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Abstract
We present two different methods for improving the performance and robustness of ray tracing algorithms that require iterating
through multiple successive intersections along the same ray. Our methods do so without ever missing intersections, even in
cases of co-planar or numerically close surfaces, and without having to rely on a dedicated all-hit traversal kernel. Furthermore,
our evaluation shows that, in many cases, our methods consistently outperform existing all-hit kernels.

1. Introduction

Ray tracing applications in any domain use to a set of kernels
for finding intersections between rays and geometric primitives.
Whereas most ray tracing-based rendering primarily relies on so-
called “first-hit“ and “any-hit“ kernels, physics-based simulations
often require another category of kernel for finding either all, or
the closest N, hits along a ray (otherwise known as “all-hit“ and
“multi-hit“ kernels).

Traditional first-hit kernels have issues with scenes in which
multiple surfaces are co-planar or numerically close to each other.
In this case, traditional first-hit kernels require ray epsilon offsets to
avoid ad infinitum self-intersections—but this in turn means mul-
tiple same-distance surfaces will only report one of the multiple
valid intersections. This is often tolerable in rendering—either be-
cause only one such intersection is sufficient, or because the result-
ing artifacts do not matter much—but is generally not tolerable in
simulation applications that have to accurately account for multi-
ple successive surfaces (see Figure 1). Multi-hit kernels, however,
are often not implementable or only partially supported by modern
high-performance ray tracing frameworks. Furthermore, even when
such kernels are supported, scenes with high depth complexity in
applications that require but a few intersections along each ray may
actually come with significant overhead.

In this paper, we propose two techniques that aim at obviating
the need for multi-hit kernels by adopting the paradigm of a robust
next-hit kernel that, in successive calls, returns the respectively next
hit along a ray in a safe, robust, and well-defined fashion, without
ever skipping or multiply reporting any intersections. In particu-
lar, we describe two implementations of this paradigm: First, we
propose a simple modification to closest-hit kernels that is easy to
integrate into existing frameworks such as Embree [WWB∗14] and
OptiX [PBD∗10], and which allows those kernels to be safely used
in a next-hit fashion—but requires to a fresh ray traversal for every
call. Second, we introduce a novel iterator based kernel that tracks
traversal state across successive calls, and thus avoids re-traversing
nodes. We evaluate the cost characteristics of the two methods for
multiple ray depths required by the renderer.

Figure 1: The impact of “losing” intersections at co-planar sur-
faces with traditional closest-hit kernel and epsilon-offsetting, il-
lustrated using a rendering of the truck model with each sur-
face made partially transparent. Left: rendered with closest-hit
and epsilon-offsetting (using a hand-tuned epsilon that just barely
avoids self-intersections); right: with a correct traversal kernel that
properly finds all surfaces without skipping any. Though the image
on the left may look “plausible” in a rendering application it is
in fact completely wrong; for a physics-based simulation code this
outcome would be quite problematic.

2. Background and Related Work

At its most general, ray tracing refers to a set of algorithms that
allows for performing arbitrary 3D visibility queries. In particu-
lar, there are three kernels for a given ray R(t) = Rorg + tRdir (t ∈
[t0, t1]): finding the closest intersection (first-hit), finding whether
there is any intersection with this ray (any-hit), and, though less
common, finding all (or at least, the first M) intersections along
this ray (so-called all-hit or multi-hit kernels).

Ray tracing is best known for its use in rendering, where it is
used to simulate light transport between camera, lights, and sur-
faces. It is, however, just as important for non-graphical domains,
such as ballistic vulnerability analysis [BS07, AG14], radio/wire-
less signal propagation [Des72, ANM00, GA15], sound propaga-
tion [TCAM09], xray simulation [SdRCJC11], etc. Given this im-
portance, it comes as little surprise that over the years a plethora of
different kernels, data structures, and implementations have been
proposed (see, e.g., [Gla89, Hav01] for an overview).
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Virtually all this work falls in either of the three categories
described above: closest-hit, any-hit, and multi-hit. Among those
three, most efforts focusses on the first two, with relatively little at-
tention spent on multi-hit. We argue that this is because the lion’s
share of attention (and consequently, research) has been captured
by rendering, which traditionally relies more of the first two ker-
nels. In rendering, light tends to get reflected or refracted at sur-
faces, thus a ray hitting a surface will typically leave that surface in
another direction—in this case, finding more than one intersection
along the original ray is generally less useful.

2.1. Multi-Hit Kernels

In simulation applications, however, the situation is different: the
particles or waves that the rays represent often penetrate through
multiple layers of surfaces—this makes closest-hit kernels actually
problematic, as originally described by Gribble et al. [GNK14].
First, tracing multiple individual rays to step “through” multiple
layers of surfaces is generally more expensive than tracing a single
ray that finds all those surfaces. Second, and even more importantly,
traditional closest-hit kernels have issues with “self-intersections”,
where a ray cast right off a surface returns that same surface as
“closest” hit point ad infinitum.

The generally accepted way of avoiding this problem is through
utilizing ray epsilon offsets, where the secondary ray’s valid ray
interval is set to start an epsilon-distance behind or in front of the
previous hit point. This can indeed avoid self-intersections, but in
turn is guaranteed to never find more than one intersection in an
epsilon-interval around any hit point, even if more than one surface
is present at that location. The resulting loss of some intersections
may be tolerable for many graphical applications, but for simula-
tion codes it is not. When objects with different material properties
abut, such codes must be able to find both the surface where the
ray/particle/wave leaves the one object and the (same- or similar-
distance!) surface where it enters the next one—or the simulation
result may be completely useless (also see Figure 1). Unfortunately,
scenes where more than one surface are co-located—and where
epsilon-offsetting thus results in many skipped intersections—are
not the exception, but the norm.

In summary, there are two different problems with relying on
only closest-hit kernels for penetration applications: efficiency—the
cost of re-casting a ray for every penetrated surface—and correct-
ness—losing intersections for co-planar surfaces. Multi-hit kernels
can, in theory, solve both of these problems.

They are, however, not a panacea either for two reasons: First,
since it is generally not possible to predict how many intersections
a given ray will have, all-hit kernels require dynamic memory man-
agement, which in particular on modern, high-throughput architec-
tures can be costly. Second, in most real-world applications the rays
will typically not always penetrate through all surfaces. Thus al-
ways computing all surface intersections for any ray is potentially
very wasteful—in particular if the number of actually required in-
tersections is small relative to the scene’s average depth complexity.

Both memory allocation and—to some degree—wastefulness
can be alleviated by switching from all-hits to specialized N-hits
kernels that find, for a fixed N, the first N hits along this ray. How-
ever, picking the right N can be challenging, too: when too large

it is still wasteful, yet when too small it still requires dealing with
how to handle intersections not yet found in this query.

Eventually, all the issues we discussed thus far—the issues
caused by epsilon-offsetting for closest-hit, the potential wasteful-
ness of all-hits, and the issues with finding the proper N for N-
hits—would largely disappear if only there was an efficient way
of iteratively stepping through multiple hits along the same ray—
always returning but one “next” hit—in a robust and correct way,
without ever losing any intersections, and, ideally, without having
to re-start traversal for every next step.

2.2. Related Work

An overview of ray tracing in graphics can be found, for exam-
ple, in [SM03]. Havran’s thesis [Hav01] gives a comprehensive
overview over different data structures and implementations up un-
til 2001. Since then, research has mostly focussed optimizing ray
tracing for modern CPUs and GPUs [WWB∗14, AL09].

Historically, most applications of ray tracing considered the ac-
tual ray tracing kernel implementation as an integral part of that ap-
plication, meaning that every such application came with their own
ray tracing kernel implementations. At least in graphics, what we
are seeing today is a shift towards ray tracing framework libraries
(ie, OptiX [PBD∗10] for GPUs, and Embree [WWB∗14] for CPUs)
that get re-used across many different renderers.

While adoption of Embree and OptiX continues to grow in
graphics, non-rendering codes (such as, for example, the DoD’s
BRLCAD package [Dyk13]) still maintain their own ray tracing
kernel implementations largely because they require efficient next-
hit/multi-hit kernels that rendering packages tend to give less care
than their highly optimized first-hit and any-hit kernels. The down-
side of this de-coupling of ray tracing for rendering and ray trac-
ing for non-rendering applications is that these non-rendering uses
of ray tracing have not benefitted from the—often significant—
performance advances on the rendering front. As a consequence,
performance of such kernels are often several multiples off that for
the fastest known ray tracing implementations in rendering.

To bridge this gap, several researchers have recently started to
bring rendering-side advances in ray tracing technology to non-
rendering applications of ray tracing. Butler and Stephens [BS07]
were the first to demonstrate the potential of doing so by adding
a multi-hit capability to one of then fastest ray tracing systems
(Manta [BSP06]). More recently, Gribble et al. proposed a new
high-performance ray tracing framework for simulation applica-
tions (called RayForce [GN13]) that aimed at leveraging GPUs and
spatial indexing structures such as KD-trees.

Rather than competing with Embree and OptiX, Amstutz et
al. [AGGW15] showed that multi-hit can also be realized using
Embree’s “intersection filter” call-backs and OptiX’s “any-hit pro-
gram“ features. Most recently, Gribble [Gri16] proposed a special-
ized node-culling traversal technique for Embree, and showed that
this, in some cases, requires only a fraction of the ray-triangle inter-
sections of an all-hit kernel. Furthermore, Gribble et al. [GWA16]
showed how this technique can be implemented in Embree.
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3. Robust First-Hit Kernel

As argued above there are two different—and largely orthogonal—
reasons for using multi-hit kernels: correctness and efficiency. Of
those two, efficiency depends on how many hits are required com-
pared to how many hits exist along the ray. However, the correct-
ness argument is independently valid. In particular, we argue that
for applications that require to find only few hits are primarily mo-
tivated by correctness. In other words, an application may well pre-
fer a single-hit kernel if only it could be guaranteed that successive
calls to this kernel would correctly iterate through ray intersections.
Therefore, our first method looks at making first-hit ray traversals
able to correctly traverse all hits along the ray exactly once.

Identifying the problem Hits with the same (or numerically sim-
ilar) distance are missed by first-hit kernels because of epsilon-
offset issues, which in turn is required because hits with same dis-
tance otherwise leads to self-intersections. The root of this problem
is that first-hit kernels are typically defined as closest-hit kernels,
where comparing different hits only by distance is ambiguous, al-
lowing the traversal algorithm a way to determine which hits are
closer than others, but not allowing it to put a clear, unambiguous
order on hits that have the same distance. As long as no determinis-
tic ordering exists, a respective “first” or “next” hit along a ray does
not make sense.

Fixing the problem All that is required to enforce a global order
on hit points is to define a comparison operator <hit that imple-
ments a global ordering relationship on the space of all possible
hits. There are no requirements to use a particular ordering, just
that there exists an ordering for hit points. For example, assuming
each hit point H could be uniquely identified through a primitive ID
H.p and a distance H.t, then all that remains is to use the primitive
ID to disambiguate hits with same distance:

true : f or H1.t < H2.t

H1 < H2 = true : f or H1.t = H2.t and H1.p < H2.p

f alse : otherwise

In using such an ordering, the order of hit points along a given
ray becomes well defined, making it possible to query exactly the
next—hit, the ray that is <hit any other hit points, but that comes
“after” another hit h0. Similarly, the concept of a “valid t interval”
t ∈ [t0, t1] can be replaced by a “valid hit interval” h ∈ [H0,H1] that
only allows for hits H that fulfill H0 < H < H1. For applications
that only want to specify a minimum distance, t0 even if there is no
intersection at that distance, it is still possible to specify a minimum
hit H0 = (t0,−1) (assuming that -1 is a invalid primitive ID).

Once a complying comparison test is integrated into a given find-
first-hit traversal kernel, an application that needs to step through
multiple hits along a ray can easily do so knowing that each
hit will be reported exactly once— given an initial ray interval
[t0, t1], the application would start by querying the first hit in the
[(t0,−1),(t1,−1)] interval and get hit point Ĥ0; in the next itera-
tion it would query the first hit in [Ĥ0,(t1,−1)] and get Ĥ2, etc.

Variations and Extensions While we have considered only a sin-
gle primitive ID, extension to a multi-level addressing scheme
(such as Embree’s (instID,meshID, primID)) is straightforward.
Similarly, any other comparison method is fine as long as any pair
of hit points has a consistent and well defined order. In particu-
lar, since the only requirement is to apply this method to the dis-
tance test between two hit points, the method is completely com-
patible with any acceleration structure, primitive type, traversal or-
der, SIMD optimization, or other traversal variant that is based on
tracking the “closest” hit inside of a given interval.

We can, in fact, engineer the ordering relation to also achieve
other goals that may be important or desirable for the application.
For example, for applications that need to track which objects a
ray enters or leaves, we could make the find-next-hit kernel always
return “leave” events before “enter” events. Similarly in rendering,
decals objects can made to be returned before a base geometry, etc.

4. Next-Hit via Iterative Front-to-Back Traversal

While the previous section’s method does alleviate the most im-
portant reason for a multi-hit kernel (correctness), it still requires a
complete re-start of the data structure traversal every time the next
hit point is queried—a cost which can be expensive for applications
needing more than a few hit points.

To avoid this a separate kernel that can resume traversal where a
previous call has left off is needed. To do this, we first need a means
of passing information from a previous traversal to the respective
“next” hit in the same traversal sequence. For this, we first have
to break with the paradigm that all traversals are independent and
introduce a new, two-step paradigm that is similar to an “iterator”—
after requesting a new “next hit” iterator for a given ray, subsequent
calls to that iterator will successively return the respective next cor-
rect hit point, where the iterator tracks the information about what
has already been traversed.

With this new ray-iterator concept, implementing an efficient
next-hit kernel is straightforward. First, we keep track of nodes that
have not yet been traversed, and only traverse nodes until we are
sure that the next hit has been found. We use some sort of stack
or priority queue of untraversed nodes, and traverse until the cur-
rent closest hit is guaranteed to be closer then any as yet untra-
versed node. Second, we keep track of every hit encountered dur-
ing traversal—even a hit that is not currently closest, as it may be
the closest hit in a future iteration. Therefore, the iterator also must
keep track of all hits already found (using some form of heap or
sorted list).

Though the core ideas just described are also applicable to other
data structures, we apply them to Bounding Volume Hierarchies
(BVHs) because BVHs are by now the most prevalent acceleration
structures we see in practice. Thus we will from now on only con-
sider BVHs of arbitrary branching factors. Also, though the same
algorithm can also be implemented in recursive depth-first traver-
sal schemes it is most easily be explained in a front-to-back BVH
traversal, which we will from now on assume.
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4.1. Front-to-back Traversal for BVHs

Unlike spatial hierarchies such as grids or kd-trees, BVHs are
object hierarchies in which different subtrees can overlap. This
means that recursive BVH traversal cannot guarantee that nodes
(or leaves) will be traversed in a front to back order, even if each
traversal step properly sorts its children.

Though front-to-back traversal is sometimes believed to not be
possible with BVHs, it is in fact easy to achieve: all that is required
is to replace the logical traversal stack of still-to-be-traversed nodes
with a priority queue (e.g, a heap, sorted list, etc) of such nodes,
with each node’s priority in this queue being its distance to the
ray origin, which is known from the ray-bounding box intersection
test. Once such a priority queue exists, all that is required is that
each traversal step always picks the closest node, tests its children

1 struct NextHitIterator {
2 priority_queue<float,Hit> hitQueue;
3 priority_queue<float,Node> nodeQueue;
4 };
5
6 /* initialize a new next-hit traversal sequence */
7 NextHitIterator *initNextHit(Ray ray) {
8 NextHitIterator *it = new NextHitIterator;
9 it->ray = ray;

10 /* add BVH root node as (only) yet-to-traverse node */
11 it->nodeQueue = { scene.rootNode() };
12 /* no hits found yet: */
13 it->hitQueue = { empty() };
14 return it;
15 }
16
17 /*! find next hit along the ray (if one exists) */
18 Hit findNextHit(NextHitIterator *it) {
19 while (it->nodeQueue not empty) {
20 /* pick closest un-traversed node/subtree */
21 Node closestNode = it->nodeQueue.front();
22 /* check if any hits are closer than closest node */
23 if (it->hitQueue not empty AND
24 hitQueue.front().t < closestNode.t)
25 /* this hit is guaranteed to be the next hit:
26 it’s the closest known hit,
27 and closer than any other subtree */
28 return hitQueue.pop_front();
29 /* no closer hits: remove node from queue... */
30 nodeQueue.pop_front();
31 /* ... and traverse it: */
32 if (node is leaf) {
33 foreach pritmitive in node /* in SIMD */ {
34 if ((hit = intersect(primitive)) != NO_HIT)
35 it->hitQueue.insert(hit.t,hit);
36 }
37 } else {
38 /* ... test every child of this node ... */
39 foreach child of node /* possibly in SIMD */ {
40 /* enqueue every child that intersects the ray,
41 with its respective distance */
42 if (child.box intersects it->ray)
43 it->nodeQueue.insert(distanceTo(child),child);
44 }
45 }
46 }
47 /* no more expandable nodes: return closest hit */
48 if (it->hitQueue is empty)
49 /* no more hits - we’re done */
50 return NO_HIT;
51 /* return closest hit in hitlist */
52 return it->hitQueue.pop_front();
53 }
54
55 /*! terminate next-hit traversal: just release state */
56 void endNextHit(NextHitIterator *state)
57 { delete state; }

Algorithm 1: Pseudo-Code for our iterative findNextHit kernel,
which consists of three parts: Initializing a new iterative traver-
sal (initNextHit), stepping from one the last found hit to the
respective next hit along that ray, and finally cleaning up state
(endNextHit).

against the ray, and then inserts all intersected children with their
respective distance.

Though inherently simple, this algorithm is not widely used nor
well described in the literature: though algorithmically superior to
recursive traversal the cost of maintaining and updating the priority
queue may well negate any savings in fewer traversal steps. This
is particularly true if the BVH is well built, and if the recursive
traversal order has “fast path”s for cases for the common cases of
intersecting 0, 1, or 2 hit points (see, e.g., [BWW∗12]).

4.2. Find-next-hit via Front-to-Back Traversal

Once we have such a front-to-back traversal, the ground work for
a find-next-hit scheme is done—in addition to a priority queue for
the as yet untraversed nodes we also maintain a priority queue of
already found hits. Then, as soon as the closest hit in the queue
is closer than the closest not yet traversed node we know that this
is the guaranteed to be the closest hit, where it can be returned to
the application. Otherwise, we pop the closest yet-untraversed node
from the priority queue, and traverse it: if it is a leaf node, we inter-
sect all primitives and add all found hits to the hit list, otherwise if
an inner node we test all children and add them to the node list. Fi-
nally, the next-hit sequence gets initialized with a node queue that
contains the BVH root node. A pseudo-code sketch of this algo-
rithm is given in Algorithm 1.

5. Implementation and Evaluation

We evaluate our kernels by implementing them inside of Em-
bree v2.11.0 and benchmark them through the OSPRay ray tracing
framework [WJA∗16]. Embree supports a large number of differ-
ent CPU instruction sets, BVH types, primitive types, and other
variants—the full support of which is beyond the scope of this
paper. Thus, our current implementation only supports what we
considered the most representative such configuration: the AVX2
instruction set, triangles, and a single-ray interface. In this case,
Embree uses a BVH8 data structure, a Triangle4 primitive, and
a Triangle4Intersector1MoellerTrumbore intersector. To ex-
pose the new traversal kernel to applications, we added three new
API calls: rtcNhBegin, rtcNhPlusPlus, and rtcNhEnd.

We extended OSPRay with a custom “X-Ray”-style renderer that
treats each surface as partially transparent (using a transparency of
al pha = 0.5+ 0.5|dot(ray.dir,hit.normal)|). Since OSPRay itself
uses ISPC [PM12], we also added the ISPC-equivalent of nhBegin,
nhPlusPlus, and nhEnd API calls to step through the transparent
surfaces in a front-to-back manner.

Each of these three ISPC-side API calls is internally imple-
mented in one of three different, compile-time selectable ways:

restart does nothing in ospNhBegin/End and uses successive calls
to Embree’s rtcIntersect in ospNhPlusPlus using the modi-
fied distance test described in Section 3.

filter realizes the next-hit iterator using a multi-hit kernel as de-
scribed in [AGGW15]: ospNhBegin uses Embree’s intersection
filter to find all hits along the ray (in sorted order), and stores
those in the state. ospHnPlusPlus then merely returns the re-
spectively next hit from this precomputed list.
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conference (282K tris) truck (426K tris) hairball (2.8M tris) sanm (10.5M tris)

powerplant (12.7M tris) MPI Building (80M tris) boeing (350M tris) forest (1.68B tris)
Figure 2: The scenes we used for evaluating our method, rendered with a “XRay” shader in which each surface is partly transparent.

iterative uses our queue-based iterative next-hit traversal as previ-
ously described.

All three kernels internally operate on individual rays, where we
use ISPC’s foreach_active capability to iterate over ray packets
with scalar code.

5.1. Evaluation Framework

The scenes we use for evaluation are shown in Figure 2, where they
intentionally cover different application scenarios (engineering, ar-
chitectural, and outdoors)—in particular, they cover a wide range
of geometric complexity and depth complexity (from a few hun-
dred thousand to over 1.6 billion primitives, and from a few dozen
to up to hundreds of hits per ray).

To simulate workloads that require fewer than all hits, we specify
a maximum number of surfaces that this renderer will step through,
and ran all experiments with maximum number of 1, 5, and 15 hits,
as well as one (“all”) that always ran through all hit points until
no more could be found. Note that for the hardcoded maximum
number of hits only the renderer that is aware of this number—the
kernels themselves are not aware of this information and thus do
not optimize for this maximum hit depth in any way.

For each of these configurations—kernel type, maximum num-
ber of hits, and scene—we ran our set-up on a workstation with
dual Intel-Xeon 2699 v4 “Broadwell” CPUs (totalling 44 cores at
2.2GHz), and measured both (maximum) frame rate and ray depth
complexity information, using a screen resolution of 1024× 1024
pixels. The results of these measurements are given in Figure 3.

5.2. Performance Results

Expectations The results obtained by our measurements largely
confirmed our expectations, but also contained some surprises.

Broadly speaking, what we expect to happen is for the filter

method to exhibit a cost that is nearly independent of how many
hits get queried, and nearly linear in the average depth complexity.
Consequently, the filter method should always win for the “all hits”
case, but should be very expensive for the cases where only few
hits get queried.

On the opposite end of the spectrum, the restart method is but
a tiny modification of Embree’s fastest first-hit kernel, and therefore
ought to be the fastest for the case where only 1 or 2 surfaces are
queried. However, its cost should increase linearly with the number
N of hits queried, making it far less effective for large N.

Finally, the queue method should have a significant overhead
relative to restart (for managing the priority queue(s)), but should
be able to amortize cost over successive queries, and thus eventu-
ally overtake restart. It should also be faster than filter for few
queried hits, but eventually be overcome in larger N hit cases.

Measured Results Looking at measured performance in Table 3,
in virtually all cases (with the sole exception of the smallest scene,
conference) the performance characteristics of the three kernels
turned out to be exactly as predicted. When comparing filter and
restart, restart is always faster when only one hit is required,
and significantly so for high-depth complexity models. Also as ex-
pected, in the all-hits case these roles are reversed, with margins in-
creasing with the scene’s depth complexity. What came a surprise,
though, is how well the queue method performed: we had expected
this method to win only for a low to medium number of queried
hits, but to lose significantly against filter for all hits, and against
restart for 1 or 2 hits. As it turns out, restart and filter are
indeed the fastest methods, but by a much smaller margin than ex-
pected; with the queue method winning in both the 5 and 15 hits
cases, and losing but marginally even in the extreme cases.
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max hits = 1 max hits = 5

max hits = 15 max hits = all

ray complexity 1 hit 5 hits 15 hits all
scene avg max restart filter queue restart filter queue restart filter queue restart filter queue
conf 2 20 188 135 153 83 135 122 75 135 122 74 132 122
truck 15 68 168 46 140 48 45 83 21 44 48 16 44 38
hairball 22 194 86 10 66 27 10 31 11 10 16 3 10 8
sanm 6 74 114 36 71 32 35 39 19 35 29 18 35 28
pplant 13 134 182 47 148 56 47 89 25 47 54 15 46 36
mpi 19 98 184 32 131 47 32 76 18 31 39 10 31 25
boeing 66 345 85 7 61 25 6 37 9 6 21 2 6 6
forest 14 190 81 12 40 22 12 21 10 12 13 5 11 10

Figure 3: Performance (in frames per second) for the three find-next-hit methods discussed in the text: finding all hits up front using an
intersection filter (filter), iterating through all surfaces using the robust find-first-hit method from Section 3 (restart), and using our new
iterative method described in Section 4 (queue). For each method, we show measurements for different numbers of intersections queried by
the renderer. For comparison we also include performance for the hypothetical node-culling filter1, filter5, and filter15 methods.

Our results show that in all cases our method is either the fastest,
or close to the fastest, independent of scene and number of queried
hits. This is particularly important for applications that cannot pre-
dict how many hits will be required: though we cannot guarantee
that it will always be the best, it will never be bad, and always be
close to the best possible results.

5.3. Comparison to FilterN

Throughout the previous section’s evaluations we have assumed
what we argue to be the most realistic scenario: that the application
does not know a priori how many hits it will actually require. While
our tests do use an artificial ray depth for benchmarking purposes,

we assert that almost all applications will not know this informa-
tion up front as the decision to need more intersections is largely
determined by what surfaces the ray encounters during traversal.
As such, we have so far not compared our methods to the node-
culling technique described by Gribble et al. [Gri16, GWA16].

For completeness, we also implemented the node-culling tech-
nique for the 1, 5, and 15 hits, using the same algorithm as de-
scribed in [GWA16]; this will always find exactly the closest 1,
5, and 15 hits, respectively, and avoid traversing those regions of
the BVH that are guaranteed to only have hits further than those N
already found, thus saving potentially many traversal steps in par-
ticular for high depth complexity models.
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model 1 hit 5 hits 15 hits
filter-1? queue filter-5? queue filter-15? queue

conf 173? 153 140? 122 133? 122
truck 161? 140 96? 83 56? 48
hairball 85? 66 40? 31 21? 16
sanm 108? 71 51? 39 36? 28
pplant 179? 148 108? 89 67? 54
mpi 176? 131 96? 76 49? 39
boeing 82? 61 48? 37 27? 21
forest 77? 40 40? 30 24? 19

Table 1: Comparison to Gribble et al.’s specialized node-culling
traversal as described in [GWA16], using this technique’s best-
case scenario where the application has some form of a priori
knowledge about exactly how many hit points it will eventually
need (filter-1, filter-5, and filter-15). In this (mostly hypothetical)
scenario, node culling is indeed the fastest technique across all ex-
periments, while our (more general) queue technique remains com-
petitive.
(? Requires advance knowledge of number of queried hits).

The results of this comparison can be seen in Table 1. As ex-
pected, in this (for this technique best-case) scenario the node
culling technique with hard-coded number of hits is indeed always
faster than our queue method. However, even without requiring
such a priori knowledge our queue method is close, and if this
technique is run with only slightly more hits than the application
actually requires the queue method once again win.

5.4. Correctness

For all three kernels we have verified that the same results get com-
puted. Since neither filter nor queue enforce any ordering on
same-distance hit points we can not guarantee that all three ker-
nels return same-distance hits in the same order, but we did verify
that neither of the three methods skips or misses intersections. For
the sake of completeness, we have also run some of our examples
with the modified distance test disabled. In this case, just as ex-
pected, the filter and queue methods do not change, but restart
encounters infinite loops from self-intersections, while adding an
epsilon-offset leads it to missed intersections as shown in Figure 1.

6. Summary and Conclusion

In this paper, we argued that the main reason for the existence of
multi-hit and all-hit kernels is correctness—ie, the need to find suc-
cessive hits without missing any—and have proposed two alterna-
tive ways of solving that same problem without having to rely on
the multi-hit paradigm.

The first of these two is a simple modification of existing first
hit kernels that only requires modification of the distance-test used
to compare two hit points. Using this, we can guarantee that any
traversal for any acceleration structure will properly report the re-
spectively “first” hit in the specified search interval, allowing cor-
rect iteration through all hits by simply advancing the valid interval
to the respectively last found hit. We believe this to be an obvious
win for any ray tracer (irrespective of data structure and/or hard-
ware), at a near negligible implementation—and runtime—cost.

Our second kernel requires a new “find next hit” paradigm that

requires changes to the API, but enables iteration through succes-
sive hits faster by tracking traversal state between hits. Somewhat
surprisingly, this kernel performed even better than expected, beat-
ing both the robust first-hit kernel as well as Amstutz’s intersec-
tion filter based all-hits implementation [AGGW15] in almost all
cases—sometimes significantly so.

Both methods are guaranteed to be robust in that they never miss-
ing or multiply report any hits. We believe this to be an important
step towards bridging the rendering and non-rendering communi-
ties which use ray tracing, hopefully making it easier to adopt fast
ray tracing solutions such as Embree or OptiX to non-rendering use
cases. Though primarily designed for non-rendering use cases such
as simulations, allowing renderers to get rid of epsilon-offsetting
along a ray also has important use cases in rendering, in particular
when dealing with transparent surfaces, decals, etc.

7. Discussion and Future Work

We were quite surprised to find how well the queue method per-
formed. If our queue method can get this close to embree’s fastest
first-hit kernel for the 1-hit case—despite having a guaranteed over-
head in terms of maintaining the hits list, and despite it not yet being
fully tuned—then a priority-queue based specialization for first-hit
may lead to further performance improvements for first-hit kernels
as well.

Though we are pleased with the observed results, some issues
remain. For the queue method, we currently use hard-coded max-
imum list sizes. Though we could easily over-provision for any of
the models we used, there are always models that will require even
larger lists. Handling these cases with this will require some sort of
dynamic allocation, at least when reaching a certain queue size.

Even without dynamic allocation, the non-trivial memory over-
head required for the queue data structures can be problematic in
particular when memory is scarce (e.g., on a GPU), or when dealing
with lots of active rays (e.g., operating on ray streams).

Aside from performance considerations, one limitation of the
queue method is that it cannot be added into existing ray tracing
frameworks without changing their APIs. The restart kernel from
Section 3, in contrast, allows this, which keeps this kernel rather in-
teresting despite the commonly lower performance.

In terms of non-rendering simulation codes, our method solves
what we believe to be one of the most challenging problems—
robustness and correctness—but others will undoubtedly remain. In
particular, many such codes require double-precision (which Em-
bree currently does not support), and many rely on CSG operations
that we do not even address.
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