
Fast Construction of SAH BVHs on the
Intel Many Integrated Core (MIC) Architecture

Ingo Wald∗

Abstract— We investigate how to efficiently build bounding volume hierarchies (BVHs) with surface area heuristic (SAH) on the Intel Many Integrated
Core (MIC) Architecture. To achieve maximum performance, we use four key concepts: progressive 10-bit quantization to reduce cache footprint
with negligible loss in BVH quality; an AoSoA data layout that allows efficient streaming and SIMD processing; high-performance SIMD kernels for
binning and partitioning; and a parallelization framework with several build-specific optimizations. The resulting system is more than an order of
magnitude faster than today’s high-end GPU builders for comparable BVHs; it is usually faster even than spatial median builders; it can build SAH
BVHs almost as fast as existing GPUs and CPUs- and CPU-based approaches can build regular grids; and in aggregate “build+render” performance
is significantly faster than the best published numbers for either of these systems, be it CPU or GPU, BVH, kd-tree, or grid.

Index Terms— Bounding Volume Hierarchies (BVHs), Parallel BVH Construction, Surface Area Heuristic (SAH), Intel MIC Architecture

1 INTRODUCTION

With both CPUs and GPUs becoming ever more powerful, achiev-
ing interactive ray tracing is now easily possible on a variety of con-
sumer hardware platforms. While the first interactive ray tracers used
mostly CPUs, today most researchers prefer high-throughput archi-
tectures like GPUs and Intel’s Aubrey Isle/Knights Ferry [1], whose
significantly higher compute power (as well as features like hardware
texturing and direct access to a frame buffer) let them achieve signifi-
cantly higher performance and/or better image quality.

However, while such high-throughput architectures excel at easy-to-
parallelize and compute-intensive tasks like tracing rays and shading
hit points, they have a much harder time competing with CPUs when
it comes to control-intensive tasks like building ray tracing data struc-
tures. Rendering easily maps to many threads and wide SIMD units,
but using those features in building is significantly harder.

For regular data structures like grids, GPU-based algorithms now
achieve build times that are just as fast as those for multi-core CPUs—
and at higher render times, this is a clear win over traditional CPUs.
For more complex data structures like bounding volume hierarchies
with surface area heuristic (SAH BVHs), however, CPUs still have an
edge: while Lauterbach have recently demonstrated that building SAH
BVHs on modern GPUs is indeed feasible [2], their build times are
still significantly higher than those for CPUs [3], even on a nominally
much more powerful architecture.

With high-performance algorithms becoming ever more hardware-
dependent, fully understanding how algorithms and hardware interact
becomes ever more important [4]. In this paper, we are going to in-
vestigate how to achieve high SAH BVH construction performance on
the Intel Many Integrated Core (MIC) architecture [1, 5]. The MIC
architecture is a multi-core x86 architecture that combines many of
the advantages of GPUs and CPUs: it offers the same raw compute
power as high-end GPUs (and, of course, hardware texturing etc),
while still featuring CPU-like features like real caches, a consistent
memory model, global atomics, etc. However, MIC is not simply a
faster CPU: being optimized for throughput workloads it relies on the
same features that make building hard on GPUs—wide SIMD, a low
cache-per-compute ratio, lots of cores, and multiple threads per core—
and achieving high build performance requires a carefully designed
framework that takes those hardware-specifics into account. In this
paper we will not introduce new high-level algorithms, but rather con-
centrate on existing algorithms, and investigate how to best map these
to the underlying hardware by concentrating on three major points: ef-
ficient use of the cache/memory subsystem, high-performance SIMD
kernels, and efficient multi-core parallelism/synchronization.

2 RELATED WORK

Ray tracing acceleration structures generally fall into three categories:
grids, kd-trees, and bounding volume hierarchies (BVHs). Vari-
ous hybrids and variants of BVHs are still being actively researched

∗I.Wald is with Intel Labs, Intel Corp, Ingo.Wald@intel.com

Fig. 1. Several sample frames from our system running on a prototype “Knights
Ferry” board: Toasters (11k triangles), cloth (92k), Fairy Forest (174k), and
UNC dragon/bunny animation (252k). All scenes are rebuilt from scratch ev-
ery frame, using a full SAH BVH binning stage (with highest quality settings)
for each BVH node. Normalized to a hypothetical 32-core 1GHz configuration
these scenes cost 1.3ms, 12.5ms, 22.5ms, and 34.4ms, respectively, to build,
and at 1920× 1200 pixels render at 92, 44, 17, and 19 frames per second,
respectively, including animation, rebuild, shading, texturing, transparency tex-
tures, and shadows).

(eg, [6, 7, 8]); however, for the purpose of this paper we only consider
traditional binary BVHs.

Surface Area Heuristic. For kd-trees and BVHs, the best known
method to build high-quality trees is the Surface Area Heuristic (SAH)
as introduced by Goldsmith and Salmon [9]. Though originally pro-
posed for iterative builds, best results are achieved using greedy top-
down builds [10, 11]. In each recursion step, one considers different
ways of splitting the triangles T into two groups L and R, and estimates
each split’s cost via

SAH(T → (L,R)) = KT +KI(
SA(L)
SA(T )

NL +
SA(R)
SA(T )

NR), (1)

where SA(X) is the surface area of the axis-aligned bounding box of
X , NX is the number of triangles in X , and KI ,KT are implementation
specific-constants to model intersection and traversal cost, respectively
(in our case, KI = 1,KT = .5).

Fast SAH builds. To speed up SAH BVH build times, different au-
thors have proposed binning techniques in which the SAH is evalu-
ated only at some sample positions [12, 13]. These techniques have
originally been proposed for kd-trees, but work even better for BVHs,
where small numbers of bins produce BVHs nearly indistinguishable
from sweep-based builds [3].

Given additional information, significantly faster builds can be
achieved using from-hierarchy builds [14, 15] or refitting [16]. Though
such techniques should be used where applicable, in this paper we will
only consider fully general “from scratch” rebuilds.



Parallel SAH Builds. In [3], Wald proposed a framework that built
SAH BVHs in parallel on a dual-Clovertown PC (8 cores total): Build-
ing is described as a sequence of build tasks that recursively spawn
new tasks; tasks larger than a certain threshold are processed by all
threads in parallel, those below the threshold are queued up for a later
stage in which different threads build different sub-trees. Wald also
proposed a variant in which triangles were initially binned into a regu-
lar grid that was then used to construct the top few levels of the BVH.
This approach leads to spatial splits for the first few levels of the BVH,
and thus trades BVH quality for build time.

Shevtsov et al. [17] proposed a similar framework for kd-trees: Ini-
tial parallel partitioning is done through object median splits until the
number of parallel jobs equaled the number of cores; those are then
built on different cores using SAH splits. Zhou et al [18] used a sim-
ilar approach to realize the first GPU-based kd-tree builder; however,
switching to SAH splits happens only for very small subtrees, and
the majority of nodes is built using spatial median splits. An im-
proved version of this approach—that also works for BVHs and that
can handle significantly larger scenes—has recently been published
in [19]. In [20], Choi et al. present two related approaches for par-
allelizing an SAH kd-tree build: Choi et al. also differentiate two
distinct builds phases—breadth-first geometry-parallel and depth-first
per-subtree parallel—but manage to parallelize both phases without
having to rely on binning. Using a quad-core Xeon X7550 “Beckton”
system (32 cores total) Choi et al achieve interactive rebuilds for a
variety of scenes.

The first full SAH BVH builder1 for GPUs was realized by Lauter-
bach et al. [2]. Lauterbach et al. also differentiate between large and
small tasks: small tasks are built by a single warp each, and large
tasks , tasks are processed by multiple warps in parallel; new tasks are
queued up in work queues. To effectively use the GTX280’s 32-wide
SIMD , Lauterbach performed binning with 32 bins, using SIMD to
update all bins in parallel. Lauterbach also proposed a much faster
spatial-median build strategy—called LBVH—based on Z-order Mor-
ton Codes and fast GPU-based sorting algorithm, as well as a hybrid
algorithm that used spatial median splits close to the root, and SAH
splits deeper in the tree. Pantaleoni et al. [15] demonstrated a from-
hierarchy variant of this algorithm that exploits spatial coherence al-
ready assumed to be present in the input meshes (possibly from a pre-
vious build step), thereby achieving significantly higher build times
than those of Lauterbach et al. Pantaleoni also proposed a different
way of using SAH information in his HLBVH build but unfortunately
did not provide a “full” SAH variant of his algorithm.

Grids. With BVHs and kd-trees being costly to build, multiple au-
thors have proposed to instead use cheaper-to-build grids. In [21],
Reinhard demonstrated dynamic updates, but did not rebuild from
scratch. Wald et al. [22] proposed a CPU-based approach that al-
lowed interactive rebuilds, but used only reduced-resolution grids. Ize
et al. [23] achieved highly-interactive rebuilds by parallelizing with a
sort-middle approach. Finally, a GPU-based grid builder was intro-
duced by Kalojanov et al. [24].

3 ALGORITHM OVERVIEW

At the most abstract level, our system uses the same ideas as described
in [3] and [2], except that we never resort to spatial median splits:
BVH construction is implemented by recursively partitioning a given
set of primitives. Each such partition first bins all triangles into a set
of bins (in our case, 16), then determining the bin with lowest SAH
cost, and either produces a leaf node, or partitions the primitives into
two halves, which are then processed recursively.

For parallel execution, this is implemented through a series of tasks.
Each such build task contains a binning stage in which one or more
threads bin the triangles. Upon completing the binning one then
merges the different threads’ binning information and evaluates the

1Under a “full” SAH builder we understand a build algorithm that uses an
SAH cost function (possibly based on binning) for each node of the BVH.

SAH. Based on this SAH evaluation, one then either creates a leaf, or
issues a new partitioning task that performs the actual partitioning of
the primitives and finally triggers two new tasks for the resulting two
sub-trees. Tasks are usually processed by multiple threads until their
size falls below a given threshold, at which time they are processed by
specialized single-threaded code. On this high level our approach is
exactly the same as what previous authors have done; the main differ-
ence is in how exactly those stages are mapped to the hardware.

4 DATA ORGANIZATION

The first thing we are going to concentrate on is how to efficiently
use the memory and caching subsystem. At first glance, a (hypotheti-
cal) 32-core chip based on the MIC architecture would have a total of
8MBs of cache. This at first sounds ample, but isn’t any more when
considering this relative to functional units: For example, the Clover-
town CPUs used in [3] have four 4-wide SIMD units working on the
same physical cache size. Compared to 128 threads of 16-wide SIMD
each this leaves 4x4=16 vs 128x16=2k active elements sharing the
same cache—a difference of two orders of magnitude.

Like previous authors [3, 2] we compute an initial (bounding box,

primitive ID) pair (called a fragment) for each primitive, and per-
form all build steps by re-ordering the fragment array. This ensures
that irregular memory accesses to indexed vertices happen only in
this initial stage, and that memory indirections are not required dur-
ing building. In-place re-ordering would be preferable for maximum
cache usage, but partitioning in parallel is easier if source and target
regions don’t overlap. We therefore use two fragment arrays—one to
read from and one to write to—and alternate between them. Differ-
ent sub-trees work on mutually exclusive fragment regions, so some
threads can work from A to B while others work from B to A.

4.1 Data Reduction through Hierarchical Quantization

In addition to these techniques—which are identical to what other au-
thors did—we minimize our fragments’ cache footprint by quantizing
all box coordinate in DX10 unorm10 data format, which the MIC in-
struction set supports natively [25], and which allows to squeeze all
6 box coordinates into two dwords. Unorms have to be in the [0..1]
range, so we express all fragments relative to the scene bounding box.
All our kernels operate exclusively on those local unit coordinates; the
only time we transform to world space is when writing BVH nodes.
Since this transformation also changes the surface areas of the bins,
the SAH evaluation also has to correct for this distortion by properly
scaling all bins’ sides before evaluation.

Quantization to 10 bits implies a loss of accuracy from 24 to 10 bits.
To avoid quantization artifacts during rendering, we only quantize the
fragments, and never quantize the vertices used for intersection and
rendering. To ensure that the quantized boxes (after rounding) still
fully enclose the unquantized vertices, we also have to extend the box
by half a bit’s worth of mantissa before quantizing it. This slightly
increases all fragments, which we will deal with later.

Re-quantization. At only 10 bits per dimension, the smallest region
of space a BVH node can encode is the same as that of a regular grid of
10243 cells. This negatively affects the build quality in two different
ways: first, it means that all BVH nodes have to be slightly enlarged to
the next discrete value, increasing the SAH cost. Second, tiny triangles
lying in the same cell will all end up having the same bounding box,
in which case the builder cannot separate them.

This problem can be fixed by infrequently re-quantizing the fragments
(relative to the current sub-tree’s bounding box) whenever that sub-
tree’s bounding box becomes too small relative to the current quan-
tization domain. Determining when to best perform re-quantization
requires some form of heuristic. Ideally, this heuristic would perform
re-quantization every time the number of relevant bits available for the
current dimension drops below a given threshold. While using this
ideal heuristic is certainly possible, for our system we have adopted
an even simpler heuristic in re-quantizing only once—every time time



the number of primitives in a sub-tree falls below a certain threshold,
in which case the system switches to a specialized “Local Build Job”
code path, anyway (see Section 6.4). Performing quantization at that
time made for a simpler system design, and at least for the scenes we
tested has proven to be perfectly sufficient (Section 6.4). Also note
that quantization only applies to the number of bits used for binning—
not to the accuracy of bounding boxes coordinates—since those are
afterwards re-fit at full floating point precision (Section 6.4).

4.2 AoSoA Data Layout

There are two choices for the data layout: array of structures (AoS),
and structure of arrays (SoA). Unfortunately, both are problematic for
our purposes: AoS is often considered the more natural, but since dif-
ferent fragments’ same-type components (ie, their x values) are stored
non-contiguously they do not lend well to SIMD processing.

SIMD architectures prefer SoA, in which same-type components are
stored contiguously. In SoA, however, we need three different point-
ers for each fragment (without quantization we’d need 7!), and the
partitioning kernel—which reads from one location and writes to two
others—would have to operate on 9 different addresses in each itera-
tion (plus whatever other pages that thread needs): That many “active”
addresses require lots of registers and scalar operations to maintain
them, and lead to cache pollution. Worse yet, for non-trivial data sets
these addresses will end up in different virtual memory pages, and at
order 10 pages per thread and four threads per core the TLB [26] will
start to trash, requiring many costly TLB walks.

To avoid both data layouts’ problems, we instead use a structure-of-
array-of-structures (AoSoA, or ASA) data layout (Figure 2): we group
all fragments into chunks of 16 fragments each, store each chunk in
SoA layout, and the entire fragment array as an array of such SoA
chunks (see Figure 2). Though awkward for scalar processing (each
particular fragments’ address depends on which chunk it is in) for
SIMD processing it combines the best of both worlds: Like AoS, data
is local, and can be addressed by a single pointer; like SoA, each chunk
is in SIMD-friendly layout.

Cache
Line#

Actual Data Layout

CL0

CL1

CL2

CL3

CL4

CL5

min[0..15]

x0 z0y0 z1y1 x2 z2y2x1 x3 y3 z3 x4 y4 z4

min[0..15]

x0 z0y0 z1y1 x2 z2y2x1 x3 y3 z3 x4 y4 z4

ID0 ID1 ID2 ID3 ID4

min[0..15]

x0 z0y0 z1y1 x2 z2y2x1 x3 y3 z3 x4 y4 z4

min[0..15]

x0 z0y0 z1y1 x2 z2y2x1 x3 y3 z3 x4 y4 z4

ID0 ID1 ID2 ID3 ID4

Frags[0..15]

Frags[16..31]

Logical

xE yE zE xF yF zF

xE yE zE xF yF zF

IDE IDF

xE yE zE xF yF zF

xE yE zE xF yF zF

IDE IDF

Fig. 2. Our AoSoA data layout with 10 bit quantization per coordinate. Each
chunk of 16 fragments requires only three consecutive cachelines, and allows
very efficient SIMD processing. Each [begin..end) region of chunks is contigu-
ous, and can be addressed with a single scalar register.

5 LOW-LEVEL KERNELS

Before discussing the parallelization framework we first describe the
low-level kernels that the build tasks call back upon. Though different
threads may have to merge their respective kernels’ outputs to com-
plete a given task, the kernels themselves know nothing about parallel
processing or synchronization, and only work on stack-local data.

5.1 Binning Kernel

Binning is the most compute-intensive kernel in our system. Like
Lauterbach et al. [2], we utilize SIMD by updating all 16 bins in paral-
lel. From an algorithmic standpoint, this is a bad idea: each primitive
falls into only one bin, and updating all 16 bins—while achieving high
SIMD utilization—effectively “wastes” work by updating more bins
than required. Instead, it would be far more efficient to have each prim-
itive update only “its” bin, and perform a min/max prefix/postfix op-

eration across all 16 bins only once before SAH evaluation [3]. How-
ever, while this approach is more efficient on a scalar or 4-wide SIMD
architecture, it does not map well to 16-(or more-)wide SIMD: for one
element and one bin, there simply is not enough work to do in par-
allel; and trying to increase the amount of parallel work by operating
on either the three different dimensions or 16 different fragments did
not work out, either: operating on three dimensions could in theory
occupy up to 9 (out of 16) vector elements, but has a very high over-
head that made it very slow. Operating on 16 different fragments is
more natural, but suffers from the fact that multiple of these fragments
might project to the same bins, and the overhead to detect and resolve
these conflicts has turned out to be far too high.

Consequently, we follow Lauterbach in having each fragment update
all 16 bins in parallel. Though algorithmically sub-optimal, this ap-
proach leads to a very natural SoA layout for the 16 bins that induces
a very efficient implementation: Assuming one dimension’s bins are
already loaded into registers, all the binning kernel has to do is SIMD
load-and-broadcast a fragment’s 6 coordinates, perform a SIMD com-
parison to get a mask, and do 12 masked SIMD min/max’es to update
the 16 bins’ left and right bounds (see [25] for how more information
on masking and broadcasts).

The problem with this performance argument is that it assumes that all
16 bins are already in registers, which is not automatically the case.
Each bin stores both bounding boxes (lBounds,rBounds) and primi-
tive counts (lCount,rCount) for all primitives left resp right of that
bin’s partitioning plane. Even knowing that rCount=N-lCount this
requires 13 values per bin, which for 16 boxes requires 13 (out of
32 [5]) vector registers for those bins alone—and three times as much
for all three dimensions together. In a naïve implementation where
each fragment updates all three dimensions’ bins in turn the resulting
kernel would have to spill through 39+ SIMD registers (3KB of data!)
for each iteration (which might, in fact, happen in [2]) This spilling not
only triples the instruction count (each min or max op becomes load-
op-store), it also leads to instruction dependency chains and more I/O
requests than the L1 can reasonably fulfill (almost two out of three
cycles would demand either a load or a store).

To avoid this issue, we again exploit our AoSoA data layout: rather
than iterating over fragments, we iterate over chunks; for each such
chunk we first iterate over all 16 fragments in X dimension before do-
ing them all again in Y and Z. This way, we can always load one set of
bins into registers, re-use it 16 times, and only then switch to another
dimension’s bins. In addition, we can further reduce memory I/O by
always loading multiple fragments into the same register, and using the
instruction set’s free broadcasts to then broadcast each such fragment
to all 16 bins when required. Prefetching, too, is simple: Thanks to our
data layout we only need two cache lines per chunk, and since each
chunk performs plenty of work before needing its neighbor’s cache
lines there is ample time to prefetch those two lines. Taken together,
the binning kernel works almost completely out of registers, and basi-
cally without any dependency-, cache miss-, TLB-, or any other kind
of stalls. After loop unrolling, the code is almost devoid of load/stores
and scalar ops, with the few remaining ones often “paired away” (ie,
executed for free in the v-pipe while the u-pipe is doing more useful
work (see [26] for a discussion of pairing).

Since the current range of fragments does not necessarily have to start
or end at chunk boundaries, always operating on complete chunks
means that compute a validity mask for the first and last chunk, and
only bin elements whose mask bit is sent.

5.2 SIMD SAH Evaluation

Processing 16 bins in SoA layout also allows for efficiently evaluating
all 16 bins’ SAH in parallel. Since binning is performed in the local
space used for quantization we must first correct for the resulting dis-
tortion; but, this only requires to properly scale all bounding box sides
when computing their surface area. For all three dimensions, we then
compute the 16 bin’s SAHs in parallel, and compute the dimension
and bin for which these values reach their minimum.



In addition, we can use a simple trick to compute the SAH termina-
tion criterion (almost) for free: Since the leftmost bin by definition
has all primitives either in or right of it this bin’s SAr and Nr values
corresponds exactly to the parent’s area and primitive count, and since
this bin can never produce a valid partition, anyway (lCount=0 is not
a valid partition), all we have to do to compute the “no-split” cost is to
mask our this bin when adding the KT and SAlNL terms. Then, if the
final horizontal reduction of the SAH cost indicates bin 0 as cheapest
bin we know that this node should be made a leaf.

5.3 Partitioning Kernel

The partitioning kernel’s job is to take a range of fragments in the in-
put array, to compare each such fragment to the just computed partition
plane, and to write those fragments to either of two regions (indicated
by lDest and rDest) in the output array. As done for the binning ker-
nel, we always operate on entire chunks. For each such chunk, we read
first read the 16 fragments and perform a (free) unorm-to-float upcon-
vert during the read. We then compute the respective 16 centroids, and
use a vector compare with the partitioning plane to compute a mask
indicating which of those fragments go to the left resp. right side.

When appending to the left respectively right “stream” of fragments
our AoSoA layout requires some additional work, because the (com-
pacted) fragments we are writing may start and end inside different
chunks (and thus, in two different, non-neighboring cache lines). For-
tunately, however, in our instruction set the vector compaction comes
in two separate instructions—packlo for those elements that would
go to the current cacheline and packhi for those for the next, respec-
tively [25]—which is exactly what we need: For each left respectively
right stream, we store a pointer to the current chunk and a 0–15 offset
inside this chunk where the stream ends. Then, when appending a new
chunk of fragments we first use bitcount to determine the number
of fragments after compaction. If those fit into the current chunk, we
perform three packlos, and are done. If not, we first write the three
lo-parts, then advance the pointer to the next chunk, and write the
“overflows” using packhi (and, of course, prefetch the next chunk).
Note that though we need to upconvert the fragments for computing
the (float) centroids, for the actual compaction and writing we can di-
rectly write the three vector registers’ worth of quantized data.

In addition to moving the fragments, the partitioning kernel also tracks
the bounding boxes of the left respectively right centroids which we
need for the next recursion step’s binning. Since the partitioner itself
needs only few registers, we can keep those in (12) SIMD registers,
and cheaply update them with masked min/max’es based on the left
and right mask, respectively. In combination, for each chunk of 16
fragments the resulting code contains only two conditionals (one for
the loop, one to decide overflow or not), and otherwise contains al-
most only vector instructions (min,max,compare,and pack). The few
remaining scalar instructions (conditionals, pointer and offset updates,
prefetching) can mostly be paired way [26].

6 PARALLELIZATION FRAMEWORK

Having described the low-level kernels, we now describe the paral-
lelization framework that ties these together.

6.1 Tasking System

At the core of our framework is a fully general (collaborative) tasking
system (in the spirit of CILK [27]) in which all work is described as a
series of tasks that are inserted into a task queue from which worker
threads pick them for execution. Tasks can optionally have depen-
dencies, completions, and priorities. Once created, tasks get sched-
uled to the tasking system: tasks without dependencies are appended
to the task queue; those with dependencies remain dormant until all
their dependencies are fulfilled. Each task has one or more units of
work called jobs; different jobs of the same task can be executed con-
currently by different threads. To facilitate recursive algorithms (like
building), tasks can also specify completions, which indicate that the

task is fully done only if all its jobs are processed and its comple-
tions are done, too. Modifying the task queue (insertion, removal, and
picking) requires locking a global mutex; all other task-specific values
(next unclaimed job, number of remaining dependencies, completions,
etc) are realized mutex-free via spin-loops. All tasks are reference
counted, and automatically get destroyed once no longer needed.

Our system supports two levels of priorities by having two separate
task queues; threads always pick high-priority tasks except if only low-
priority tasks are available. Once a thread picks a task, it first checks
if this task has any unclaimed jobs available, and removes it from the
task queue if not; otherwise, it joins this task by calling its runfunction
(the function that executes that task’s code).

To avoid thread switching overhead, we use an exact subscription
model in which there is a 1:1 correspondence between hardware
threads and (affinitized) worker threads; all synchronization primitives
are realized through atomics and spinning, making sure that no thread-
switches occur except in the rare case that the OS preempts the entire
process. Nevertheless, synchronization is costly, in particular when
hundreds of threads want to modify the task queue at once.

6.2 Build-specific extensions

Most previous parallel build systems have made use of some sort of
load-balancing “work queues” (eg. [2, 3]). Unlike an application-
specific work queue system however our system is a fully general
tasking system (like CILK) that not only drives the build, but also the
rendering, the entire system, and various other tasks, if enabled.

Thanks to this generality there are several sources of overhead that
would not be required for our particular application (eg, none of our
tasks ever specifies a dependency, and core-local work queues would
be much simpler for our application than for the general case). We
have opted to keep full functionality even if this carries some over-
head. We did, however, add some extensions particularly designed to
improve efficiency of recursive build-style tasks.

Thread-local data. To enable threads to store thread-local data (at
lower cost than using pthreads for this), we have made the runfunction
aware of the executing thread’s ID by passing this as a parameter.

Explicit next-task selection. Instead of a “schedule and forget” mech-
anism for newly generated child tasks, our tasking system allows each
thread to, from within a runfunction, explicitly work on a given other
task (usually, a child task) before returning to the task scheduler.

Persistent runfunctions. Traditionally, each of a task’s sub-jobs
would be executed in a different runfunction call, with the scheduler
telling the runfunction which of the task’s jobs to work on. Instead,
our runfunctions get a pointer to the task itself, with which they can
then autonomously claim and return as many jobs as they like: This al-
lows the runfunction to amortize initialization/shutdown code (eg, bin
initialization and merging) across multiple jobs. In addition, it also
enables the runfunction to detect when no more jobs are available for
this task, as well as which thread finished the task.

6.3 Standard Build Tasks

At the core of our system is a “standard” build task. To facilitate par-
allel processing, each task’s range of fragments is logically subdivided
into blocks of 512 fragments. Each of these blocks corresponds to one
job; thus, such tasks can be processed by up to dnumTriangles/512e
different threads. For each such job, the thread executing it first com-
putes the range of fragments that this job corresponds to, and then
performs binning using the binning kernel described in Section 5.1.
Each thread accumulates partial results in its own, stack-local set of
bins that, when done, it merges into the task’s shared bin structure.

Deferred and Horizontal Merging of Bins. Before the SAH can be
evaluated, the threads must first merge their respective local bins. In
our initial implementation, we did this at the end of each job, which
turned out to be too costly. Using our persistent runfunctions each



Fig. 3. Five frames from the “Bunny/Dragon” animations (252k triangles). Using a hypothetical 32-core 1GHz Knights Ferry board, we can fully rebuild this scene
from scratch (at highest BVH quality settings) in 34ms per frame (43ms in sychronous mode). Including animation, rebuild, and rendering (at 1920× 1280 pixels,
including shadows) this animations runs at around 13–15 frames per second.

thread can now locally accumulate multiple jobs’ bins, and defer all
merging until no more jobs are available for this task.

Even then, serializing 128 threads for merging is a bad idea: Apart
from having to spin for the shared mutex, merging requires reading
and writing the task’s shared set of bins—but since those have just
been written by another core this operation guarantees 39 successive
L2 misses that require fetching those cache lines from other cores, in-
validating them on those core, evicting local cache lines to store them,
etc. And since no other threads are available to hide the resulting la-
tency (those are spinning on the mutex), this is expensive. In total, one
simple merge operation can add up to thousands of cycles; serializing
this for 128 threads produced a serious scalability problem.

Avoiding this serialization requires some sort of horizontal merging.

{0,4,...}

A
{1,...}

B
{2,...}

C
{3,6,...} {5,...}

ED

0 1 32 4 98765

Binning task with 10 sub−jobs

Five threads (A−E) working on this binning task

Merge

Queue

(MQ)

A
{0,4}

A
{0,4}

B
{1,7}

A
{0,4}

B
{1,7}

C
{2,8}

D
{3,6}

E
{5,9}

B C
{2,8}

D
{3,6}

E
{5,9}{0,1,4,7}

A
{0,4}

C D
{3,6}

E
{3,5,6,9}{0,1,4,7} {0,1,2,4,7,8}

B

C
{0,1,2,4,7,8}

E
{3,5,6,9}

E
{0−9}

C
{0,1,2,4,7,8}

a)

b)
c)

d)

e)

f)

g) h)

Fig. 4. Horizontal Merging: In this hypothetical but plausible example, five
threads (A-E) are collaboratively binning a task consisting of 10 sub-jobs (0-
9). a) each of the five threads works on different jobs, and accumulates its jobs’
binning info in its own thread-local storage; the merge queue is empty b) thread
A (having accumulated jobs 0 and 4) finishes first, enters the merge queue, has
nobody to merge with, and waits to be consumed. c) thread B finishes, appends
itself to the merge queue, tries to lock both itself and its predecessor (A), then
starts merging A’s binning data into its own. d) threads C, D, and E concurrently
finish binning (while B is still merging A’s data) and atomically enter the merge
queue. C tries to lock B, but fails because B is busy; D and E try to lock C
and D, respectively, producing a race as to who manages first to acquire the D’s
lock. Assuming E wins the locking race (the opposite case would have been
valid, too), E starts merging in D’s data while D spins for the C and D locks. e)
after B finishes merging A’s data it tells A that it is consumed; A then goes on
doing other useful work. B is now at the head of the merge queue, releases its
lock (thus allowing C to start merging its data), and spins until consumed. f) C
and E finish merging B and D, respectively, and tell those to be consumed. g)
E acquires C’s lock, and starts merging C’s data. h) E finishes merging C, tells
C it is consumed, and realizes it now has all jobs’ binning data, allowing it to
proceed to SAH evaluation and creation of the partitioning task.

Our first attempt was to wait for all threads to finish, and then to hi-
erarchically merge those threads’ partial results. This however meant
that all threads always had to wait for the slowest one to finish binning,
which was just as bad.

Instead (also see Figure 4), we currently have each build task keep a
linked list of all threads’ partial bins: Any time a thread finishes, using
an atomic exchange op and its thread-local storage (Section 6.2) it ap-
pends its local bins to this list. It then tries to lock both its own and its
predecessor’s data. This requires atomics, but only among those two
threads, not globally. If successful, the thread merges its predecessor’s
bins into its own, and de-queues this predecessor, at which time the
predecessor knows it is done with merging. Thus, multiple tasks fin-
ishing binning concurrently can start merging in parallel while other
threads are still binning. If some threads take longer to bin than others
those finishing early can leave the merging stage—and do something
else—as soon as their data has been consumed.

SAH Evaluation and Node Processing. The thread doing the last
merge operation for a task (which may or may not be the same that did
the last bin) by definition has the final merged bins for the entire task,
and can evaluate the SAH.

Leaf Generation. If the SAH’s termination criterion suggest that a
leaf should be created, the respective node is flagged as a leaf (its
bounds are stored by the parent as described below). In our imple-
mentation, when making a leaf we also compute, for each triangle in
this leaf, a 1-cache line structure used to accelerate ray/triangle inter-
section during rendering. Though not strictly part of the BVH builder,
we nevertheless include this cost in our build cost.

Inner Node Generation and Partition Setup. If the SAH does indi-
cate a valid split, the thread creates an inner node as well as a partition
task to partition that task’s fragments. To enable the build task to do
this in parallel, we have to know in advance where each jobs’ frag-
ments have to go in the output array. Following [3], we first, during
binning, store each job’s bin-counters; then, before creating the parti-
tion task we know how many fragments each job will contribute to the
left and right side, and accumulating these values yields the respec-
tive jobs’ target offsets in the output array. Once these left and right
targets are known for each block, the task computes the child nodes’
bounds (by transforming the respective bin’s bounds to world space),
and creates the partitioning task.

Parallel Partitioning. Knowing where each job’s left and right frag-
ments belong in the output arrays, the different jobs can be processed
in parallel without synchronization. Binning relative to the centroid
bounds produces better BVH quality than binning relative to the sub-
tree’s fragment bounds [16]. Therefore, in addition to moving the frag-
ments, the binning task also keeps track of the bounding boxes of the
centroids of the fragments that go to the left resp right sides; these are
needed to produce a tight binning domain for the eventual child tasks.

Once done partitioning the different threads have to horizontally merge
their respective local centroid bounds (which works similar to merging
bins). The thread that did the last merge then triggers recursion by
creating two new build tasks for the left respectively right sub-tree.

6.4 “Local” Build-Jobs

Once a sub-tree become small enough it doesn’t make sense to create
and schedule a full task any more, and it is more efficient to build the



entire subtree recursively on the stack [3, 2]. In our implementation,
we do this as soon as a build task would contain only a single job; ie,
once the number of triangles drops to 512 or below.

These “local” build tasks are not “tasks” in the tasking system’s sense;
instead, the respective thread that would have created the task immedi-
ately builds the entire sub-tree—in depth-first order and on the stack—
without any calls to the tasking system at all. To avoid the atomic

inc for each node allocation we use a single atomic to pre-allocate
the maximum number of nodes that the subtree could generate. Being
processed by a single thread the resulting code is much simpler: for
example, binning, SAH evaluation and binning can use the same stack-
local data without any kind of synchronization, merging, or “glue” be-
tween those kernels. In particular, local build-jobs perform no atomics
or synchronization at all, and never have to access the tasking system,
which particularly important since such local build jobs produce lots
of nodes, which would utterly swamp the tasking system if each such
node would require a full task creation/scheduling.

Local re-fitting. As described above, “large” build-jobs compute their
child nodes’ bounds by transforming the respective bins’ bounds into
world space, but since those bins are built with quantized fragments
they are slightly larger than they need to be. For local sub-trees, how-
ever, we can easily compute accurate bounds: In the leaves, when
computing our triangle accel structure we already read all (unquan-
tized) vertices, and can thus compute accurate bounds; and since local
sub-trees are built entirely on the stack, after returning from building
those children the thread can also compute accurate bounds for those
inner nodes from their children. This not only improves accuracy, it
also slightly improves performance because it is more SIMD-friendly
than extracting 16 scalar values from an SoA bin structure.

6.5 Initial Quantization

So far, all tasks have operated on already-quantized chunks. Since
these do not exist up front, we have one designated root task that works
just like a standard build task except that it first generates these chunks
by gathering every 16 triangles’ vertices, computing their bounding
box, and quantizing them with respect to the scene bounding box
(which, like [2], we assume as given). Each such chunk is then binned
just as done in a standard build task.

6.6 Improving Locality and Concurrency

Tasking systems usually operate in FIFO order, and there are good
reasons for doing that. For recursive build algorithms, this implies
that nodes are built in breadth-first order, which is what most previ-
ous systems did [3, 2]. This however has two serious problems. First,
it destroys locality: a thread that finishes a build task will create two
child tasks that work on the same data, but, when running in FIFO
order, will not be able to capitalize on this locality. Even assuming
that those child tasks would be executed by the same thread (which
is unlikely), when running in FIFO order that thread would have ex-
ecuted other tasks before it even reached those tasks, which—in par-
ticular given our relatively small tasks—would have long evicted that
data. Even worse, it means that all the threads that finish a job will all
want to continue working with the same task—the one at the head of
the queue. This in turn means that shared data like nextJob counters
etc frequently bounces between all cores (creating stalls), that each
threads’ jobs are always scattered between as many cores as possible
(maximizing cross-core communication and merging overhead), that
all threads continually fight for the same task queue mutex, and that
even if a task went through all the work of acquiring the head task
some other threads have since processed all of its job.

To avoid this problem, we exploit our tasking system’s explicit next-
task selection feature that has been added for exactly this reason: the
thread that created the child tasks first adds them to the task queue
in (l,r) order, but then, rather than returning, first works on those two
tasks, and does so in (r,l) order. Since both l and r are in the task queue
other threads can still join in those tasks, but since they first have to
exhaust their own stacks and all earlier tasks in the work queue before

doing so this technique means that threads will very quickly diverge
into different sub-trees. Though divergence is often a bad thing, in this
case it is actually good, since most of the time the threads can build en-
tire sub-trees without interference from—synchronization with—other
threads. This maximizes cache-reuse, minimizes cross-core cache line
sharing, and means that threads access the tasking system only when
all “their” tasks are exhausted.

This reordering means that by the time a thread gets a new task from
the tasking system there is a good chance that this task is already
done by whoever task has originally generated it—but since much
fewer threads ever access the tasking system the thread reaching those
already-processed tasks usually has ample time to remove them before
anybody else can even see them. In combination, for a block size of
512 triangles these techniques translate to a reduction in build time of
roughly 2x (with even larger wins for smaller block sizes).

6.7 Block Size and Asynchronous Building

For any parallel system there is a conflict between job size (in our
case, block size) and overhead: As a rule of thumb, smaller jobs sizes
mean more parallel work, which allows for supplying more threads
with work. However, more jobs also mean more accesses to the tasking
system, more atomics, more per-job startup/shutdown cost, etc (eg,
even at 512 triangles per block each job has only 32 frag-chunks).

Larger job sizes produce significantly fewer overhead, but often lead to
threads running out of work, and having to spin idle until the last thread
is done with its (large) piece of work. In rasterizers, this load balanc-
ing problem is often avoided by asynchronously working on multiple
frames at the same time [5]. In our system, we achieve a similar effect
by asynchronously overlapping two frames’ tasks: we start the current
frame’s build while the previous frame is still rendering, and schedule
all build tasks into the high-priority queue. As soon as a thread fin-
ishes a tile, it will—if any build task is available—immediately switch
to building; and rather than idling, threads running out of build tasks
simply render a tile. Since this “asynchronous” mode reduces idling
it produces reduces “incremental” build times (the difference between
“build+render” and “render only”), but since it also increases memory
consumption this mode is optional.

6.8 Final Considerations

The most striking effect of this framework is that the entire system
is (intentionally) rather chaotic, with threads picking whatever work
makes most sense. This makes it nearly impossible to predict which
thread is currently doing what at which time—some threads may be
collaboratively working on a big job while other each work on differ-
ent smaller tasks; and yet others may already be independently build-
ing entire sub-trees on their own, or even do something totally different
like rendering tiles when no unclaimed build jobs are available.

At first, this loss of control seems like a bad idea in that different kinds
of jobs could interfere with each other. In practice, however, at least as
long as all threads behave reasonably we have not observed any nega-
tive effects. In fact, to some degree the opposite is true: a chaotic be-
havior means that a core’s four threads usually execute a mix of differ-
ent kernels with different properties—such as a bandwidth-intensive
partitioning kernel and a compute-limited binning kernel—which al-
lows the core to balance their individual bottlenecks. In particular,
threads can almost always pick some useful work to do, while still be-
ing able to exploit locality and improve concurrency where possible.

7 RESULTS

With the entire framework in place we can now evaluate its perfor-
mance. The scenes used for our experiments are depicted in Fig-
ures 1, 3, and 5.

7.1 Experimental Setup

All experiments are run on actual hardware, using a “Knights Ferry”
MIC archictecture prototype board [1]. While architectural details



like SIMD width, cache sizes and instruction set are already publi-
cized [5, 25], actual core counts and clock frequency have not yet been
disclosed. Though our prototype board’s parameters may or may not
vary from these settings, for the purpose of this paper we normalize
all numbers to a round, and purely hypothetical, number of 32 cores
and 1GHz (which would translate to a hypothetical peak FLOP rate of
1TFLOP/s). For the remainder of this paper, we omit the terms “nor-
malized” and “hypothetical”, always understanding that actual hard-
ware parameters may be either higher or lower.

The BVHs are built using our parallel builder, using the default param-
eters as described above (ie, no per-scene parameter tuning). Render-
ing is done using a straightforward 16-ray packet tracer doing recur-
sive packet tracing including texturing, alpha textures, and shadows
from a directional light. Though none of our scenes features reflective
surfaces, the alpha textures can require multiple rays to be traced for
each pixel and/or shadow computation. Animation of the vertices is
done on the host, and a full set of vertices is uploaded to the card ev-
ery frame; building and rendering are performed entirely on the card.

7.2 Relative BVH Quality

Before measuring actual performance results, we first evaluate the
quality of our generated BVHs. The only possible source of reduced
BVH quality is through the 10-bit quantization. In Table 2, we com-
pare our BVH quality—with and without re-quantization—to a (of-
fline) reference builder without quantization. As can be seen, with-
out re-quantization BVH quality is measurably lower. As it turned
out, these lower-quality BVHs are much shallower than the reference
BVHs (having roughly half as many nodes), which does indeed indi-
cate that the builder ran out of bits to represent possible splits.

(a) Marbles: 8.8k, 17.7/16ms, 52.7fps (b) Toasters: 11k, 9.3/1.3ms, 92.6fps

(c) ben: 78k, 16/12.3ms, 56.2fps (d) cloth: 92k, 19/13ms, 43.7fps

(e) Fairy, 172k, 30.6/22.5ms, 17.4fps (f) bun/drag: 252k, 43/34ms, 19.1fps

(g) conf: 284k, 41.6/26.5ms, 17.2fps (h) dragon: 922k, 134/124ms, 6.5fps

Fig. 5. Sample frames from the scenes used in our experiments. Numbers
below the scene indicate scene complexity (in #triangles), build time (syn-
chronous/incremental, in ms), and aggregate build+render performance (in
FPS, @1920×1200, including shading, shadows, and texturing).

Once enabling re-quantization and local sub-tree re-fitting as de-
scribed above, however, this discrepancy mostly disappears, resulting
in BVHs that are within a few percent of the reference BVHs (the only
exception is the otherwise very simple Toasters scene, for which we do
not currently know why it behaves differently). More complex scenes
may require more than one re-quantization, we re-quantized only once,
when switching to local build jobs.

Note that as long as build time is a dominant factor quantizing only
once is actually faster in aggregate performance: running out of bits
precludes some small splits that lead to shallower BVHs (on average,
single-quantized BVHs have only half the number of nodes), and con-
sequently build times that are about 30% faster. However, to facilitate
comparisons with non-quantizing approaches we will, for the remain-
der of this paper, always use the (slower) re-quantizing variant.

scene ref single re-quant
quantization +local ref

fairy 2456 2666 92% 2459 100%
conf 8120 9169 89% 8190 99%
dragbun 14.98 19.2 78% 15.4 97%
dragon 17553 23151 76% 17801 99%

Table 2. SAH quality produced by our builder vs a (offline) reference builder
using 16 +

√
N bins and no quantization.

7.3 Scalability in Core Count and Scene Size

Scalability of our method is depicted in Figure 6. As can be seen, large
enough scenes scale almost perfectly linearly, and scalability breaks
only for “too simple” scenes for which a block size of 512 triangles
produces too few parallel tasks to keep 128 threads busy. This could
be alleviated by using a small block size for these scenes, but at higher
overhead for the more interesting scenes. To allow easier comparisons,
we intentionally did not do any per-scene parameter tweaking.

This lack of scalability for small scenes also means that there is a cer-
tain “minimum cost” below which our system can not drop. This ef-
fect can be seen, for example, by looking at the different scene’ syn-
chronous build times in Figure 5: while build time is roughly linear
in scenes size for scenes of around 100k triangles and above, even
trivial scenes will not drop below 10ms. Though to a much reduced
degree, this effect can still happen even in asynchronous mode, since
those trivially small scenes can sometimes render so fast that threads
eventually run out of even low-priority render jobs.

p
a

ra
lle

l s
p

e
e

d
u

p
 (

re
la

tiv
e

 t
o

 id
e

a
l)

Fairy
ben

bundrag
conf

Ideal

number of cores

Fig. 6. Build performance relative to a single core. At 512 fragments per block,
small scenes like ben do not generate enough parallel jobs to scale to all cores,
but larger scenes like Fairy, conference and bundrag scale near-linearly. All
scenes use the same set of default parameters.

7.4 Absolute Performance

Absolute performance data for both build and render—as well as
comparable numbers from previously published approaches, where
available—are given in Figures 1 and 5. The approaches we compare
against use wildly different hardware platforms, data structures, qual-
ity thresholds, and render settings. To draw any conclusions from this
comparison at all, we intentionally make the comparison as conserva-
tive as reasonably possible: in particular, we always use the highest-
quality settings for our BVH builder, and never resort to shallower
BVHs or spatial median splits, even though previous authors have



scene CPU GPU CPU CPU GPU GPU GPU CPU CPU GPU MIC
Grid Grid Grid kd-tree kd-tree kd-tree Hybrid BVH BVH SAH SAH

2xXeon GTX280 16x Opt. 4xXeon 8800GT GTX280 GTX280 8x Xeon 8x Xeon GTX280 MIC
SAH n/a n/a n/a partial partial‡ partial‡� partial partial full full full

Wald [22] Kaloj. [24] Ize [23] Shevtsov [17] Zhou [18] Hou [19] Lauterb. [2] Wald [3] Wald [3] Lauterb. [2] [ours]
Toasters - - - - 12ms - - - - - 11/1.3ms
(11k) 9.4fps - - - 55fps - - - - - 105

7.3fps - - 23.5fps (33fps) - - 36fps - - 93fps
cloth - - - - - - - - - - 19/13ms
(92k) - - - - - - - - - - 97

- - - - - - - 24fps - - 44fps
Fairy 68ms 24ms - - 77ms 58ms� 124ms 21ms 70ms 488ms 31/23ms
(174k) 1.3fps 3.5fps - - 12.8fps 8fps� 11.6fps - - 21.7fps 29

1.1fps 3.2fps? - 5.8fps 6.4fps? 5.4fps?� 4.8fps? 11.5fps - 1.8fps 17fps
BunDrag - 13ms - - - - 66ms 20ms 70ms 403ms 43/34ms
(252k) - 7.7fps - - - - 6.6fps - - 7.7fps 55.7

- 7.3fps? - - - - 4.6fps? 14fps - 1.9fps? 19.1fps
conf 89ms 27ms 21ms - - - 105ms 26ms 96ms 477ms 42/37ms
(284k) 4.0fps 7.0fps - - - - 22.9fps - - 24.5fps 46

2.9fps? 5.9fps? - 6.2fps - - 6.8fps? - - 1.9fps? 17fps

Table 1. Comparison to other GPU- and CPU-based builders for various data structures and hardware platforms. For each entry, we report pure build time (top, in
ms), pure render time excluding rebuild (middle, in fps), and aggregate render performance including rebuild (bottom, in fps). Best results are in bold. For papers
that did not explicitly report aggregate performance data we that have computed this value based on individual build and render times (marked with ?). For some
approaches (marked with ‡) exact tree quality metrics have not been fully specified in the paper. Note that due to wildly varying hardware as well as build- and
render-parameters, all these comparisons are only partially conclusive. In particular, we always render at 1920× 1200 with full shading and texturing, while other
systems render at lower resolutions and/or simpler shading. �: Note that Hou et al. [19] can handle significantly larger scenes than either our or any other GPU
approach. Hou et al. [19] also reports somewhat different performance data for the Zhou et al [18] method (in which building is faster but tracing is slower).

shown speedups of 3–4× when doing so [2, 3]. To adjust for different
render settings, all our render timings include shading, texturing, trans-
parency textures, and shadows. We also always render at the highest
resolution possible on our system (1920× 1200, vs 1024× 1024 for
most other systems), and never use any frustum traversal techniques
even though some other approaches ([22] and [3]) do.

Even under these intentionally over-conservative conditions our ap-
proach consistently outperforms all competitors in aggregate render
performance, and, somewhat more surprisingly, outperforms most
even in build time. The only approaches that are at least sometimes
faster in build time are—obviously—the grid-builders and, in one in-
stance, Wald’s CPU-based BVH builder, (and even then, only when
using spatial median splits in the upper levels of the tree).

Numbers for Pantaleone’s hybrid SAH/HLBVH build are unfortu-
nately not available for any of the commonly used test scenes we used
in our paper, but a back-of-the-envelope comparison with his numbers
indicates that our performance is at least competitive with his num-
bers, despite us performing a full SAH build, and despite us not yet
exploiting any possibly existing scene coherence; the same goes for
the BVH build method described in [19].

7.5 Cost Break-down

Though a detailed cost break-down for all scenes and parameter set-
tings is beyond the scope of this paper some initial profiling indicates
that the lion’s share of compute time is spent in the SIMD binning ker-
nel: Thanks to caches and prefetching all that time is actually spent in
“compute cycles”, and the main reason this is so expensive is that—
as argued before—updating 16 bins in parallel requires more FLOPs
than updating only a single relevant bin (as a scalar or 4-wide architec-
ture could have done [16]). In synchronous mode, the resulting load-
imbalance at the end of the build process also translates to a significant
number of cycles spent idling for work; in asynchronous mode, how-
ever, this is not the case, and the vast majority of time is spent in SIMD
binning.

8 SUMMARY AND CONCLUSION

We have described a framework for the fast construction of SAH
BVHs that is particularly designed for the Intel MIC architecture. In
particular, we have used four key concepts: a hierarchically quan-
tized data layout that exploits our architecture’s support for DX data
types and that minimizes cache footprint without compromising BVH

quality; a AoSoA layout that combines AoS’ data locality with SoA’s
SIMD-friendliness; highly optimized, low-level SIMD kernels for bin-
ning and partitioning; and a parallelization framework that has been
particularly designed to maximize concurrency (tasking system, im-
plicit stack-order, asynchronous building), minimize synchronization
overhead (persistent runfunctions and deferred, horizontal merge), and
maximize locality (implicit stack-order).

Using these techniques we achieve SAH BVH build performance that
is competitive with or faster than previously published results, in-
cluding those for significantly simpler data structures. In particular,
normalized to a hypothetical 32-core 1 GHz Knights Ferry configu-
ration we outperform even multi-socket multi-core CPU systems in
build time (and even more so in aggregate render time); we outper-
form Lauterbach’s GTX280-based approach by up to 15× even in
synchronous mode (and up to 22+× in asynchronous mode), and even
outperform its simpler spatial median builder by up to 4×; and we
even come very close to the so-far best published build times for regu-
lar grids (which we significantly outperform in aggregate frame time).
Though achieving this absolute performance is obviously at least par-
tially due some architectural advantages of our underlying hardware
architecture (eg, having real, large-enough, and coherent caches, sup-
port for stream compaction, ∼2x the FLOPs of a GTX 280, etc), it is
only through our techniques that this potential is fully realized. While
our particular implementation is explicitly geared towards the Intel
MIC architecture, some of the ideas used in this approach (eg, reduc-
ing cache footprint through quantization, the AoSoA data layout, or
the horizontal merging) might also benefit other highly parallel hard-
ware architectures.

While this paper has intentionally focused only on best-quality SAH
BVHs, an obvious next step is to also consider quality-vs-performance
trade-offs like shallower BVHs and spatial median or (H)LBVH splits;
with the given framework in place doing this should be rather straight-
forward. Similarly obvious is to even further improve render times
by, for example, integrating Benthin’s Multi-Frustum Traversal tech-
nique [28]. MFT prefers somewhat shallower BVHs [28], which we
could accomodate by simply not doing the re-quantization; this would
then produce a double win, improving both build times and render
performance at the same time. Finally, in particular once those two
features are added it would be interesting to use our technique as core
ingredient for to build a complete ray tracing system in which the host
application could then operate without any constraints at all in how it
organizes and animates its geometry.



REFERENCES

[1] Intel, “Intel news release: Intel unveils new product plans
for high-performance computing,” http://www.intel.com/-
pressroom/archive/releases/20100531comp.htm, May 2010.

[2] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH Construction on GPUs,” Computer Graphics Forum, vol. 28,
no. 2, pp. 375–384, 2009.

[3] I. Wald, “On fast Construction of SAH-based Bounding Volume Hier-
archies,” in Proceedings of the 2007 IEEE/Eurographics Symposium on
Interactive Ray Tracing, 2007, pp. 33–40.

[4] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal on
GPUs,” in Proceedings of the 2009 ACM Symposium on High Perfor-
mance Graphics, 2009.

[5] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, “Larrabee: A Many-Core x86 Architecture
for Visual Computing,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH ’08), vol. 27, no. 3, pp. 1–15, 2008.

[6] M. Ernst and G. Greiner, “Multi Bounding Volume Hierarchies,” in Pro-
ceedings of the 2008 IEEE/EG Symposium on Interactive Ray Tracing,
2008, pp. 35–40.

[7] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding vol-
ume hierarchies,” in Proceedings of High Performance Graphics, 2009.

[8] B. Fabianowski and J. Dingliana, “Compact BVH Storage for Ray Trac-
ing and Photon Mapping,” in Proceedings of the 9th Eurographics Ireland
Workshop, 2009, pp. 1–8.

[9] J. Goldsmith and J. Salmon, “Automatic Creation of Object Hierarchies
for Ray Tracing,” IEEE Computer Graphics and Applications, vol. 7,
no. 5, pp. 14–20, 1987.

[10] K. R. Subramanian and D. S. Fussel, “Factors affecting performance of
ray tracing hierarchies,” The University of Texas at Austin, Tech. Rep. Tx
78712, July 1990.

[11] V. Havran, “Heuristic Ray Shooting Algorithms,” Ph.D. dissertation, Fac-
ulty of Electrical Engineering, Czech Technical University in Prague,
2001.

[12] W. Hunt, G. Stoll, and W. Mark, “Fast kd-tree Construction with an Adap-
tive Error-Bounded Heuristic,” in Proceedings of the IEEE Symposium on
Interactive Ray Tracing, 2006.

[13] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, “Experiences with
Streaming Construction of SAH KD-Trees,” in Proceedings of the IEEE
Symposium on Interactive Ray Tracing, 2006.

[14] W. Hunt, W. R. Mark, D. S. Fussell, and G. Stoll, “Fast and Lazy Build of
Acceleration Structures from Scene Hierarchies,” in Proceedings of the
2007 IEEE/EG Symposium on Interactive Ray Tracing, 2007.

[15] J. Pantaleoni and D. Luebke, “Hierarchical LBVH Construction for Real-
Time Ray Tracing of Dynamic Geometry,” in Proceedings of High Per-
formance Graphics 2010, 2010, pp. 87–95.

[16] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies,” ACM Transactions on Graph-
ics, vol. 26, no. 1, pp. 1–18, 2007.

[17] M. Shevtsov, A. Soupikov, and A. Kapustin, “Fast and scalable kd-tree
construction for interactively ray tracing dynamic scenes,” Computer
Graphics Forum, vol. 26, no. 3, 2007, (Proceedings of Eurographics).

[18] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction
on graphics hardware,” in Proceedings of Siggraph Asia, 2008.

[19] Q. Hou, X. Sun, K. Zhou, C. Lauterbach, and D. Manocha, “Memory-
Scalable GPU Spatial Hierarchy Construction,” IEEE Transactions on
Visualization & Computer Graphics, June 2010.

[20] B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino, S. V. Adve,
and J. C. Hart, “Parallel SAH k-D Tree Construction,” in Proceedings of
High Performance Graphics 2010, 2010, pp. 77–86.

[21] E. Reinhard, B. Smits, and C. Hansen, “Dynamic acceleration structures
for interactive ray tracing,” in Proceedings of the Eurographics Workshop
on Rendering, Brno, Czech Republic, June 2000, pp. 299–306.

[22] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray Tracing
Animated Scenes using Coherent Grid Traversal,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH ’06), vol. 25, no. 3, pp. 485–493,
2006.

[23] T. Ize, I. Wald, C. Robertson, and S. G. Parker, “An Evaluation of Parallel
Grid Construction for Ray Tracing Dynamic Scenes,” in Proceedings of
the IEEE Symposium on Interactive Ray Tracing, 2006, pp. 47–55.

[24] J. Kalojanov and P. Slusallek, “A Parallel Algorithm for Construction of

Uniform Grids,” in Proceedings of High-Performance Graphics, 2009.
[25] Intel LRBni, “C++ Larrabee Prototype Library,”

http://software.intel.com/en-us/articles/prototype-primitives-guide/,
2009.

[26] M. Abrash, Graphics Programming Black Book.
[27] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and

Y. Zhou, “Cilk: An efficient multithreaded runtime system,” ACM Sig-
Plan Notices, vol. 30, no. 8, p. 216, 1995.

[28] C. Benthin and I. Wald, “Efficient Ray Traced Soft Shadows using Multi-
Frusta Tracing,” in Proceedings of the 2009 ACM Symposium on High
Performance Graphics, 2009.


