2 +(G−1
i,32)

2 +(G−1
i,33)

2

, (11)

where pi = (px, py, pz) is the particle’s center.

Compute weighted contributions per particle. As last prepro-
cessing step, the sum ρi of weighted contributions of nearby parti-
cles as outlined in Equation 2 is computed for each particle based
on the previously constructed anisotropic kernels. For the symmet-
ric decaying spline P in Equation 3 we make use of the reversed
smootherstep function defined as P(x) = 1− (6x5− 15x4 + 10x3)
for x ∈ [0,1]. Also, we precompute the combined coefficient value
of det(Gi)/ρi for each particle which is needed in the renderer for
surface sampling as illustrated in Equation 1.

After preprocessing has finished, only the data relevant for our

direct ray-based rendering technique is kept in memory. For each
particle in the thick boundary this boils down to position pi, trans-
formation matrix Gi, bounding box, coefficient det(Gi)/ρi and op-
tionally a user-selected attribute value which is used for color map-
ping onto the surface in conjunction with a given transfer function.
For inner particles only the position pi and a radius ri = s · hi is
stored, where s is a scaling factor that should be chosen sufficiently
large such that the resulting inner spheres overlap completely with
themselves and the thick boundary, i.e., there are no holes, however
at the same time as small as possible to improve acceleration struc-
ture efficiency during traversal. We choose s = 0.5 in our approach.

4.3. Intersection

Contrary to previous work based on isosurface extraction via
marching cubes, we perform a direct raycasting of the scalar field
formed from the preprocessed anisotropic (ellipsoidal) smoothing
kernels.

In order to determine ray-surface intersection position, it is nec-
essary to sample and test the scalar field along the ray. Since the
field is defined at any point as the sum of contributing kernel val-
ues, multiple overlapping kernels may be needed to reach the sur-
face value. On the other hand, intersecting a single arbitrary kernel
does not guarantee that the surface is hit. Figure 3 shows a typi-
cal scenario, where a fluid volume defined by multiple overlapping
anisotropic kernels form in the thick boundary is partially occluded
by an isolated particle in front. Additionally, we use spherical inner
particles to overlap the complete fluid volume in order to reduce the
number of sampling locations and perform fast traversal of inside
segments.

While a ray may encounter an isolated particle as a candidates for
intersection, the surface threshold is not surpassed during sampling.
The first actual surface hit is encountered at the surface of the fluid
bulk. If the surface is completely opaque, then rendering for this
particular ray stops here. However, e.g., in the case of transparent
rendering, a new ray may be started an epsilon behind the former
hit point, which continues sampling through the set of contributing
anisotropic kernels. It is crucial to keep the number of required
samples to a minimum and efficiently skip ray intervals which are
completely inside the fluid volume.

To collect contributing kernels for each ray, an all-hit intersection
test is performed, computing entrance and exit positions for all can-
didate anisotropic kernels along the ray. Candidates are provided
by the underlying acceleration structure based on their axis-aligned
bounding boxes. The resulting events are inserted in an ordered
list, which in our case has proven to be faster than saving them un-
ordered and sorting them afterwards, as studied in [AGGW15]. If
no kernels were hit, there can be no surface intersection.

However, gathering all intersected ellipsoids along the complete
ray can be quite costly and is often not even necessary, e.g., for
opaque surfaces, since the essential contributing kernels are located
in close vicinity to the frontmost ellipsoid hit. Motivated by this
observation, we perform a two-pass approach for opaque surface
rendering, where in a first step only kernels close to the first hit
are gathered and checked for intersection. Since typical accelera-
tion structures do not guarantee strict sorted ordering of query re-
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(a) Offset culling (b) Naïve all-hit

Figure 4: Total number of ellipsoids collected per ray, from zero
(blue) to 200 (red). Using offset culling dramatically reduces the
number of smoothing kernels considered for surface sampling. Red
halos in Figure 4a indicate areas where the frontmost kernels are
hit, but the surface threshold is not reached and offset culling ter-
minates. Thus, an all-hit intersection is performed to reach the real
surface intersection.

sults for performance reasons, we guide the acceleration structure
to converge to the frontmost candidates as fast as possible.

To achieve this, we introduced an optimization we call offset
culling: whenever a candidate ellipsoid is evaluated, the end of the
ray is clamped to the respective entry intersection point plus a pre-
defined offset. The offset must be chosen large enough, such that in
any case all kernels contributing to the surface are returned by the
search structure, even when the first candidate encountered is the
frontmost ellipsoid. We use 0.5 · havg, where havg denotes the av-
erage smoothing length of the whole data set. Offset culling yields
a significant performance improvement over a naïve all-hit query,
since the number of candidate kernels potentially contributing to
the surface is dramatically reduced, as can be seen in Figure 4. This
leads to another improvement as we do not need to sort ellipsoids
during gathering, but rather simply store them in any order. If the
surface was not hit during the first pass, the ray is cast again with-
out offset culling to gather all kernels as described above. Offset
culling is only performed for opaque surfaces, where rays always
start outside of the volume and stop at the first surface intersection.
When rendering with transparency, large numbers of rays start af-
ter the first surface intersection and pass through the inner fluid,
where next surface interaction does not lie in vicinity of the front-
most ellipsoids encountered. Listing 1 shows the handling of each
candidate ellipsoid during the all-hit phase.

In addition to the anisotropic kernels for particles in the thick
boundary, we make use of the remaining inner particles of spherical
form for fast traversal of inner ray segments. Each sphere along the
ray marks an interval that is always inside the volume. Therefore,
there can be no intersection with the surface during this interval and
it is safe to skip sampling on this segment of the ray. Similiar to the
gathering of candidate ellipsoids, we perform an all-hit intersection
in the local spheres scene. To reduce the number of intervals to

be checked during sampling, intervals are merged with overlapping
ones in a sorted list of intervals as they are detected, as outlined in
Listing 2.

Having collected all potentially contributing anisotropic smooth-
ing kernels and having constructed the minimal list of inner in-
tervals, uniform sampling is performed along the ray between all
recorded events. For our experiments we employ 0.1 ·havg as sam-
pling step size. At each sampling position, we first check if an in-
side segment can be skipped. Then, the list of currently contribut-
ing anisotropic kernels is updated. If no ellipsoids are actually con-
tributing at the sample position, we jump to the next ellipsoid’s
entry event. Otherwise, the surface’s scalar field value is evalu-
ated over the sum of contributing kernels. If the computed value

1 compute i n t e r s e c t i o n s o f r a y wi th e l l i p s o i d
2 i f ( no i n t e r s e c t i o n )
3 r e t u r n
4 i f ( o f f s e t c u l l i n g )
5 i f ( e l l i p s o i d b eh i nd end of r a y )
6 r e t u r n
7 s e t end of r a y t o e n t r y + o f f s e t
8 s t o r e e l l i p s o i d i n u n s o r t e d a r r a y
9 e l s e

10 c o n s t r u c t e v e n t s f o r e n t r y and e x i t
11 i n s e r t e v e n t s i n s o r t e d a r r a y

Listing 1: Per-ellipsoid callback for all-hit intersection.

1 compute i n t e r s e c t i o n s o f r a y wi th s p h e r e
2 i f ( no i n t e r s e c t i o n )
3 r e t u r n
4 check e x i s t i n g i n t e r v a l s f o r o v e r l a p
5 i f ( no o v e r l a p )
6 i n s e r t new i n t e r v a l i n s o r t e d l i s t
7 e l s e
8 merge o v e r l a p p i n g i n t e r v a l s w i th new i n t e r v a l

Listing 2: Per-sphere callback for all-hit intersection.

1 / / 1 s t pas s : o f f s e t c u l l i n g
2 i f ( o f f s e t C u l l i n g )
3 a l l−h i t i n t e r s e c t e l l i p s o i d s ( w i th c u l l i n g )
4 i f ( no i n t e r s e c t i o n )
5 r e t u r n
6 sample from f i r s t h i t t o o f f s e t :
7 sum up s c a l a r f i e l d ove r c o n t r i b u t i n g k e r n e l s
8 i f ( s u r f a c e v a l u e p a s s e d )
9 d e t e r m i n e e x a c t h i t ( va lue−w e i g h t e d b i s e c t i o n )

10 i n t e r p o l a t e normal
11 i f ( c o l o r mapping )
12 i n t e r p o l a t e a t t r i b u t e
13 r e t u r n
14 go t o n e x t s am p l i n g p o s i t i o n
15
16 / / 2nd pass : f u l l t r a v e r s a l
17 a l l−h i t i n t e r s e c t e l l i p s o i d s ( no c u l l i n g )
18 i f ( no i n t e r s e c t i o n )
19 r e t u r n
20 a l l−h i t i n t e r s e c t s p h e r e s ( c o n s t r u c t i n n e r i n t e r v a l s )
21 sample from f i r s t e v e n t t o l a s t e v e n t :
22 i f ( sample p o i n t i n s i d e i n n e r i n t e r v a l )
23 jump t o end of i n t e r v a l
24 u p d a t e l i s t o f c o n t r i b u t i n g e l l i p s o i d s
25 i f ( no c o n t r i b u t i n g e l l i p s o i d s )
26 jump t o n e x t e v e n t
27 c o n t i n u e
28 sum up s c a l a r f i e l d ove r c o n t r i b u t i n g k e r n e l s
29 i f ( s u r f a c e v a l u e p a s s e d )
30 d e t e r m i n e e x a c t h i t ( va lue−w e i g h t e d b i s e c t i o n )
31 i n t e r p o l a t e normal
32 i f ( c o l o r mapping )
33 i n t e r p o l a t e a t t r i b u t e
34 r e t u r n
35 go t o n e x t s am p l i n g p o s i t i o n

Listing 3: Two-pass surface intersection scheme.
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passes the defined surface value, the surface was hit between the
current and the last sample position. We then perform recursive
sub-sampling using value-weighted bisection to refine the intersec-
tion point on the given interval. With only a few iterations this ap-
proximates the surface position up to single floating point precision
in our cases. The surface normal is interpolated from the weighted
contributions of the individual kernel normals. The complete sur-
face intersection scheme is outlined in Listing 3.

For secondary rays such as shadow rays or ambient occlusion
there is no need for precise hit point sampling. In order to accel-
erate occlusion tests, we also perform a two-pass approach here.
First, only the inner spheres are intersected for occlusion, termi-
nating upon any sphere hit. If there is no occlusion from spheres,
the actual surface intersection algorithm is performed as outlined
above in a simplified form. In this case, we do not perform recur-
sive subsampling, and we do not compute interpolated normals and
attributes.

5. Implementation

We extensively use local OpenMP parallelization in conjunction
with MPI distribution across nodes throughout our preprocess-
ing pipeline, in which nearest neighbor searches are the domi-
nant computational effort. Our experiments have shown that in
general dynamic scheduling for local parallelization is superior to
static scheduling due to the slightly imbalanced workload depend-
ing on each particle’s neighborhood. For the multi-threaded con-
struction of the hash grids we use the concurrent libcuckoo hash
map [LAKF14] as back-end. We also investigated search structures
based on kD-trees, which exhibited slightly slower performance
than the hash grid-based approach for our use cases.

Since the input data sets are relatively small in size even for prac-
tically large point clouds, we begin with the complete particle set
on each node. All operations on the thick boundary are distributed
across nodes, i.e., each node performs processing on only a subset
of the particles. After each preproccesing step, state is exchanged
through MPI messages. The partial thick boundary markings are
all-reduced using a logical or-operator. Partial connected compo-
nent labelings are exchanged and merged to a global labeling on
each node using the same union-find approach as locally. Smoothed
particle positions and anisotropic kernels are simply all-gathered
on each node. Since the kernel scaling factors are based on random
sampling with low performance impact, the scaling curve is com-
puted on a single node only and broadcasted to the others. Even-
tually, at the end of preprocessing, the partially computed densities
are gathered at the master node which then has the fully prepro-
cessed data and sets up the visualization.

The intersection algorithm was implemented as a user geometry
in the OSPRay framework [WJA∗17]. Internally, the all-hit kernels
to collect thick boundary ellipsoids and inner spheres make use of
two additional manual Embree scenes, which can be queried for
intersection and occlusion independently and are based on the all-
hit kernel studies in [AGGW15]. The complete visualization code
is automatically vectorized by the ISPC compiler, which compiles
a C-based SPMD programming language to run on the SIMD units
of CPUs and the Intel Xeon Phi architecture, without the need for
tedious writing of manual SSE/AVX intrinsics.

We use OSPRay’s scientific visualization renderer and for dis-
tributed rendering the MPI offloading device, which replicates the
scene model on all worker nodes and performs sort-first composit-
ing at the master node.

6. Results

To investigate the characteristics and potential of our direct ray-
tracing scheme, we conduct comprehensive benchmarks with re-
spect to data set size, scene complexity, visual fidelity and hard-
ware setup. We consider three hardware setups: a desktop work-
station with an Intel i7-6700K CPU (4x 4.0 GHz), the Elwetritsch
cluster using one Intel Xeon E5-2640 v3 (8x 2.6 Ghz) per node
with InfiniBand QDR interconnect, and the Stampede2 supercom-
puter providing Intel Xeon Phi 7250 Knights Landing accelerator
cards (68x 1.4 GHz, 272 hardware threads) with Intel Omni-Path
interconnect. We choose three base cases for rendering: opaque ren-
dering, opaque rendering with ambient occlusion (16 samples per
hit) and hard shadows, and transparent rendering. All renderings
have been performed at standard 4K resolution (3840x2160), ex-
cept for the low resolution desktop scenario which was performed
at 960x540 to represent a downsampled rendering mode for inter-
active use cases.

Figure 2 shows the different test scenes for our benchmarks, cov-
ering a wide spectrum of particle counts and rendered with ambient
occlusion and hard shadows. As expected from the anisotropic ker-
nels method, surfaces are smooth while preserving sharp features
such as thin shields and isolated particles. The visualization can
be considered faithful to the simulation, even if this exposes the
dynamic particle management in the form of occasionally popping
particles across time steps.

Complete timings for preprocessing and rendering are presented
in Table 1. Preprocessing scales roughly linearly with the num-
ber of thick boundary particles. Basic opaque rendering times can
be considered interactive for reduced resolutions on single nodes,
whereas distributed rendering enables interactive frame rates at full
4K resolution. Depending on scene complexity, we observe highly
increased rendering workload for ambient occlusion, which is not
due to our method per se but generally expected in raytracing
contexts. From a hardware perspective, the Stampede2 accelera-
tor cards outperform standard CPU-based machines in rendering
due to ample vectorization opportunities in packed raytracing. On
the other hand, preprocessing provides less room for vectorization,
for instance during hash grid construction or connected component
analysis. Distributed rendering requires enough workload in rela-
tion to communication overhead in order to scale reasonably well.

To better understand our method’s capability to handle large
data, we perform an extensive scaling study using the Double Dam
Break data set, which was iteratively refined from 1 million par-
ticles up to 170 million particles. Thus, we can observe approxi-
mately the same scene complexity at different resolutions. Figure 5
shows two fundamentally different scaling studies on Elwetritsch
and Stampede2. Figures 5a and 5c show the highest resolution data
set preprocessed and rendered on varying node counts, whereas
Figures 5b and 5d present timings for different particle counts on
32 nodes of each cluster. In all cases, rendering was performed with
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Data Set
Particles (Thick)

Preprocessed Size
Time

Desktop
(4K)

Desktop
(Low Res)

Elwetritsch
(1 Node)

Elwetritsch
(32 Nodes)

Stampede2
(1 Node)

Stampede2
(32 Nodes)

Sponza
161 000 (97%)
12 MB

Preprocess 1.0 1.0 1.2 0.3 4.3 2.2
Opaque 1.6 0.1 1.9 0.1 0.4 0.6
AO + Shadows 41.9 2.9 26.4 1.8 5.3 0.6
Transparent 7.1 0.7 7.8 0.6 2.1 0.6

Sloshing
457 000 (49%)
20 MB

Preprocess 1.9 1.9 1.8 0.5 4.8 1.7
Opaque 4.9 0.4 5.5 0.4 1.6 0.5
AO + Shadows 56.2 3.7 56.0 4.3 32.9 2.8
Transparent 50.5 4.8 51.4 3.3 17.9 1.6

Dam Break
586 000 (49%)
26 MB

Preprocess 2.0 2.0 2.0 0.5 4.8 2.3
Opaque 3.1 0.3 3.6 0.2 0.9 0.5
AO + Shadows 166.4 10.5 164.5 10.2 81.2 5.9
Transparent 28.2 2.7 30.0 1.7 8.7 0.6

Water Crossing
2 153 000 (79%)
136 MB

Preprocess 10.3 10.3 11.9 1.9 11.4 7.1
Opaque 3.5 0.3 3.8 0.2 1.3 0.6
AO + Shadows 55.9 3.7 57.4 3.0 29.9 2.4
Transparent 27.1 3.4 27.9 1.6 11.9 1.5

Droplet
3 765 000 (19%)
103 MB

Preprocess 5.2 5.2 5.0 1.1 6.8 4.6
Opaque 6.0 0.6 6.7 0.4 1.8 0.7
AO + Shadows 34.5 2.4 35.4 2.0 17.7 2.1
Transparent 48.2 4.9 51.7 2.5 13.9 0.7

Double Dam Break
170 000 000 (14%)
4.1 GB

Preprocess 329.9 329.9 230.6 44.9 205.6 102.8
Opaque 15.0 6.8 13.5 1.0 8.2 2.3
AO + Shadows 202.9 20.1 199.6 11.3 80.7 5.8
Transparent 150.2 24.8 147.2 9.4 77.7 14.4

Table 1: Preprocessing and rendering timings in seconds.

ambient occlusion and hard shadows to provide enough opportu-
nity for workload distribution during rendering. We highlight that
while our core aim was not perfect scalability but rather a feasibil-
ity study, our method also performs well in these computationally
involved scenarios.

When considering the same full resolution data set on increas-
ing node counts, it becomes obvious that hash grid construction is
a purely local operation on each node which does not scale well.
Connected component construction scales to some degree, but it
still limited by the eventual merge of partial connected compo-
nents on each node. The increase in rendering time for two nodes
is explained by the way we use OSPRay’s MPI offloading device,
where the master rank has only organizational duties and performs
sort-first compositing, while the remaining nodes do the actual ren-
dering. Thus, only one of two ranks is rendering, with additional
communication overhead. In contrast to Elwetritsch, the overhead
seems to be negligible on Stampede2.

While preprocessing times increase approximately linearly with
particle count, rendering appears rather unaffected in these cases.
This is expected, as the offset culling optimization in opaque ren-
dering is based on the local smoothing length, resulting in approx-
imately the same magnitude of anisotropic kernels contributing to
the surface intersection for each ray. The same behavior can be ob-
served on both Elwetritsch and Stampede2, while the former is in
general the better preprocessor and the latter the faster renderer.

We conclude that our direct rendering technique is versatile and
suitable for both high fidelity and interactive rendering scenarios. It
scales reasonably well even using trivial parallelization, and is thus
an option for in-situ use cases by easily enabling preprocessing and
rendering on multiple nodes. An additional design aspect of our
method is that it runs in image space rather than object space com-
plexity, which is a desirable feature for large scale data applications
and is common for raytracing based approaches.

7. Conclusion

We presented a novel approach to the direct visualization of
particle-based fluids and have demonstrated its applicability to a
wide spectrum of FPM simulations. Our technique is based on an
anisotropic kernel model, in which the neighborhood of each parti-
cle is used to construct a locally deformed smoothing kernel, allow-
ing smoother surfaces with sharp features. In our raytracing-based
rendering scheme we perform optimizations such as offset culling
to effectively reduce the number of contributing kernels per surface
intersection. We conducted comprehensive benchmarks to study
the performance and scaling characteristics of our parallelized and
distributed implementation on various hardware configurations and
have demonstrated its general versatility.

We anticipate that many improvements to our approach are pos-
sible. Since FPM relies on local moving least squares interpolation,
it by necessity incorporates nearest neighbor search structures with
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(a) Elwetrisch: 170 million particles on 1 - 32 nodes.

0
10
20
30
40
50
60
70
80
90

100

1 36 68 101 138 170

Ti
m

e 
[s

]

Number of particles [millions]

Grids Thick CC Smooth Kernels Densities Render

(b) Elwetrisch: 1 - 170 million particles on 32 nodes.
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(c) Stampede2: 170 million particles on 1 - 32 nodes.
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(d) Stampede2: 1 - 170 million particles on 32 nodes.

Figure 5: Scaling on Elwetritsch and Stampede2 using the Double Dam Break data set, rendered at 4K resolution with ambient occlusion
and shadows.

managed ghost particle information in distributed cluster mode,
which could be reused in the preprocessing state of our pipeline.
Furthermore, we would like to investigate using our system for
production visualization, i.e., full path tracing, which is an impor-
tant use case, e.g., in the automobile industry. Finally, comparing
performance of our implementation against a GPU implementation
would be interesting to shed light on the relative strength of the
differing architectures for our use case. We intend to investigate all
these aspects in future work.
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