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Figure 1: Example scenes to which we applied our technique: Trees (12k instances, 522M instanced triangles), San Miguel (254
objects, 10.3M static and 200k dynamic triangles), Boeing (720k objects, 330M static triangles), Powerplant (56 objects, 12.3M
static triangles), Rungholt (84 objects, 6.7M static triangles), and Crown (850 objects, 4.8M static triangles). While being nearly
as fast to build as traditional two-level BVHs, using our partially merged two-level BVH leads to lower spatial overlap, which
in the shown models results in 1.2 × −2.1× higher rendering performance.

ABSTRACT
We propose a novel approach for improving the quality of two-level
BVHs (i.e., a two-level data structure that uses a top-level BVH
built over second-level object BVHs). After building an individual,
high-quality BVH for each object, our new top-level BVH build
approach selectively re-braids (opens and merges) object BVHs
during the build process to reduce overlap and improve SAH quality.
We demonstrate that compared to the two main state-of-the-art
techniques—brute-force re-construction of a single, flat BVH; and
building a traditional two-level BVH over objects, respectively—the
proposed approach achieves build times significantly faster than
the former, while simultaneously yielding traversal performance
that is much higher than the latter.
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1 INTRODUCTION
To achieve high ray traversal performance, ray tracers employ
acceleration data structures such as BVHs, k-d trees, etc. While
these structures significantly speed up rendering, they introduce a
high up-front cost every time the data structure must be (re-)built.
With parallel, well-tuned BVH builders provided by state-of-the-
art ray-tracing frameworks such as OptiX [Parker et al. 2010] and
Embree [Wald et al. 2014], BVHs can today be built, from scratch,
at many million primitives per second. Nevertheless, for interactive
rendering of animated content the roughly linear cost [Wald and
Havran 2006] of building BVHs puts an upper limit on the number
of primitives which can be animated per frame.

The alternative to building a single acceleration structure over all
geometric primitives is to employ so-called two-level (or multi-level)
BVH. For such two-level BVHs the model’s geometric primitives are
grouped into separate objects, each with their own BVH, and with
a top-level BVH built over these objects (this allows for updating
only those objects—and the top-level BVH—that have changed in a
given frame). This approach works well in particular in the common
rendering scenarios where one or more animated objects are set
within static background geometry. In addition, two-level BVHs
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Figure 2: Illustration of our method: (a) two objects (green
and blue), each with their own BVH; with their topologies
(top), and their spatial extents (bottom). As the objects spa-
tially overlap and the top-level BVH (brown) has to treat
them as monolithic entities a significant BVH node overlap
in the spatial domain occurs, leading to low traversal perfor-
mance. (b) Ourmethod allows the top-level BVH to look into
the object BVHs, and to “open up” object nodes where appro-
priate. This allows the top-level BVH to create new top-level
nodes (brown) that address individual subtrees in the object
BVHs, resulting in improved BVH quality.

work well with object instancing and rigid body animation using
ray transformations.

The caveat of two-level BVHs is that they often incur signifi-
cant traversal overhead: since the top-level BVH can only separate
logical objects—not the geometric primitives they are comprised
of—the object partitioning done at the top-most level is typically
much worse than what a single, flat BVH would have been able to
do. Consequently, rays often have to first traverse the “wrong” sub-
tree for some time before eventually traversing the “right” one. This
in turn means lower traversal performance (typically in the range of
1.5−2×). With that, users are left with one of two mediocre choices:
high build overhead to get a faster-to-traverse single BVH over all
primitives, or a fast-to-built, but slower-to-traverse two-level BVH.

In this paper we propose an alternative data structure (and its
build algorithms) that is nearly as fast to build as two-level BVHs,
while having BVH quality closer to a single BVH. Like two-level
BVHs, we use separate objects with their own BVHs and a top-level
BVH built over them. However, rather than have the top-level BVH
only refer to individual, monolithic objects, we allow the top-level
builder to reach into the object BVHswhere desirable:Whenever the
top-level builder detects overlap between object BVHs it recursively
opens up upper-level nodes of these BVHs, and then merges the
resulting subtrees into the top-level BVH (viewing an object BVH’s
subtrees as individual strands within a rope, this can be viewed
as “un-braiding” the object BVHs, and “re-braiding” the resulting
strands in the top-level BVH). While still nearly as fast to build
two-level BVHs, this significantly reduces spatial overlap in BVH
subtrees—thus reducing the number of total traversal steps, and
ultimately higher performance (see Figures 1 and 2).

2 RELATEDWORK
Acceleration Data Structures. The goal of any ray tracing acceler-

ation structure is to employ some sort of spatial and/or hierarchical

indexing to minimize the number of ray-primitive intersections that
must be performed. In practice, this involves a trade-off of three
factors: how efficient a data structure is in reducing the number of
intersections; how quickly it can be traversed on a given hardware;
and what it costs to build and maintain it. Though many such data
structures have been proposed (see, e.g. [Haines et al. 1989; Pharr
and Humphreys 2010]) today most ray tracers use some sort of
bounding volume hierarchies (BVHs). In particular, both of today’s
fastest ray tracing frameworks— OptiX [Parker et al. 2010] and
Embree [Wald et al. 2014]—use BVHs.

Fast BVH builds. With everymore widespread use of BVHs, many
researchers investigated ways of improving the build time of BVHs,
typically involving aggressive parallelization and/or quality trade-
offs [Fuetterling et al. 2016; Ganestam et al. 2015; Ganestam and
Doggett 2016; Gu et al. 2013; Hendrich et al. 2017; Hou et al. 2010;
Karras and Aila 2013; Lauterbach et al. 2009; Parker et al. 2010;
Vinkler et al. 2016; Wald et al. 2014]. Our technique is completely
orthogonal to such high-performance BVH builders; we use these
same techniques for the lower-level object hierarchies, and have
our top-level BVH point into these such-generated BVHs.

Two-Level BVHs. Even with the fastest BVH builders, rebuild-
ing the entire data structure every frame is costly. Two-level data
structures—first proposed for k-d trees [Wald et al. 2003], but since
applied also to BVHs [Parker et al. 2010; Wald et al. 2014])—avoid
this by not building a single BVH over all primitives, but grouping
primitives into logical objects, building BVHs for those objects, and
building a second—the “top-level”— BVH over those objects. This
allows for selectively updating only changed objects, as well as for
efficient rigid-body transformation, instancing, etc. Our method
uses a similar concept, but builds the top-level BVH in a way that
allows it to reach into the lower-level object BVHs, thus partially
merging the top-level with the object BVHs, where appropriate.

Repairing BVHs. Our method can also be seen as a way of repair-
ing overlap in a two-level BVH. This is similar in spirit to the tree
rotations as proposed by Kensler et al. [Kensler 2008], as well as to
the selective restructuring proposed by Yoon et al. [Yoon et al. 2007].
Unlike those methods we start out with just a list of high-quality
object BVHs, which allows to concentrate all repair operations into
a single, quick, and parallel top-level BVH construction pass.

Build-from-hierarchy. Yet another way of viewing our technique
is as a variant of the build-from-hierarchy concept as proposed by
Hunt et al. [Hunt et al. 2007]: Hunt proposed to accelerate k-d tree
construction by using the input scene graph’s hierarchy information
to reduce the number of potential split position candidates. Based
on this work, multiple build-from-hierarchy variants have been
proposed [Ganestam et al. 2015; Gu et al. 2013; Hendrich et al.
2017; Karras and Aila 2013], each of which first build a low-quality
auxiliary hierarchy, and then use this auxiliary data structure to
build the final, high-quality hierarchy at lower cost. We, too, use
a two-step approach in which the second step looks “into” a pre-
existing hierarchy, but with two crucial differences: First, we do
not rely on a user-supplied scene graph nor do we need to create
any low-quality hierarchy first. Second, rather than having the
second stage build the entire hierarchy from scratch we only “repair”
overlap in the upper levels of the data structure, and otherwise re-
use large parts of the existing object BVHs.
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3 METHOD OVERVIEW
Our method is motivated by three observations: First, that the per-
formance degradation often seen with two-level BVHs is mainly
caused by different objects’ BVHs overlapping each other in the
top-level BVH; second, that each subtree of a BVH is also a BVH;
and third, that even when different objects’ BVHs overlap signifi-
cantly, at some deep enough level their respective subtrees overlap
significantly less than the objects’ root nodes. Based on these three
observations, the core idea of our approach is to

(1) start with object BVHs in the same way a traditional two-
level BVH would;

(2) find a suitable “cut” through each object’s BVH such that the
resulting set of BVH subtrees has low(er) overlap; and

(3) build a top-level BVH over those resulting subtrees.
The result is similar to a two-level BVH in which the top-level and
object level had been partly merged together by eliminating some
of the upper levels of the object BVHs.

3.1 Prerequisites
Our approach requires a list of already built object BVHs as input.
Construction of these object BVHs can be done by any suitable
construction/update method, but we do assume these BVHs to be of
reasonably good quality (for their respective objects) to start with.
Our implementation uses a high-quality binned-SAH builder [Wald
and Havran 2006; Wald et al. 2014] for every object BVH.

In addition to those object BVHs we require—just like a regu-
lar two-level BVH—a list of instances of these objects. Each such
instance refers to an object (and its BVH), and can—but does not
have to—contain a transformation matrix: Our common use case is
that animated objects get re-built per frame in world space, but our
method is fully applicable to scenes containing possibly multiple
instances of objects, too.

3.2 BRefs
Given this input, a traditional two-level BVH would build a BVH
over exactly those instances, using the instances’ world-space bound-
ing box during top-level BVH construction. Since our top-level BVH
will eventually refer to subtrees additional information are required.
Throughout the rest of this paper we refer to what we call BVH
node build references (or BRefs), which stores the essential data
needed for the top-level BVH construction. Each BRef contains a
reference/pointer to a BVH node inside an object BVH (initialized
with the root BVH node), the corresponding world-space bounding
information of this node (including transformation, if required),
and the ID of the object/instance the BVH node belongs to:

struct BRef {
BVHNodeReference ref;
AABB bounds;
unsigned int objectID;
unsigned int numPrims;

};

Since BRefs can refer to subtrees of vastly different size we also
have each BRef track the (possibly estimated) number of primitives
in the given subtree; this, together with the bounding box, allows
the builder to estimate the SAH cost of a given subtree.

4 CONSTRUCTION ALGORITHM
The key idea of our approach—i.e., partially merging top-level and
object BVHs—is valid independent of how exactly the data structure
is going to be built (i.e., which object subtrees get selected for the
top-level BVH, and how that top-level BVH connects them).

In its simplest form, an algorithm would operate in two distinct
phases: one “opening” phase that “opens” object BVHs to produce
a list of subtrees to build the top-level BVH over (resulting in a
list of BRefs), followed by a second “merge” phase that merges
the resulting BRefs in a top-level BVH. The first phase could, for
example, start with one BRef per object/instance BVH, and could
iteratively pick one such BRef (using some suitable heuristic), open
it up, and replace it with the BRefs for its children, until some
suitable termination criterion is reached (e.g., until a maximum
number of BRefs is created).

4.1 Recursive Top-Down Build
Instead of using such two strictly separated phases, we follow a
second approach in which the opening of nodes is built directly into
a top-level BVH builder. This top-level BVH builder starts with a list
of BRefs, and refines this list continuously by replacing and adding
new BRefs on the fly, as required. This list of BRefs is internally
stored in a single pre-allocated array (see Section 5.2).

In each recursive partitioning step, the builder looks at a “seg-
ment” (subset of contiguous elements) of this array and performs
the following steps:

(1) For the current segment, use an opening heuristic (Section 4.2)
to determine which BRefs to open.

(2) Open the selected candidates by replacing them with BRefs
to their respective children.

(3) Apply a SAH-based binning and partitioning step to split the
current segment of BRefs into left and right sub-segments.

(4) Recursively apply this algorithm for left and right sub-segments
until some suitable termination heuristic (see Section 4.4) is
reached. This termination heuristic is applied right before
step (1), and effectively avoids unnecessary work.

An illustration of the impact of the opening steps is given in Figure 3:
In Figure 3(a), the builder starts out with only two BRefs (one blue,
one green), so a traditional top-level BVH could not do better than
separate these two nodes, resulting in blue and green object BVHs
with significant overlap. Using the opening step in our example
the builder opens up the blue BRef and replaces it with its children
(Figure 3(b)), then allowing the partitioning step to create a better
partitioning with lower overlap.

4.2 Opening Criteria
Selecting a subset of BRefs to open is performed according to a
spatial extent heuristic. Based on the AABB of the current BRef
segmentwe first determine the dimension dim of the segment’smax-
imum extent ext, where ext = AABB.max[dim] −AABB.min[dim].

A BRef is opened if its BRef does not refer to a leaf, and if its
AABB in dimension dim is wider than 10% of the segment extent
ext (the 10% threshold has been determined to work well in practice
across a variety of test scenes; see Section 6). The extent criterion
makes sure that larger nodes are selected first, and in addition
increases the probability that after a couple of opening steps the
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Figure 3: (a) A segment of two BRefs, corresponding to two
object BVHswhich overlap spatially. (b)ThefirstBRef (dark-
blue circle) is ’opened’ and replaced with BRefs to its chil-
dren, allowing the partitioning step to find a better partition
with less spatial overlap.

AABBs of the BRefs are more equally sized. It will also keep a set
of relatively small BRefs intact, avoiding unnecessary opening.

A threshold of 10% will still open a relatively large number of
nodes. This is, however, not a problem, as our chosen termination
criterion (Section 4.4) ensures that we only open nodes where
different objects overlap.

4.3 Binning
Once the opening step completes we can use a traditional SAH
binning step to compute a partition of these BRefs, with only small
modifications: Unlike standard SAH-based binning we do not op-
erate on individual primitives, but on BRefs that represent entire
subtrees with possibly many primitives. We use this information
during binning and SAH evaluation by tracking, for each BRef, the
number of primitives in this subtree. If that BRef gets added to a
bin, we increase that bin’s primitive counter not by one, but by the
BRef ’s numPrims entry.

4.4 Termination Criterion
Opening BRefs can be beneficial for removing spatial overlap but
excessive opening without a significant gain in SAH quality will
waste memory and construction time. Excessive BVH opening is
avoided by first testing whether all BRefs refer to the same object
by comparing their objectID entries. If that is the case we stop all
opening for the current segment and for all subsequent build steps
(keeping the BRef array segment unmodified from this point on in
the recursion). This simple but efficient termination criteria relies
on the fact that the underlying object BVH is already of high quality
and the opening of BRefs all belonging to the same object won’t
improve SAH quality further.

If the number of BRefs is small (≤ 4), we test whether the corre-
sponding bounding boxes overlap using a cheap, SIMD-optimized
test. If there is only a small overlap the opening process is termi-
nated even though the respective objectIDs might be different.

Finally, in our particular implementation there is a third, imp-
licit, termination criterion caused by our builder’s specific way of
handling memory allocations (Section 5.2), which limits the total

number of BRefs to a given multiple of the number of input objects—
which in effect implies an upper limit on how many opening steps
the builder can possibly perform.

5 IMPLEMENTATION
The previous sections’ data structure and construction algorithm
are general, and could be implemented in a variety of ways. For this
particular paper, we have implemented these concepts within the
Embree framework [Wald et al. 2014], with an emphasis on high
performance through effective threading and memory allocation.

5.1 Thread Parallelism
To achieve high build performance our implementation makes
heavy use of Embree’s tasking system, in which a number of threads
operate on tasks that themselves can spawn new tasks. Each thread
typically picks a different task (if possible), but can also join another,
already running, task if no independent work is available.

Building the input objects’ BVHs can easily be done in parallel.
Different worker threads build different objects if possible, but are
allowed to join other threads’ build tasks if no more independent
work is available.

For the top-level build, we again inherit from Embree’s existing
parallel BVH builders, which follow a recursive spawning of sub-
tasks for each subtree: After a node is built, we launch a task for
each child, allowing those subtrees to be built in parallel. If the
number of BRefs for a given node is large enough we also allow
the opening, SAH binning, and partitioning stages themselves to
be split into smaller sub-tasks, allowing multiple workers to work
simultaneously on the same task. This is particularly important in
the early stages of the build where jobs are large and costly, and
only few independent subtrees are being worked on, yet.

5.2 Memory Allocation
Frequent memory allocation from many threads often is a severe
performance bottleneck. Traditional top-level BVH builders only
need to re-order BRefs in a single, fixed-size array, but for our
method the constant opening of nodes requires “allocating” new
BRefs all the time, by possibly many different threads in parallel.

To avoid any actual memory allocations we follow the approach
proposed by Fütterling et al. [Fuetterling et al. 2016] and Ganestam
et al. [Ganestam and Doggett 2016], and treat the opening process
similar to how they handle spatial splits: We pre-allocate a single
static BRef array of a given maximum size (larger than the initial
number of BRefs), and keep track of the extra (i.e., not yet used)
space during the build. In this approach, each “list” of BRefs corre-
sponds to a segment s in this array that can represented by the triple
(sstar t ,send ,send_extra ), in which [sstar t ; send ) contains the ac-
tual list of valid BRefs, and the range [send ; send_extra ) tracks the
extra space into which the opening stage can store new BRef entries
when required. As initial size (including the extra space) of the BRef
array we use the simple heuristic of #primitives/1000 for a tree
built over objects, and 4 × #instance for those built over instances.

After the partitioning step—which splits such an input segment
into left and right sub-segments—we distribute the extra space
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across the child segments heuristically, proportionally to the num-
ber of BRefs meeting the opening criteria in the left and right seg-
ment, respectively. After the partition is done we have to make
sure that both left and right segments are once again in the proper
data layout described above, which requires moving the right side’s
BRefs as much to the right as is required to free up the extra space
for the left segment. This data movement for the right segment
can be done efficiently in parallel and in place (it does not require
maintaining the order of the right side’s BRefs).

Note that our way of proportionally distributing the extra space
to left and right child has some interesting properties that are easily
overlooked: First, it means that the number of BRefs a subtree can
create is independent of the order in which these subtrees are
being processed, ensuring that the tree that is built is completely
deterministic despite the heavy threading.

Second, it means that no subtree can ever open more than the
extra space it got allocated as a fraction of its parent. This ensures
that the budget for opening nodes gets distributed evenly across
the entire tree, and, since each child’s budget will get continuously
smaller the further we go down the tree, also helps avoid any
excessive opening operations, which keeps the top-level tree small.

5.3 Node Opening and Child BRef Creation
Opening a BRef consists of dereferencing the corresponding BVH
node reference to access the N children of an N -wide BVH node,
and creating a new BRef for each of those children. In terms of
memory allocation, the first child BRef replaces the original parent
BRef, while its N − 1 sibling BRefs get appended to the end of
the segment, updating the extra space counter as required. Each
newly generated child BRef is initialized on the fly, using the child’s
BVH node reference, the corresponding bounding information, the
objectID of the parent BRef, and an estimated primitive count.

For each child BRef, our builder needs to know the (approxi-
mate) number of primitives in each child. The easiest way to obtain
that information would be to store the actual primitive count in
each BVH node, but this would require extending the actual BVH
node layout, including higher memory requirements and likely
performance degradation. To avoid this we instead compute a
course approximation by assuming that each subtree’s primitives
are divided equally across its children, yielding child .numPrims =
parent .numPrims

parent .numChildren . The root node’s number of primitives is set
to the number of primitives of the object it refers to.

5.4 Supporting Instances
For each BRef, we also need to store that BRef ’s (world-space)
bounding box. For objects that got built in world space, this is
simply the child node’s AABB. For BRefs that refer to an instanced
object, we compute a conservative AABB based on the child’s AABB
transformed by the instance’s transformation matrix.

This transformation is done on the fly when generating the
child BRefs, meaning that our approach is fully applicable to in-
stances. In particular, the top-level BVH can and will—in a fully
automatic manner—select different subtrees of an instanced object
to be opened depending on where and how it is instantiated.

Applying our method to instanced objects will slightly increase
the total number of BVH nodes, because an instanced BVH node

may be opened from multiple parents. However, node openings are
concentrated in the upper tree levels, so this effect is small.

Computing a conservative AABB for each instance means that
boxes are often larger than they would need to be, increasing the
chance that those node get intersected by a ray. In our method,
however, our ability to open large nodes means that the impact
of this is actually less than for traditional top-level BVHs. Also,
large boxes become prime targets for opening, making our method
particularly useful for scenes with lots of overlapping instances.

5.5 Traversal
By using as much of the existing Embree BVH builder infrastructure
as possible, the data structure being produced is exactly the same
as the original two-level BVH, and existing traversal kernels can
operate on it without any special modifications. When operating on
instances the node opening means that a ray may now need to get
transformed to the same instance coordinate system several times.
However, initial experiments have proven these transformations to
be cheap enough to not be worth any efforts to avoid them, meaning
we can use the same BVH traversal code as before. Overall, the
(small) overhead of possibly transforming some rays multiple times
is easily paid for by the higher quality BVH.

6 RESULTS
As mentioned previously we have integrated our method into Em-
bree 2.15, replacing the existing top-level BVH builder for objects
and instances. This allows for easily comparing ourmethod—in both
build time and traversal performance—to both Embree’s existing
standard two-level BVH and single BVH built over all primitives. All
measurements were performed on a dual-socket Intel® Xeon® E5-
2699 v3 workstation (36 cores total) with 64GB of memory.

For evaluation we selected a variety of different scenes: one with
lots of overlapping tree instances (generated using Xfrog [Deussen
et al. 1998]); one consisting of dynamic geometry within a complex
static environment (an animated robot placed into the San Miguel
scene); one representing a typical CAD model (Boeing); an architec-
tural scene with lots of long thin geometry (Powerplant); a complex
“MineCraft” model with mostly regular tessellation (Rungholt); and
the Imperial Crown of Austria model. All models consist of multiple
individual objects, with varying degrees of overlap between them.

All of the followingmeasurements use the default opening thresh-
old of 10%, as determined by Figure 4.

Figure 4: Render performance for different opening thresh-
old values, normalized to the performance of our default of
10%. Though performance can vary a lot, a 10% threshold has
shown to work close to optimally for all tested scenes.
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Trees San Miguel Boeing Powerplant Rungholt Crown
objects 8 253 720.849 56 84 850
instances 12.000 − − − − −

triangles 522M 10.5M 330M 12.3M 6.7M 4.8M
total SAH (internal nodes+leaves)

two-level 224k 9.64 (1.0×) 74.51 (1.0×) 13.10 (1.0×) 109.62 (1.0×) 8.77 (1.0×)
ours 207k 6.29 (0.65×) 50.67 (0.68×) 10.59 (0.80×) 49.0 (0.44×) 7.83 (0.89×)
single − 5.81 (0.60×) 46.87 (0.62×) 10.02, (0.76×) 31.56, (0.29×) 7.54 (0.85×)

performance in fps (path tracing)
two-level 0.67 (1.0×) 1.01 (1.0×) 3.42 (1.0×) 4.17 (1.0×) 2.2 (1.0×) 5.41 (1.0×)
ours 0.99 (1.48×) 1.83 (1.81×) 5.03 (1.47×) 5.12 (1.22×) 4.62 (2.1×) 6.41 (1.18×)
single − 1.90 (1.88×) 5.81 (1.69×) 5.84 (1.40×) 6.44 (2.9×) 6.94 (1.28×)

Table 1: Total SAH for building a top-level BVH over all object BVHs (two-level), for our top-level BVH approach with re-
braiding (ours), and for a traditional single, high-quality BVH (single) built over all primitives. Compared to two-level, our
approach reduces SAH costs and therefore increases rendering performance by 1.2 − 2.1×. For themodels we tested ourmethod
achieves SAH statistics that are significantly better than those for a traditional top-level BVH, and for most scenes are within
10-20% of those of a single, high-quality BVH.

6.1 Render Performance
Table 1 shows that due to spatial overlap the two-level approach
has the highest SAH costs. A single high-quality BVH over all
primitives achieves the lowest SAH at 0.29 − 0.85× the reference
two-level costs, while our approach achieves 0.44 − 0.89× the two-
level SAH costs. For the Trees scene, a single BVH over all objects
(without instancing) exceeded the available amount of memory
(64GB) on the system. The improved SAH quality of our approach
has a direct impact on rendering performance (measured with a
diffuse pathtracer, using up to 8 bounces), yielding roughly 1.18 −
2.1× higher performance than a regular two-level BVH.

Interestingly, the Rungholt model shows the largest performance
gain from our approach (2.1× over two-level) while at the same
time still benefits the most from a single high-quality BVH (2.9×
over two-level) over all primitives. The Crown model has the lowest
spatial overlap between objects and therefore benefits the least
from our method (being only about 1.18× faster than two-level).

6.2 Build Performance and Time-to-Image
Besides rendering performance, BVH build performance is often
critical in terms of time to first image and for handling dynamic
scenes in general. Table ?? shows that the standard two-level ap-
proach provides 1.6 − 4× faster build times compared to building
a single BVH. This is due to the single BVH approach having to
iterate over all primitives multiple times in the beginning to find
and create the initial partitions for the top of the BVH tree. These
operations are costly and in particular often exceeding the CPU
cache capacity, making them typically memory bandwidth bound.
The two-level approaches avoid these costly first steps (similar
to [Ganestam et al. 2015; Gu et al. 2013; Hendrich et al. 2017]) as
they build the smaller object BVHs first with a small top-level BVH
on top , which results in the vastly higher BVH build performance
(66-139 vs. 34-42 million primitives/s). The downside is the reduced
SAH quality which our approach is able to significantly regain.

Looking just at the build times for the top-level, our re-braiding
approach is on average ∼ 2.5× more costly than a simple top-level

BVH build over all initial objects due to the additional opening
phase and increased number of BRefs in general. The absolute times
(in ms) show that even with re-braiding the top-level build time is
still only a fraction of total build time. Looking at the combined time-
to-image numbers (total build + rendering times) our re-braiding
approach essentially combines the fast build times of the two-level
approach with the high rendering performance of the single BVH,
making it the fastest approach overall.

6.3 Discussion
Due to the fixed memory footprint reserved for the top-level BVH,
our re-braiding two-level approach increases the total number of
BVH nodes by less than 0.05%, adding a negligible overhead to
the total BVH memory consumption. Due to the efficient thread
parallelism scheme (see Section 5.1), it reaches a scalability in the
number of CPU cores of over 90%, making it a good fit for future
architectures with even more cores/threads.

The small absolute run-time cost of the re-braiding approach
makes it applicable for improving SAH costs in ’dynamic-in-static’
scenarios, where a set of dynamic objects are rebuilt per frame and
then combined with a set of static objects which remain constant
over all frames. Table 3 shows build and render times (primary
visibility only) for the San Miguel scene with 10.3M static and 200k
dynamic triangles (an animated robot character). For interactive
scenarios where per-frame rebuild time is most important, rebuild-
ing the entire scene from with using a high-quality (binned-SAH)
builder is too slow (256 ms / 41.2 Mprims/s). Even though a fast
Morton code-based builder [Lauterbach et al. 2009; Wald et al. 2014]
provides up to 5× faster rebuild times (52 ms / 201.9 Mprims/s) for
this scene, it is still not fast enough and the BVH quality is signifi-
cantly inferior (high rendering times) to the binned-SAH variant.
The standard two-level approach which rebuilds only the dynamic
objects and in a second step the top-level BVH over all static and
dynamic objects is significantly faster (1.9 ms) than any single BVH
build variant. However, the BVH quality is the lowest resulting
in the highest rendering time. Relative to a traditional two-level
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Trees San Miguel Boeing Powerplant Rungholt Crown
build time (in ms) / build performance (Mprim/s)

single −/− 256/41.2 10k/34.9 298/42.6 160/41.6 113/42.9
two-level 130/− 119/88.2 2.5k/139.7 186/68.2 95/70.0 52/93.5
ours 145/− 122/86.0 2.5k/139.7 191/66.6 98/68.4 53/91.6

build time (top-Level only), in ms
top-level 15 1 37 1.6 1.0 0.74
ours 30 2.6 89 5.3 2.2 1.6

time to image (build + rendering), in ms
single − 782 10.2k 469 315 257
two-level 1739 1109 2792 425 549 236
ours 1220 668 2698 386 314 209

Table 2: BVH build and time-to-image (build + path traced rendering) in ms for a single BVH over all primitives (single), for a
top-level BVH over all object BVHs (two-level), and for our approach (ours). Our method is slightly slower in build time than
two-level, and slightly slower in rendering than single, but outperforms both in total time-to-image for all examples scenes.

BVH our re-braiding approach increases the top-level and dynamic
objects rebuild times by 2.4× (to 4.6 ms)—but vastly improves the
BVH quality, cutting the rendering time in half (from 31 ms to 15
ms), and making it the fastest approach overall with just 19.6 ms
per frame.

6.4 Comparison to Related Work
Our approach—in particular, the top-down opening phase used by
our approach—shares some similarities with work by Ganestam et
al. [Ganestam and Doggett 2016] and Hendrich et al. [Hendrich et al.
2017]. Both of these approaches identify BVH nodes which exceed
certain surface area thresholds and replace these nodes by their
children to obtain a set of more equally sized subtrees. However,
they are targeted at building a single high quality BVH over a scene
from scratch, while our approach targets reducing overlap in an
already existing two-level BVH.

7 SUMMARY AND CONCLUSION
We have presented a novel BVH build algorithm that addresses BVH
node overlap in two-level BVHes (which is, arguably, the main lim-
itation of such two-level BVHs). Our method works by detecting
cases where objects overlap, and reduces the overlap by selectively
opening BVH nodes, and allowing the top-level BVH to reach di-
rectly into the object BVHs where appropriate. Furthermore, we
have described an efficient implementation within the Embree ray
tracing framework, and have shown that this approach outperforms
Embree’s existing two-level BVH, while retaining all of a two-level
BVH’s advantages (i.e., instancing, support for different primitive
types, and fast build times).

Our method is easy to implement, and does not require any mod-
ifications to existing traversal kernels; making it easy to add it to
existing ray tracing frameworks. Though our reference implemen-
tation was written for CPUs, the method is just as applicable to
GPUs; in fact, the fixed memory footprint makes it a very suitable
candidate for such architectures.

The implementation of our method will be made publicly avail-
able (open-source). Given its combination of simplicity, perfor-
mance, and freely available reference implementation we believe

this will become the method of choice for improving the quality of
two-level BVHs.

build render build + render
single (binned) 256 13 269
single (morton) 52 20 72
two-level + dyn 1.9 31 32.9 (1.0×)
ours + dyn 4.6 15 19.6 (0.59×)

Table 3: Rebuild and rendering times (primary visibility +
simple shading, in ms) for San Miguel. Timings for the two-
level approaches include rebuild for the dynamic objects and
for the top-level; the single BVH times are for building all
primitives. Both two-level variants are significantly faster
than the single BVH, but our approach providesmuch faster
rendering performance (due to improved SAH quality), and
consequently best overall time-to-image.

Remaining Issues and Future Work
One of the few remaining restrictions of our approach is that the
opening of the object BVHs is currently limited to inner nodes:
leaf nodes cannot be opened, thus never get merged by our build
algorithm. This limitation is not fundamental to the data structure,
however, and could be addressed in a modified implementation.

Our approach reduces overlap in the upper levels of the data
structure, but might fail to reduce it deep down in overlapping
object BVHs simply because eventually the subtrees will run out of
storage for creating new nodes. Increasing the node budget would
increase the probability to catch these extreme cases, but would
come at the costs of higher memory consumption and build time.

On the upside, there are multiple promising avenues for fur-
ther improving the build algorithm. For example, one might open
multiple levels at one; might modify the opening heuristic to com-
pute the actual overlap of nodes; might to prioritize node opening
based on size or cost of nodes; do the top-level build in a lazy fash-
ion; etc. Covering all such possible extensions will require further
investigation, but might make the method even more powerful.
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