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Abstract
Ray tracing has long been a method of choice for off-line rendering, but traditionally was too slow for interactive
use. With faster hardware and algorithmic improvements this has recently changed, and real-time ray tracing is
finally within reach. However, real-time capability also opens up new problems that do not exist in an off-line
environment. In particular real-time ray tracing offers the opportunity to interactively ray trace moving/animated
scene content. This presents a challenge to the data structures that have been developed for ray tracing over
the past few decades. Spatial data structures crucial for fast ray tracingmust be rebuilt or updated as the scene
changes, and this can become a bottleneck for the speed of ray tracing.
This bottleneck has received much recent attention by researchers thathas resulted in a multitude of different
algorithms, data structures, and strategies for handling animated scenes.The effectiveness of techniques for ray
tracing dynamic scenes vary dramatically depending on details such as scene complexity, model structure, type
of motion, and the coherency of the rays. Consequently, there is so far no approach that is best in all cases,
and determining the best technique for a particular problem can be a challenge. In this STAR, we aim to survey
the different approaches to ray tracing animated scenes, discussing their strengths and weaknesses, and their
relationship to other approaches. The overall goal is to help the reader choose the best approach depending on
the situation, and to expose promising areas where there is potential for algorithmic improvements.

1. Introduction
One of the main elements of a rendering technique is the
visibility algorithm. For example, to produce an image it is
necessary to determine which surfaces are visible from the
eye point, which surfaces are visible from the light(s) and
hence not in shadow, and, if global illumination effects are
being computed, which surfaces are visible from points on
other surfaces. The two most commonly used approaches to
the visibility problem are rasterization-based approaches and
ray tracing based approaches. The performance of this visi-
bility algorithm is critical for interactive applications.

Rasterization-based approaches are limited to determin-
ing visibility for many rays sharing a single origin. They
also operate in object order (the outer loop is over objects).
These algorithms can be supported very efficiently on spe-
cial purpose hardware (GPUs), and with hardware and soft-
ware advancements, GPUs routinely obtain real-time perfor-
mance for visibility from an eye point or point light even for
highly complex models. In addition, they enable a wide ar-
ray of techniques to produce highly compelling graphics ef-
fects at real-time rates. Consequently, virtually all of today’s
real-time graphics uses GPU-based rasterization, delivering
highly compelling imagery at real-time rates.

Ray tracing algorithms [Whi80, CPC84], on the other
hand, support arbitrary point-to-point visibility queries and
are arguably more powerful for computing advanced light-

ing effects that require such queries. Off-line rendering has
primarily used ray tracing instead of rasterization for these
reasons [TL04,CFLB06]. Unfortunately, ray tracing is com-
putationally demanding and has not yet benefited from spe-
cial purpose hardware, and consequently could not be sup-
ported at interactive frame rates until very recently.

With advances in CPU hardware and increased availabil-
ity of parallel machines, combined with equivalent advances
in algorithms and software architectures, ray tracing has
reached a stage where it is no longer limited to only off-line
rendering. In fact, while the first interactive ray tracers either
required large supercomputers [KH95,Muu95,PMS∗99] or
were limited to small resolutions [WSBW01] and/or simple
shading effects [RSH05], there now exists a variety of dif-
ferent interactive ray tracing systems, many of which tackle
problems that are not easily possible using a rasterization-
based approach [GIK∗07,WBS02,BEL∗07,PSL∗98].

1.1. The need for handling animated scenes
The key to fast ray tracing lies in the use of data structures
such as kd-trees, grids, and bounding volume hierarchies that
reduce the number of ray-primitive intersections performed
per ray. For a long time, ray tracing research concentrated
mostly on the effectiveness of these data structures (i.e., how
effective each is in reducing the number of primitive op-
erations), and on the efficiency of the traversal and primi-

© The Eurographics Association 2007.



Wald et al. / State of the Art in Ray Tracing Animated Scenes

tive intersection operations (i.e., how fast these operations
can be executed on particular hardware). The time forbuild-
ing these data structures has typically been ignored – since
it is usually insignificant in off-line rendering – and conse-
quently, ray tracing evolved into a field that used data struc-
tures and build algorithms that were clearly non-interactive
except for trivially simple scenes. Consequently, as ray trac-
ing started to reach interactive rendering performance, it was
initially only applicable to walk-throughs of static scenes, or
to very limited kinds of animations.

With the advent of ray tracers running at real-time frame
rates for certain kinds of static scenes (especially Reshetov’s
2005 MLRT paper [RSH05]), it has become clear that build
times can no longer be ignored: with up to a hundred million
rays per second on a desktop PC, ray tracing has the potential
to be used for truly interactive applications like games, but
these depend on the ability to perform significant changes to
the scene geometry every frame.

In fact, this situation opened up an entirely new research
challenge for consideration in ray tracing: to create build al-
gorithms that were fast enough and flexible enough to be
used at interactive frame rates. While originally, ray trac-
ing data structures were only considered for their effective-
ness and efficiency in rendering, now the build time had to
be considered as well. This not only affects which build al-
gorithm is the “best” for any given data structure, but also
which data structure to use in the first place. Consequently,
many ray tracing data structures are receiving renewed inter-
est even though they had previously been discarded as being
too inefficient. In many ways, lessons learned in the early
days of batch rendering are being revisited, where the accel-
eration structure must now pay for itself (with a reduction
in rendering time) within the few milliseconds available for
a given frame, rather than over several minutes. In fact, the
challenge is even greater than in a batch renderer since inter-
active systems use comparatively few samples per pixel and
typically do not have the opportunity to customize the scene
for particular viewpoints as is often done in batch rendering.

1.2. Types of animations

One issue that makes it challenging to compare the differ-
ent approaches to animated ray tracing is that the term “an-
imated” scene is not well-defined, and covers everything
from a single moving triangle in an otherwise static scene,
to scenes where no two successive frames have anything in
common at all. For the remainder of this report, we will use
the following terms: Astatic scene is one whose geome-
try does not change at all from frame to frame†; a partially
static scene is one in which a certain amount of the primi-
tives are moving, while other parts remain static, such as a

† Note that we only consider geometric changes – camera, lighting,
or shading information do not affect the efficiency data structures,
and so will not be considered.

few characters moving through an otherwise static game en-
vironment, or an editing application where small portions of
the scene are moving at any given time.

The actual motion of the primitives can either be hierar-
chical, semi-hierarchical, or incoherent: motion ishierarchi-
cal if the scene’s primitives can be partitioned into groups of
primitives such that all of the primitives of a given group are
subject to the same linear or rigid-body deformation. Each
such group we will call anobject. The exact opposite of hi-
erarchical motion isincoherent motion, where each primi-
tive moves independently of all others; a hybrid situation is
semi-hierarchicalmotion, in which the scene can be parti-
tioned into objects whose motion is primarily hierarchical,
plus some small amount of incoherent motion within each
object (similar to a flock of birds or a school of fish).

In addition to the motion of each primitive, animations
can also differ in the way that animation affects the scene
topology: Often, an object is stored as a triangle mesh, and
animation is performed by moving only the triangle vertices
while leaving the connectivity unchanged. We call this spe-
cial case adeformablescene, whereasarbitrary changes to
the scene topologycan also include the change of triangle
mesh connectivity, or even the addition or deletion of primi-
tives‡. Often, only certain parts of the scene are deformable
(e.g., each skinned monster is a deformable mesh), while the
scene’s overall animation is more complex.

In practice, different applications use different kinds of
animation. For example, a design review application is likely
to employ either static scenes or semi-hierarchical animation
of complete auto or airplane parts; potentially including the
addition or removal of complete objects from time to time,
but with no non-hierarchical motion at all. A particle sim-
ulation, on the other hand, may use completely incoherent
motion with frequent addition and removal of primitives, or
even completely unrelated primitives every frame. Games, in
fact, can employ all kinds of motion at the same time: a flight
simulator or first-person shooter, for instance, may contain
some static geometry, as well as completely incoherent parts
– like explosions. In games there usually are individual ob-
jects with mostly hierarchical animation (like airplanes or
monsters), but there may be many of them. The motion of the
many objects may itself be an example of incoherent motion
(e.g. characters appearing and disappearing). In addition, the
characters themselves are often skinned, providing a good
example of semi-hierarchical motion. It is likely that no one
technique will handle all kinds of motions equally well.

2. Problem environment
The problem we target – real-time ray tracing of animated
scenes – actually consists of two competing concerns: real-
time ray tracing, and handling animated scenes. With the

‡ A deformable scene doesnothave to consist of only a single con-
nected object, it can also consist of multiple separate triangle meshes
as long as the overall connectivity does not change
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goal of interactivity, approaches must be able to generate
real-time performance for tracing rays. Ultimately, this re-
quires the use of acceleration data structures such as kd-
trees, grids, or bounding volume hierarchies. The relative
effectiveness for ray tracing (in particular, for animated
scenes) of these acceleration structures varies dramatically
depending on many factors, which we discuss below.

This combination of real-time ray tracing with support for
animated scenes raises a lot of new issues that we discuss in
detail over the course of this report. For static scenes, the
choice of a data structure and build algorithm can be deter-
mined by looking only at the final rendering performance,
since the build cost is not incurred during the interactive ses-
sion. However, as soon as interactivity for dynamic scenes
is attempted, the the time for building or updating the data
structure can no longer be ignored.

Exploiting ray coherence for fast ray traversal Much of
this report will focus on the methods for building and/or
updating ray tracing acceleration structures for animated
scenes. However, ray traversal performance is also critical
in animated ray tracing systems, especially in systems that
trace large numbers of secondary rays. In this section we re-
view an important class of techniques used to provide fast
traversal performance in all modern interactive ray tracers.

The rays traced in a typical interactive ray tracer are not
organized randomly; there is substantial spatial coherence in
the rays that are traced (i.e., they can be grouped together in
space). This coherence is particularly strong for eye rays, but
it is also present for hard shadow rays, soft shadow rays, and
many other kinds of secondary rays. All modern high per-
formance ray tracers exploit this spatial coherence to reduce
computation costs. At a high level, there are two strategies
for exploiting coherence: beam tracing [HH84] and ray ag-
gregation. Beam tracing performs exact area sampling and
thus does not explicitly represent rays at all. On the other
hand, ray aggregation explicitly represents rays but amor-
tizes the cost of some of the traversal operations over an en-
tire “packet” of multiple rays.

Most current systems use ray aggregation techniques,
which combine several rays into a packet and/or frustum.
The first step in that direction was Wald et al.’s “coher-
ent ray tracing” paper [WSBW01], which proposed trac-
ing rays in bundles of four through a kd-tree, and using
SIMD to process these rays in parallel; the same concept
has since been used in numerous ray tracers, and on a vari-
ety of architectures. Using packet tracing allows for amor-
tizing operations including memory accesses, function calls
and traversal computations, and permits the use of register
SIMD instructions to gain more performance from the CPU.
For coherent rays, this can lead to significant performance
increases over single ray implementations. Though tracing
rays in SIMD, “plain” packet tracing still performs all traver-
sal steps and triangle intersections as a single-ray ray tracer.

An important evolution of packet tracing is the use of
frustum- or interval arithmetic-based techniques. Instead

of saving only through implicit amortizations and SIMD
processing, these techniques go one step further: they use
much larger packets than packet tracing, and explicitly avoid
traversal steps or primitive intersections based on conserva-
tive bounds of the packet of rays. For triangle intersection,
this concept was first proposed by Dmitriev et al. [DHS04],
who used the bounding frustum to eliminate triangle inter-
sections for cases where the full packet misses the triangle.
For traversal, the concept was first proposed by Reshetov
et al. [RSH05] who applied it to kd-tree traversal, and used
interval arithmetic-based “inverse frustum culling” to cull
complete subtrees during traversal. The basic concept was
later extended to grids [WIK∗06] and BVHs [WBS07], and
a large number of modified applications are possible (see,
e.g., [BWS06] for a more complete overview). Though more
research is required in how such techniques interact with less
coherent rays, packet- and frustum techniques are currently
the methods of choice for targeting real-time performance.

In a beam tracer, rays are not explicitly represented except
perhaps in a final sampling step. Instead, a beam tracer eval-
uates exact area visibility. Overbeck et al. [ORM07] have
recently demonstrated that for scenes composed of moder-
ate to large size triangles, beam tracers are competitive with
frustum-based ray tracers for eye rays and soft shadow rays.
They achieved this performance through new techniques for
using a kd-tree acceleration structure for beam tracing. How-
ever, beam tracing performance becomes less competitive
for small triangle sizes, since small triangles force a large
number of beam splits. An important advantage of beam
tracers is that they eliminate the Monte Carlo sampling ar-
tifacts produced by traditional ray tracers for soft shadows.
Though most of the systems discussed in the remainder of
this paper do not use beam tracing, the general discussions
on data structures and build/update strategies may apply to a
beam tracing approach as well.

Interactivity for animated scenes requires performance
both for ray tracing as well as for data structure up-
date/rebuilds. Therefore, we will describe the traversal tech-
niques for kd-trees, BVHs, and grids in Sections5, 6, and7,
respectively. At the current state-of-the-art, grids, kd-trees,
and BVHs all feature fast traversal algorithms; thus, the fo-
cus of that paper lies on how to handle dynamically changing
geometry. We do so, we fist have to discuss the high-level
design issues on how to design a ray tracer for dynamically
animated scenes.

3. Overarching tradeoffs
There are a number of candidate approaches for ray tracing
dynamic scenes. Before discussing any of these approaches
in detail, it is worth considering the general design decisions
that must be addressed when attempting interactive ray trac-
ing of dynamic scenes.

Each of these decisions represents one dimension in the
overall design space of a ray tracer. We present several
dimensions of this design space, discussing the possible

© The Eurographics Association 2007.



Wald et al. / State of the Art in Ray Tracing Animated Scenes

choices and the tradeoffs made with these choices. As some
of these decisions are interrelated, we also discuss the effect
of one choice on other choices in this space.

Some of these tradeoffs include:

• What kind of acceleration structure should be used? The
tradeoffs include using a space partitioning hierarchy vs.
an object hierarchy; axis aligned vs. arbitrarily oriented
bounding planes; One coordinate system vs. many lo-
cal coordinate systems; adaptive to geometry vs. non-
adaptive; and mechanisms for organizing bounding planes
in the data structure.

• How is the acceleration structure built or updated each
frame? In large part, this determines the trade-off be-
tween build performance and trace performance. In partic-
ular, rebuild vs. update; full update/rebuild (entire scene)
vs. partial update/rebuild (just portions needed for that
frame); fast vs. careful algorithms for choosing bound-
ing planes. These questions are addressed briefly in this
section and in more detail in Section4.

• What is the interface between the application and the ray
tracing engine? In particular, how does the application
provide geometry to the ray tracing engine: polygon soup
vs. sloppy spatial organization (scene graph) vs. ready-to-
use acceleration structure? Are there restrictions or op-
timizations for particular kinds of dynamic movement?
Static geometry vs. rigid object movement vs. deformable
meshes vs. coherent movement vs. no restrictions? Is ge-
ometry represented with just one resolution, or many?

Note that many of these tradeoffs may be substantially dif-
ferent in an interactive system than in a traditional batch ray
tracer, where many of these issues are not faced. We discuss
several of these tradeoffs below.

3.1. Acceleration structure tradeoffs
As mentioned above, there are a wide variety of acceleration
structures that can be used for ray tracing. Specific details of
particular acceleration structures will be discussed in Sec-
tions 5, 6, and7, but there are inherent tradeoffs between
these techniquesthat we want to contrast in advance.

The choice of an acceleration structure strongly affects
the traversal performance, and also can facilitate (or inhibit)
the choice of certain algorithms for updating or rebuild-
ing the acceleration structure. Here, we discuss the differ-
ent kinds of acceleration structures in terms of their funda-
mental properties. For a more in-depth discussion of spa-
tial data structures in general we refer readers to books by
Samet [Sam06, Sam89b, Sam89a] and a survey article by
Gaede and Günther [GG98]. For a more in-depth discussion
of how ray tracing acceleration structures affect ray tracing
traversal performance, we refer readers to the literature listed
in the bibliography at the end of Chapter 4 in PBRT [PH04],
and in particular to Havran’s Ph.D. thesis [Hav01].

Finding the object hit by a ray is fundamentally a search
problem, and the data structures used to accelerate that
search impose some kind of spatial sorting on the scene.

Though a variety of different data structures exist (e.g., grids,
kd-trees, octrees, and variant of BVHs), they fall into only
two classes: spatial subdivision techniques, and object hier-
archies.

3.1.1. Spatial subdivision vs. object hierarchy
Spatial subdivision and object hierarchies are dual in nature:
Spatial subdivision techniques uniquely represent each point
in space, but each primitive can be referenced from multiple
cells; object hierarchy techniques reference each primitive
exactly once, but each 3D point can be overlapped by any-
where from zero to several leaf nodes (also see [Hav07]).
Grids, octrees, and kd-trees are examples of spatial sub-
division, with varying degree of regularity (or “arity” of
the subdivision [Hav07]); bounding volume hierarchies and
their variants (bounding interval hierarchies, s-kd trees, b-kd
trees, . . . ) are object hierarchies. The advantages and disad-
vantages of the two approaches follow from these properties.

First, we consider traversal. If we wish to find the first
intersection point along a ray, the problem is somewhat sim-
pler for the space partitioning data structures. Each volume
of space is represented just once, so the traversal algorithm
can traverse these voxels in strict front-to-back order, and
can perform an “early exit” as soon as any intersection is
found. In contrast, for space overlapping data structures the
same spatial location may be covered by different subtrees,
and an intersection found in one subtree may later be over-
written by an intersection point in a different subtree that is
closer to the origin of the ray (potentially having led to su-
perfluous work). On the other hand, spatial subdivision may
lead to visiting the same object several times along the ray,
which cannot happen with an object hierarchy; the same is
true for empty cells that frequently occur in spatial subdivi-
sion, but simply do not exist in object hierarchies.

Space subdivision also generally leads to a finer subdi-
vision (an object hierarchy will never generate cells smaller
than the primitive inside), which often encloses objects more
tightly. This often leads to fewer primitive intersections, but
at the expensive of potentially more work to be performed
during building, and possibly more traversal steps. For the
same reason the often stated assumption that BVHs consume
more memory than kd-trees is not necessarily true: though
each node does require more data, the number of nodes,
leaves, and triangle references in a BVH is generally much
smaller than in a kd-tree; the same observation is true for
the cost of traversing the data structure (a more expensive
traversal step, but fewer traversal steps).

Second, we consider updates to an acceleration structure
as objects move. In a typical object hierarchy data structure,
it is easy to update the data structure as an object moves be-
cause the object lives in just one node and the bounds for that
node can be updated with relatively simple and localized up-
date operations. In contrast, updates to a space partitioning
data structure are more complex. If split planes are updated,
the changes are not necessarily well localized and may effect
other objects.
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3.1.2. Axis-aligned vs. arbitrary bounding planes
All of the commonly used acceleration structures rely on
planes to partition space or objects. For some types of ac-
celeration structures these planes are restricted, most com-
monly to be axis-aligned along thex, y, orzaxis. However, it
is also possible to allow arbitrarily oriented bounding planes,
as is done in a general binary space partitioning (BSP) tree.
The advantages of using axis-aligned planes include: (a) The
plane’s orientation can be represented with just two bits,
rather than two or more floating point numbers, (b) Intersec-
tion tests are simpler and faster for axis-aligned planes, (c)
Numerical precision and robustness issues in ray-plane inter-
section are easier to characterize and solve for axis-aligned
planes, (d) Using only axis-aligned planes significantly re-
duces the dimensionality of the search space for building
efficient data structures, and building efficient good axis-
aligned data structures is well understood. Conversely, the
advantages of using arbitrarily-oriented planes include: (a)
Arbitrarily aligned planes can bound geometry more tightly
than axis-aligned planes; and (b) Some strategies for in-
cremental update of an acceleration structure might benefit
from the ability to arbitrarily adjust the orientation of bound-
ing planes to accommodate rotations of objects.

There has been very little investigation to date of gen-
eral BSP trees or BVHs with non-axis aligned bounding
primitives as ray tracing acceleration structures, even though
both have been used for collision detection (see e.g. [LCF05,
GLM96,HEV∗04]).

3.1.3. Adapt to geometry vs. non-adaptive
For spatial subdivision techniques, one more option is the
mechanism for subdividing space. In some acceleration
structures the location of subdivision planes is chosen so as
to adapt to the geometry in the scene (e.g. a kd-tree), whereas
in other acceleration structures the locations of bounding
planes are predetermined, without looking at the geometry
in the scene (e.g., a grid or octree). In this second case, some
acceleration structures are still able to partially adapt to the
scene geometry by adjusting their topology (e.g. an octree or
grid with variable depth), whereas other acceleration struc-
tures do not adapt at all to scene geometry (e.g., a regular,
non-hierarchical grid).

The advantage of the most highly adaptive data structures
is that they are able to compactly and efficiently represent
almost any scene, including those with highly variable den-
sity of geometry such as the “teapot in a stadium”. For this
same reason, they also provide good traversal performance
on virtually any scene (also see [Hav01]).

When rays are traced in aggregates such as packets, frusta,
or beams – which today is widely believed to be a prerequi-
site to reaching high performance – there can be dramatic
differences in the traversal performance characteristics of
different acceleration structures. For grids, only one packet-
based traversal scheme is known today [WIK∗06], and since
it is based on frustum traversal, it requires more than 4 rays
to benefit from the frustum traversal; with 4 or less rays

the performance advantages over a single ray grid are much
lower and it can even perform worse, or fall back to single-
ray traversal. In addition, the grid requires highly coherent
rays to perform efficiently. Adaptive data structures, on the
other hand, seem to be more friendly to different packet con-
figurations. In part, this is because the hierarchical nature of
adaptive data structures allows much of the traversal work
to be done at coarse spatial scales, where the amortization
of costs for large packets is especially effective, even when
the packets are less coherent. It is possible that a hierarchi-
cal grid or an octree might be similarly effective for large
packets with less coherence, but this question has not been
studied in detail yet.

Adaptivity also affects the construction of the acceleration
structure. In general, adaptive data structures are more ex-
pensive to construct than non-adaptive data structures. There
are several reasons for this. First, adaptivity fundamentally
requires that more decisions be made, and these decisions re-
quire computation. Second, when inserting a new object into
an adaptive data structure, some traversal of the data struc-
ture is required whereas none is required for a non-adaptive
data structure such as a grid. Finally, parallelization of accel-
eration structure construction is more complex for adaptive
data structures than for non-adaptive data structures. From
an algorithmic standpoint, building an adaptive data struc-
ture is related to sorting, and typically requires super-linear
time, while building a regular data structure is very similar
to triangle rasterization, and can be done in an single pass.

3.1.4. Build time vs. build quality
For every data structure, there are different ways of building
that data structure for any given scene; commonly, there is a
trade-off between build quality (i.e, how good the data struc-
ture is at minimizing render cost) and build time. For exam-
ple, a kd-tree can be built over bounding boxes or over actual
triangles (involving lots of costly clipping operations) and
this difference can have an impact on render performance of
25% and more [Hav01,WH06].

When building or updating a hierarchical accelera-
tion structure whose bounding planes adapt to geometry
(i.e. nearly all acceleration structures except grids), the
build/update algorithm must decide how to organize ge-
ometry into a hierarchy and choose locations for bound-
ing planes. Heuristics for evaluating the cost of any given
tree configuration exist (we will go into more detail below),
but with an exponential number of possible tree configura-
tions, finding the globally best configuration is computation-
ally intractable. The best known heuristic is the greedy Sur-
face Area Heuristic (SAH) [GS87], which is explained in
somewhat more detail below, as well as in Havran’s the-
sis [Hav01], and in Pharr and Humphreys’ book [PH04]
(along with example code). However, though the greedy
SAH algorithm has the same asymptotic complexity as a
spatial median split (and in practice also exhibits near linear
cost [WH06]), evaluating lots of potential split planes incurs
a significant cost.
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At the other extreme, very simple heuristics can be used
such as placing a split plane at the median point within the
current node. However, the acceleration structures produced
by these algorithms generally exhibit significantly poorer
traversal performance than those built by the greedy SAH
especially when the density of geometry varies significantly
within the scene.

Recently, algorithms have been developed that are de-
signed to approximate the greedy SAH (we discuss these
algorithms in more details below, see Section5.1). For a
moderate impact on build quality, these usually are sub-
stantially faster to build, and typically offer interactive re-
builds [HSM06,PGSS06].

3.2. System Architecture tradeoffs
As ray tracing becomes practical for real-time applications
it becomes increasingly important to consider how the core
ray tracing engine, data structures, and algorithms should in-
teract with the data structures and code of a real application.
For example, how might a virtual reality system or game ap-
plication use a ray tracing-based rendering engine?

There are currently two broad schools of thought on
this question. The first, embodied in the OpenRT inter-
face [WBS02], argues that the interface between the render-
ing engine and application should be as similar as possible
to the immediate mode APIs used in Z buffer systems such
as OpenGL (and thus, ease the transition to ray tracing). The
second, originally advocated by Mark and Fussell [MF05]
and implemented in Razor [DHW∗07] argues that it is nec-
essary to thoroughly reconsider this interface for ray tracing
systems and adopt an approach that more tightly couples the
application’s scene graph data structure to the ray tracing
rendering engine.

3.2.1. Polygon soup vs. scene graph vs. ready-to-use
acceleration structure.

Hierarchical motion and most kinds of deformable motion
can be readily expressed via hierarchical data structures such
as a scene graph passed between the application and the ren-
dering engine (and most applications actually do this). Fully
incoherent motion must be expressed essentially in the same
way as it is in a Z-buffer system: by passing unorganized
polygons as a “polygon soup” from the application to the
rendering engine. However, incoherent motion is often spa-
tially localized, in which case a hierarchical data structure
such as a scene graph can at least isolate these scene parts
from other, more hierarchically organized scene parts.

It is also possible for the application to pass a completely
built acceleration structure to the rendering engine. This ap-
proach is appropriate either for static geometry; or for an
acceleration structure that can be incrementally updated; or
for a “low quality” acceleration structure such as a scene
graph that will only be used by the rendering engine to build
a higher quality acceleration structure.

In choosing the data structures passed between the appli-
cation and the rendering engine there is a tension between

the needs of the application and the needs of the rendering
engine. A polygon soup or scene graph is often most natu-
ral for the application, while an acceleration structure is most
natural for the rendering engine. The considerations involved
are complex and to some extent will depend on the particular
kind of application.

3.2.2. Pre-transformed geometry
Traditional acceleration structures typically use a single
global coordinate system to represent all objects and bound-
ing planes in the acceleration structure. It is also possible to
use hierarchical transformations to enable different coordi-
nate systems in different portions of the acceleration struc-
ture [LAM01,WBS03]. Typically this is done by including
coordinate-transform nodes in the acceleration structure.

There are several advantages to supporting local coordi-
nate systems in the acceleration structure. First, as will be
discussed in Section4.3, this mechanism provides an ex-
tremely simple way to animate entire objects by transla-
tion or rotation [LAM01, WBS03] – only the coordinate-
transform node needs to be changed. For this same reason,
coordinate-transform nodes are almost always supported in
scene graph data structures [Ebe05]. Second, in an accel-
eration structure such as a kd-tree that restricts bounding
planes to be axis-aligned in the local coordinate system,
the coordinate-transform node provides a mechanism for ef-
fectively allowing arbitrary orientation of the planes (also
see [GFW∗06]). On the downside, systems that use local co-
ordinate systems for animation are limited to supporting hi-
erarchical animation of rigid bodies; and the data structure
and traversal algorithm become more complex, potentially
slowing down the traversal.

3.2.3. Level-of-detail and multiresolution surfaces
Support for ray tracing of multiresolution surfaces and/or
objects can have a pervasive effect on the entire ray trac-
ing system. A full discussion of these issues is beyond the
scope of this paper but we will highlight some of the key in-
teractions between multiresolution surfaces and support for
dynamic geometry.

First, we note that there are two basic approaches to sup-
porting multiresolution surface patches. The first is to tes-
sellate the surface patch into triangles at the desired resolu-
tion (e.g. [DHW∗07]), and the second is to directly intersect
rays with the surface patch (e.g. [BWS04,AGM06]). Both of
these techniques have been used for many years in off-line
rendering systems.

In a system that tessellates the surface patch into trian-
gles, all surfaces in the system effectively become dynamic
geometry in the sense that the tessellation can change from
frame to frame. This situation provides an especially strong
incentive to efficiently support dynamic geometry.

There are two different forms of multiresolution ray trac-
ing. The first,eye point directed multiresolution, sets the tes-
sellation rate of a surface patch-based on its distance from
the eye point. This approach is similar to what is done in
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Z buffer systems, and insures that there is only one repre-
sentation of a surface patch in any particular frame. It is
relatively straightforward to implement. The second,ray di-
rected multiresolution, allows each ray to independently set
the resolution of the surfaces it intersects, using informa-
tion taken from ray differentials [Ige99, SW01]. In this ap-
proach a surface patch may have several different represen-
tations, each of which is used by a different ray. In a sys-
tem that tessellates patches into triangles, this second cate-
gory of multiresolution requires substantial changes to the
acceleration structure, traversal algorithms, and intersection
algorithms to perform efficiently and avoid cracking arti-
facts [DHW∗07]. Hybrids of these two approaches are also
possible, as is used by Pixar’s PhotoRealistic RenderMan
batch renderer [CLF∗03,CFLB06].

In a system that supports multiresolution surfaces – either
via tessellation of surface patches or via other mechanisms
such as progressive meshes – this capability must be exposed
to the application. For example, Razor accepts Catmull-
Clark subdivision patches [DHW∗07], and Benthin’s free-
from ray tracing system accepts cubic Bezier splines and
Loop subdivision surfaces [BWS04]. However, the impact
of multiresolution surfaces is not limited to the application
interface; they can dramatically affect almost all aspects of
the ray tracing engine as will be discussed below.

There are several advantages to multiresolution surfaces.
The first is the ability to represent curved surfaces without
requiring a high a-priori tessellation rate that would result in
an extremely high polygon count. The second is the ability to
represent the scene database more compactly than would be
possible with a polygon representation. In an appropriately
designed system this more compact representation can re-
duce memory bandwidth requirements. Multiresolution sur-
faces also offer a form of anti-aliasing for highly detailed
objects.

The disadvantage to multiresolution surfaces is that they
add considerable complexity to the system. They may also
reduce performance due to the need for on-demand tessella-
tion and/or complex ray-surface intersection algorithms.

4. General Acceleration Structure Strategies
Given the design space of acceleration structures presented
above, we now discuss the tradeoffs that are common with
all of the known acceleration structure strategies.

Arguably the most important question that arises in de-
signing an interactive ray tracing system for dynamic scenes
is how to rebuild or update the acceleration structure each
frame (or time step). We note that this same general prob-
lem has been studied extensively in the context of collision
detection [JP04,LAM05,vdB97,TKH∗05,LM04], although
the goals and constraints are somewhat different in ray trac-
ing. The problem is also a specialized form of the sorting
problem so Knuth’s book on this topic [Knu98] can often
provide valuable insights.

In general, there is a trade-off between build time and
traversal performance: investing more time into building to

get a better data structure can save time spent in traversal and
intersection, but is only worthwhile if the savings in traversal
are not outweighed by the additional time spent on prepar-
ing the data structure. The costs of build (or update) and of
traversal are in turn strongly affected by two broad factors:
the characteristics of the rendering task, and the choice of ac-
celeration structure. We’ll discuss the key characteristics of
the rendering task first, since those in turn strongly interact
with the choice of acceleration structure.

The most important characteristics of the rendering task
that affect the trade-off between build time and traversal per-
formance are:

• Kinds of motion in the scene. As discussed earlier in
Section1.2, there are a variety of kinds of motion. For ex-
ample, gradual movement of rigid objects presents a very
different kind of problem than random creation and dele-
tion of geometry every frame. This first case can be han-
dled easily with minor updates to an acceleration structure
while the second case strongly favors approaches that can
efficiently rebuild the entire acceleration structure. Tech-
niques and systems may or may not take advantage of the
properties of that motion. Separating static objects from
dynamic objects is commonly employed. For example, a
static building or tree might have its own static accelera-
tion structure built at great expense, while a dynamic char-
acter might benefit from different strategies. Characters,
vehicles, and other common objects usually experience
limited deformations and seldom change topology. These
properties can be exploited in the acceleration structure.

• Geometric complexity of the scene. More specifically,
the total amount of geometry, the amount of geometry that
is visible to rays, and the variation in spatial density of the
geometry are all important to the choice of algorithms.

• Total number of rays. All other things being equal, if
more rays are being traced it may be worthwhile to in-
vest more time to build a good acceleration structure. Ray
count is determined primarily by image resolution, sam-
pling density, and by the average number of secondary
rays per primary ray.

• Kind of rays . Secondary rays, especially those for area
light sources and hemisphere sampling, may access the
acceleration structure less coherently than primary rays.

• Ray aggregation strategy. Traversal time can be strongly
affected by the choice of ray aggregation strategy (e.g.
frusta, packets, beams, etc). For example, a frustum tracer
may benefit less from tighter fitting leaf nodes than a
single-ray tracer.

Build (or update) time and traversal performance are also
strongly affected by the choice of acceleration structure.
However, the strengths and weaknesses of each acceleration
structure should be evaluated in the context of the character-
istics of the rendering task just discussed. Generally speak-
ing, grids are currently considered to be fastest to build but
the least efficient for traversal/intersection; kd-trees to be the
most efficient ones for traversal/intersection but most costly
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ones to build, and BVHs somewhere in-between in build
time, and close to kd-trees for traversal.

These considerations are weighted differently for interac-
tive ray tracers than they have been for other kinds of sys-
tems in the past. In an offline rendering system, any build
strategy that is sub-quadratic (lower thanO(N2) for N prim-
itives) in time and linear (O(N)) in memory is considered
practical. With a large number of rays traced, these accel-
eration structures easily recouped the cost of build within
a single frame, or the acceleration structure could be com-
puted offline and stored with the model. In an interactive
system with static geometry, the cost of building an acceler-
ation structure can be amortized over many frames or can be
computed as a preprocess. Thus, build performance is even
less of a concern.

In the following subsections, we present the design space
for systems that support scenes whose geometry varies from
frame to frame. Most of these strategies can be used with a
variety of different acceleration structures.

4.1. Rebuild vs. update vs. static
There are three fundamental approaches to obtaining an ac-
celeration structure for dynamic geometry. The first is to re-
build the acceleration structure from scratch. The second is
to update the acceleration structure, typically starting from
the one used in the previous frame. The third is to recognize
that in some cases part or all of the scene can be treated as
static geometry (possibly with respect to some moving local
coordinate system), eliminating the need to modify part of
the acceleration structure.

The most general method for handling dynamic scenes is
to rebuild the data structure from scratch every frame. The
primary advantages to this approach are that it can handle
arbitrary movement of dynamic geometry, it is simple, and
it is relatively straightforward to ensure that the acceleration
structure is well optimized. The primary disadvantage to this
approach is that it can be expensive to rebuild the accelera-
tion structure from scratch especially for large scenes and
hierarchical, adaptive data structures.

In practical applications there is significant coherence
among successive frames. Instead of rebuilding each frame’s
acceleration structure from scratch, it is possible to update
the bounding planes and possibly some of the topology of
previous frame’s acceleration structure to be correct for the
new frame’s configuration of geometry. The feasibility of
this approach depends significantly on the actual accelera-
tion structure and on the kind of motion present in the scene.
The primary advantage to this approach is that it is often less
time consuming to update the data structure than to rebuild
it, because much of the information about the geometry sort
can be reused. This approach also has the potential to fa-
cilitate the use of other forms of frame-to-frame coherence
(for example, in light transport). The primary disadvantage
of this approach is the tendency for the quality of the accel-
eration structure to degrade after some number of updates,

especially if the topology of the acceleration structure is not
updated. There are strategies to mitigate this problem (dis-
cussed later in the paper), but they introduce additional com-
plexity. To date, incremental updates have been proposed
primarily for BVHs [LYTM06,WBS07,YCM07,EGMM06,
IWP07], and to a lesser degree also for grids [RSH00] and
kd-trees [GFW∗06].

Finally, if large parts of the scene are static, build/update
time for those parts of the scene can be eliminated by storing
the static geometry in a separate precomputed acceleration
structure or sub-structure. This approach is very fast, but ob-
viously is limited to geometry that isn’t fully dynamic. This
strategy is usually hybridized with more general strategies.
For example, a system that animates rigid objects using a hi-
erarchy of transformations can precompute the acceleration
structure for each object and refer to each of these precom-
puted acceleration structures from within a rebuilt/updated
top-level acceleration structure via a coordinate-system ro-
tation node [LAM01,WBS03]. This strategy is discussed in
more detail in Section4.3.

Various hybrids of all three of these general strategies are
possible. In particular, when rebuilding or updating an accel-
eration structure it may make sense to avoid touching those
parts of the acceleration structure that are known not to have
changed (because their geometry is not currently moving),
and reuse those parts of the acceleration structure from the
previous frame.

4.2. Complete vs. partial update/rebuild
The simplest approach to updating or rebuilding the acceler-
ation structure is to recreate theentireacceleration structure,
or even just the objects that moved. We refer to this strategy
as thecomplete rebuild/updatestrategy. This approach has
the advantage of being simple and robust, but it also can be
very expensive for scenes with large amounts of geometry.

There is an opportunity to reduce this cost by realizing
that a full build/update does unnecessary work. When ren-
dering any particular frame of a scene with high depth com-
plexity, most of the geometry is occluded. This property is
particularly true for primary rays, but also applies to sec-
ondary rays. There is no need to include this occluded geom-
etry in the acceleration structure. Thus, if we can determine
which geometry is needed, it is only necessary topartially
rebuild or update the acceleration structure, so that it just in-
cludes the visible and perhaps nearly-visible geometry.

There is one difficulty with this approach: to determine
which geometry should be placed into the acceleration struc-
ture we need to know which geometry is visible. But that
in turn looks a lot like the original ray tracing problem we
were trying to solve. For this technique to work in practice,
the entire scene geometry must already reside in a hierar-
chical spatial data structure, i.e. an acceleration structure of
sorts. It is perfectly acceptable for this initial acceleration
structure to be a low quality one such as the bounding vol-
ume hierarchy associated with a typical scene graph. If we
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traced rays through this data structure directly, traversal per-
formance would be terrible, but the data structure does pro-
vide sufficient spatial sorting to allow the system to deter-
mine which geometry must be used to build or update the
high quality partial acceleration structure. With this scheme,
the partial high-quality acceleration structure is built on de-
mand (i.e. lazily) from the complete low-quality acceleration
structure.

There are several advantages to this technique. First, it al-
lows the system to rebuild or update just the needed parts
of the high-quality acceleration structure. This reduces build
time and reduces storage required for the high-quality accel-
eration structure. Furthermore, the update/rebuild work that
still needs to be done is more efficient, because the hierarchy
information from the low-quality acceleration structure pro-
vides a partial presort of the geometry. A second advantage
of this technique is that it allows the low-quality and high-
quality accelerations structures to be more highly tuned for
their particular use than in a system that uses just a single
acceleration structure, avoiding the tension between scene
management and ray tracing that occurs in a system orga-
nized around a single acceleration structure. Finally, there is
an opportunity to perform other useful work when copying
geometry from the low-quality acceleration structure to the
high-quality acceleration structure. For example, this is an
opportune point at which to tessellate curved surfaces into
triangles.

There are also several disadvantages to this technique.
First, it requires that the rendering engine be more tightly
coupled to the software layer above it than has traditionally
been the case, and that this layer above maintain the low-
quality acceleration structure (i.e. scene graph). Second, this
technique is substantially more complex than non-lazy tech-
niques. In particular, lazy construction of the acceleration
structure may be more challenging to parallelize, and may be
more challenging to support on specialized hardware. Third,
when depth complexity is low this technique does not pro-
vide any significant performance advantage.

Most interactive ray tracing systems use complete re-
build/update, but the Razor ray tracing system [DHW∗07]
(Section5.2) uses partial build of a high-quality kd-tree from
a low-quality BVH scene graph. Similar techniques could be
also used to build a high-quality BVH acceleration structure
from a scene graph, but no results with interactive perfor-
mance have been published for this approach yet.

4.3. Hierarchical animation through multi-level
hierarchies

As briefly mentioned earlier in Section4.1, if motion in a
scene is organized hierarchically, the acceleration structure
update can also be handled in a hierarchical way. If an entire
group of primitives is subject to the same linear transforma-
tion, one can also transform the ray with the inverse transfor-
mation, and intersect those transformed rays with the origi-
nal geometry. As the geometry itself is never actually trans-
formed, the object’s own acceleration structure data structure

remains valid, and can thus be pre-built off-line. If more than
one of these linearly transformed objects exist, one can build
an additional acceleration structure over the world-space in-
stances of these objects, and transform the rays to the re-
spective objects’ local coordinate systems during traversal
(an instance is a reference to a static object, plus a transfor-
mation matrix).

The core idea of using multiple hierarchy levels and trans-
forming rays instead of objects was first proposed by Lext at
al [LAM01]; in an interactive context it was first applied by
Wald et al. with the OpenRT system [WBS03]. In their pa-
per, the authors also proposed to use a two-level hierarchy
for mixing different strategies; in their case by encapsulat-
ing incoherent motion into special objects that are then re-
built per frame. As a side effect, this approach also supports
instancing since the same object can be referenced by mul-
tiple instances. In addition, it can also be used to support
pose-based animation. In many games, animating an object
is done by having multiple predefined poses for each charac-
ter, and switching those per frame depending on what pose
is required. Using the multi-level approach, this can be han-
dled by having one separate object for each pose, and only
instantiating the one required per frame. This was, for exam-
ple, used in the proof-of-concept “Oasis” and “Quake4/RT”
games [SDP∗04,FGD∗06], and has proven very effective.

Essentially, the core idea of this approach is to trade off
per-frame rebuilding against per-frame ray transformations
during traversal. This reduces the complexity of per-frame
rebuilds to only rebuilding the top-level hierarchy over the
instances. The obvious disadvantages of this approach are
a) that performance may degrade if objects overlap signifi-
cantly, b) that transforming rays adds an additional cost to
traversal, and c) that the information on what primitives to
group into which objects has to be supplied externally. On
the positive side, the concept is very general, and, in particu-
lar, completely orthogonal to all other techniques discussed
below. It is also theonly currently proposed technique that
remains sub-linear in the number of (visible) triangles, as all
other techniques have to at least update all of the triangle
positions.

4.4. General strategies for speeding up rebuild
A straightforward rebuild algorithm (discussed originally in
Section4.1) can be made faster in one of two ways: im-
proving single-thread build performance or parallelizing the
build. Higher single-thread build performance obviously re-
quires low-level optimizations like the use of SIMD ex-
tensions [PGSS06, HSM06, SSK07], but primarily revolves
around investigating build algorithms with a quality-vs-
speed trade-off, i.e., in simpler build strategies that yield data
structures with inferior traversal performance, but produce
them at much faster rates [PGSS06,HSM06,HHS06,WK06].

Parallel rebuilding for real-time builds has only been con-
sidered fairly recently; parallel data structure builds have
been studied in the context of static scenes (e.g., [BGES98,
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Ben06]), but with the growing availability and size of multi-
core systems is currently receiving increased attention. Fast,
parallel, and scalable builds today are available for both
grids [IWRP06] and kd-trees [SSK07], both of which are
discussed in more detail below. The Razor system paral-
lelizes its kd-tree build by allowing each processor to lazily
build its own kd-tree [DHW∗07]. While this strategy is ac-
tually building multiple kd-trees in parallel, each on its own
core, each tree is incomplete, so when ray tracing work is
carefully allocated to processors this strategy does surpris-
ingly little redundant work and has been demonstrated to be
effective for eight cores. Parallel BVH building has received
less attention, but the parallel kd-tree builds should also gen-
eralize to BVHs.

4.5. Fast rebuild with application/scenegraph support

Initial work on ray tracing of dynamic scenes assumed that
it would be necessary to restrict the kind of motion or to
use a poor-quality (but quick to build) acceleration structure
in order to achieve interactive frame rates. However, recent
work [DHW∗07] has shown that by exploiting knowledge
of the scenegraph and application, combined with a lazy re-
build strategy, one can achieve efficient acceleration struc-
tures for arbitrary dynamic motion. This approach will be
discussed in more detail for kd-trees in5.2.

5. Kd-tree-based approaches

In this section we present a variety of approaches for ray
tracing dynamic scenes using a kd-tree acceleration struc-
ture. Some of these techniques may be applicable to other
acceleration structures, but are discussed here because they
were first developed for use with kd-trees.

Kd-trees are considered by many to be the best known
method to accelerate ray tracing of static scenes. Their pri-
mary disadvantage for dynamic scenes is that updates are
very costly (at least efficient update methods are not yet
known). Various approaches have been developed to avoid
this limitation. The first approach is to accelerate the con-
struction of the tree by clever approximations and by paral-
lelization. The goal is to build the kd-tree fast enough from
scratch every frame, thus supporting arbitrary modification
of the scene geometry. The second approach is to avoid the
rebuild of the kd-tree by transforming rays instead of ge-
ometry. And finally, a kd-tree can instead be lazily rebuilt,
restricting the construction to subtrees that are actually tra-
versed by rays.

5.1. Fast kd-tree construction using scanning/streaming

Several algorithms have been developed to (re-)construct kd-
trees from quickly [PGSS06, HSM06, SSK07]. These algo-
rithms have very few assumptions on the input data: they
all work with a “triangle soup” (or more precisely “primi-
tive soup”) and thus retain maximal flexibility regarding dy-
namic changes of the scene. If additional information from

a scene graph is exploited, the constructions can be acceler-
ated further (described further in Section5.2).

A kd-tree construction is typically based on a comparison-
based sorting operation; thus, it cannot be expected to find
faster algorithms thanO(N logN). Therefore, a fast kd-tree
builder must concentrate on lowering the constants rather
than asymptotically faster algorithms. Construction speed
can be improved by algorithms that are better adapted to cur-
rent hardware architectures, by applying parallelization tech-
niques to exploit the power of multiple CPU cores, and by
introducing approximations to save computation. In particu-
lar, the currently best know heuristic to produce the highest-
quality kd-tree for ray tracing, thesurface area heuristic
(SAH) [MB89], can be approximated without significant
degradation of kd-tree quality.

Before discussing the details of the fast construction al-
gorithms we will first give some background regarding the
surface area heuristic and briefly cover previous construc-
tion methods.

5.1.1. The surface area heuristic
The surface area heuristic [GS87,MB89,MB90,Sub90] pro-
vides a method for estimating the cost of a kd-tree for ray
tracing based on assumptions about the distribution of rays
in a scene. Minimizing this expected cost during construc-
tion of a kd-tree results in an approximately optimal kd-tree
that provides superior ray tracing performance in practice.

Ray tracing costs are modeled by the SAH by assuming an
infinite uniformly distributed rays, in which the probability
Phit of a ray hitting a (convex) volumeV is proportional to
the surface areadSAof that volume [San02]. In particular, if
a ray is known to hit a volumeVS, the probability of hitting
a sub-volumeVS is

Phit(V|VS) =
SA(V)

SA(VS)
(1)

The expected costCR for a random rayR to intersect a
kd-tree nodeN is given by the cost of one traversal stepKT ,
plus the sum of expected intersection costs of its two chil-
dren, weighted by the probability of hitting them. The inter-
section cost of a child is locally approximated to be the num-
ber of triangles contained in it times the costKI to intersect
one triangle. We name the children nodesNl andNr and the
number of contained trianglesnl andnr , respectively. Thus,
the expected costCR is

CR = KT +KI [nl Phit(Nl |N)+nrPhit(Nr |N)]

(1)
= KT +

KI

SA(N)
[nl SA(Nl )+nrSA(Nr)] (2)

During the recursive construction of the kd-tree one needs
to determine where to split a given kd-tree node into two
children or to create a leaf. According to the SAH, the best
position (and dimension) is whenCR is minimal. If the min-
imal CR is greater than the cost of not splitting at all (KI ·n)
a leaf is created. The minimum ofCR can only be realized
at a split plane position where primitives start or end, thus
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the bounding planes of primitives are taken as potential split
plane candidates. Furthermore,CR depends on the surface
areaSAof the children – which can be directly computed –
and the primitive count of the children – which is the hardest
part to compute efficiently.

5.1.2. Brief discussion of previous construction methods
Consequently, previous methods to efficiently construct
SAH kd-trees concentrated on the fast evaluation of the
primitive counts. One method is to sort the primitives (and
thus the split candidates) at one dimension. Then one iter-
ates through the split candidates and incrementally updates
the primitive count of the children. The overall complexity
of this construction method isO(N log2 N) because sorting
is needed for every split of a node. By sorting the primitives
once in advance–and maintaining the sort order in each split-
ting stage–this complexity can be reduced toO(N logN), the
theoretical lower bound [WH06].

Although reaching the optimal asymptotic complexity
of O(N logN) this construction algorithm has several main
drawbacks: First, the sort at the beginning makes lazy builds
(Section5.2) ineffective, because this sorting step requires
O(N logN) operations. Second, maintaining the sort order
during splitting introduces random memory accesses that
severely slows down construction speed on cache-based
hardware architectures.

Realizing these problems, new state-of-the-art con-
struction methods avoid sorting, and emphasize stream-
ing/coherent memory access. This is possible by giving up
exact SAH evaluation. Instead, the SAH function is sub-
sampled and its minimum is only approximated.

The approaches presented in [HSM06] and [PGSS06]
both use a sampling and reconstruction approach to finding
the global minima in the SAH function. The former uses
two sets of 8 samples each and uses a linear approxima-
tion for the distribution of the geometry in the scene and
a quadratic approximation to the SAH function. The later
uses 1024 samples and uses a linear approximation of the
SAH function. Both have been shown to produce relatively
high quality trees for ray tracing, with (trace) performance
similar to a full SAH build trees. These scanning/binning
approaches have the advantage of simple, system friendly
implementations andO(N logN) asymptotic performance.

5.1.3. SIMD scanning
An approach to improve memory performance on a modern
architecture while approximating the SAH was provided by
Hunt et al. [HSM06]. This method uses two passes to adap-
tively sample the distribution of geometry in the scene and
then constructs an approximate SAH cost function based on
these samples. In the first pass they take eight uniformly dis-
tributed samples, which can be performed very efficiently in
one scane over the primitives by using several SIMD reg-
isters to count the primitives on either side of eight planes.
In the second pass the gathered information is used to adap-
tively place eight additional samples in a way that minimizes

the overall error of the approximation of the SAH cost func-
tion.

The end result of these two sampling passes is a piecewise
quadratic approximation to the SAH cost function. Hunt et
al. also proved that the error of this approximation scheme is
bounded byO(1/k2) with k being the number of samples per
pass. To choose the split plane location for the node, they
consider theanalytic local minima of each of the 2k− 1
piecewise quadratic segments, and place the split plane at
the overall minimum.

When the recursive construction reaches the lower lev-
els of the kd-tree with only few primitives left the piecewise
quadratic approximation becomes inexact. Therefore Hunt et
al. switch to the exact SAH cost function evaluation once the
number of primitives in a node to split is below 36. The exact
evaluation is done using the same SIMD scanning algorithm,
but this time placing the samples at all split candidates. Al-
though theoretically a slowO(N2) algorithm this approach
turns out to actually be faster than all other known strate-
gies (including the sorting method described above), due to
a machine-friendly implementation.

5.1.4. Streamed binning

Popov et al. [PGSS06] linearly approximate the SAH cost
function with 1024 uniformly distributed samples. Using a
binning algorithm, they efficiently evaluated the SAH cost
function at these sample locations in two phases: In a first
phase they stream over the primitives and bin the minimum
and the maximum extent (the bounds) of each primitive.
The second phase iterates over the bins and reconstructs the
counts of primitives to the left and to the right of the bor-
der of each bin (these are the sample locations) with partial
sums. When performing the split of a node, it’s children are
binned at the same time, which considerably reduces mem-
ory bandwidth.

The authors additionally present a conservative cost func-
tion sampling method. Exploiting certain properties of the
SAH cost function they can identify and prune bins that can-
not contain the minimum of the cost function. The remaining
bins are then resampled with 1024 additional samples. With
very few iterations only one bin with only one primitive bor-
der remains, quickly yielding thetrueminimum and thus the
optimalsplit position.

Because binning becomes inefficient when the number of
primitives is close to the the number of bins Popov et al. also
revert to exactly evaluating the SAH cost function. Once the
working set fits into the L2 cache they switch to an improved
variant of the classicalO(N logN) SAH algorithm (Sec-
tion 5.1.2). They use a fastO(N) radix sort [Knu98,Sed98]
instead of an comparison-basedO(N logN) sorting algo-
rithm to sort the primitives of this subtree. Note that radix
sort is only efficient when the working set fits in the cache
because it accesses memory in random order. Additionally
the random memory accesses for maintaining the sort order
during splitting – originally the motivation for the streamed
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binning algorithm – stay now in the L2 cache and are thus
not a performance problem any more.

5.1.5. Results and discussion

Both of these scanning and binning algorithms are an order
of magnitude faster then previous work with a construction
performance of about 300k and about 150k primitives per
second in [HSM06] and [PGSS06], respectively. This speed
allows for rebuilding the kd-tree per frame to handle arbi-
trary dynamic changes in smaller to medium sized scenes.
Hunt et al. also report numbers for a variant where they trade
kd-tree quality for construction speed: When scanning only
one dimension per node instead of all three they can con-
struct a kd-tree for the 1.5M triangle Soda Hall scene in only
1.6s.

Although approximating the SAH cost function the result-
ing kd-trees are still of high quality, coming close to an “opti-
mal” SAH kd-tree within 2%–4% (measured in expected ray
tracing cost and cross-checked with actual rendering speed).
This also means that the conservative sampling approach us-
ing rebinning of Popov et al. will only be necessary if the
optimal kd-tree quality is desired.

Comparing the timings [HSM06] is significantly faster
than [PGSS06]. Although different hardware was used for
both papers, the reason is most likely due to the simpler (and
thus faster) inner loop of [HSM06]. Additionally, Popov et
al. switch much earlier to the more exact but slower con-
structing algorithm than Hunt et al.

Both sampling algorithms have different properties and
asymptotic behaviors. Withn being the number of primitives
in the current node andk being the samples to take SIMD
scanning has complexityO(n·k) while streamed binning has
complexityO(n+ k). This is the reason that Hunt et al. can
only afford a small number of samples (16), whereas Popov
et al. can easily handle a large number of samples (1024).

The small number of samples of [HSM06] is redeemed by
the adaptive placement of the samples, and a quadratic ap-
proximation of the cost function. In [PGSS06] the uniform
placement of many samples results in a linear approxima-
tion of the cost function. However, because we are only in-
terested in the minimum of the SAH cost function it is not
necessary to minimize the total approximation error as done
in [HSM06]. Additionally, the cost function is smoother with
larger n suggesting that the quadratic approximation with
few samples will be quite accurate with largern whereas
the linear approximation with many samples will be more
accurate with smallern. Thus it could be advantageous to
combine the ideas of both papers when implementing a fast
kd-tree builder.

5.1.6. Scalable parallel kd-tree construction

While these methods increase single-thread performance of
kd-tree construction, further performance improvements can
be achieved through multi-thread parallelization. This is be-
coming increasingly important with the ongoing trend in

Figure 1: This dynamic scene with 63k static and 171k an-
imated triangles can be ray traced with 7.2 fps at 10242 pix-
els on a four core 3GHz Intel Core 2 Duo including shadows
from two point lights [SSK07].

CPU and GPU architectures to deliver increased multi-core
parallelism.

Until recently, the parallel, multi-threaded construction of
kd-trees has not been the focus of research; Benthin [Ben06]
showed parallelized kd-tree construction, but with only two
threads. A preliminary attempt at parallel construction was
also shown in [PGSS06], but with rather limited success due
to poor scalability. The difficulties in multi-threaded kd-tree
(or any other acceleration structure) construction lie in bal-
ancing the work, and in avoiding communication and syn-
chronization overhead.

The first successful, scalable parallelization of kd-tree
construction was shown by Shevtsov et al. [SSK07]. Their
kd-tree builder closely follows Popov et al.’s streamed bin-
ning [PGSS06]. Each thread independently builds its own
subtree in dedicated memory space, thus communication
overhead is minimized. To equally distribute the work over
the threads the subtrees need to contain a similar number
of primitives, which is simply achieved by placing the first
splits at the object median. The median can be approximated
very fast by performing one streamed binning pass counting
the primitives and then to place the split between bins where
the primitive count is similar to the left and to the right. To
improve scalability this first scanning can also be done in
parallel by dividing the set of primitives among the threads,
and merging their bins afterwards.

With their approach Shevtsov et al. [SSK07] demon-
strated linear scalability with up to four threads, including
kd-tree construction and rendering (see Figure1).

5.2. Fast rebuild of adaptive SAH acceleration structure
from scene graph

Through the combined use of several ideas that we summa-
rize here, it is possible to build a high-quality acceleration
structure (e.g. an approximate SAH kd-tree) at interactive
frame rates without any substantive restriction on the kind
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of motion. These ideas have been demonstrated in the Razor
system to build a kd-tree acceleration structure [DHW∗07]
and could be adapted with minimal changes to other accel-
eration structures such as a BVH.

The key ideas are:

1. Application stores scene geometry in a scene graph.
This scene graph serves as a “poor quality” bounding vol-
ume hierarchy that is updated every frame. (Razor does a
complete update, but a lazy update is also possible).

2. Build the acceleration structure lazily. Only those parts
of the kd-tree acceleration structure that are needed in the
current frame are built. The lazy build relies on the scene
graph to provide initial information about the organiza-
tion of geometry in the scene.

3. Use the hierarchy information from the scene graph to
speed up construction. When building the higher levels
of the kd-tree, the builder uses bounding volumes from
the scene graph hierarchy as proxies for all of the geome-
try they contain, making it very quick to build upper lev-
els of the kd-tree. The Catmull-Clark patches at the leaf
nodes of the scene graph provide an additional implicit
hierarchy for their tessellated quads that is also used in
the same way.

4. Use a scan-based approximation to the SAH. Hunt et
al.’s scan-based approximation to the SAH is used to
build the kd-tree [HSM06]. This fast builder is particu-
larly important when the scene graph hierarchy is rela-
tively flat and the sort required by a traditional kd-tree
builder would be expensive.

5. Use a specialized acceleration structure for mesh ge-
ometry. Tessellated triangles from each surface patch are
stored in their own simple bounding volume hierarchy. (If
the number of triangles gets large, several such bounding
volume hierarchies may be created for each patch). Each
of these small bounding volume hierarchies is a leaf node
in the kd-tree. Because the system has an implicit hierar-
chy for the triangles within a patch, the explicit bounding
volume hierarchy hierarchy can be built very quickly yet
serve as a very high quality acceleration structure.

It can be shown that several of these techniques – individ-
ually and in combination –asymptoticallyimprove the per-
formance of the build algorithm compared to standard tech-
niques [HMFS07]. Furthermore, they are all complementary
to each other; if any of them are disabled, overall build time
increases [DHW∗07].

Let n be the total number of “atomic” objects/polygons,v
be the number of visible or nearly-visible objects/polygons,
and assume thatv ≪ n. Traditional algorithms build the
entire acceleration structure and requireO(nlogn) opera-
tions [WH06]. By using a “good” hierarchy from the scene
graph or elsewhere (as defined in [HMFS07]), this cost can
be reduced toO(n). Intuitively, this improvement is due to
the fact that the hierarchy is essentially a presort of the scene.
If a hierarchy is used in conjunction with lazy evaluation,
the operation count for the build is reduced toO(v+ logn),

Multires / Total Touched Touched Build
Lazy kd patches patches triangles time
No / No 543868 543868 21404 3.86 s
No / Yes 543868 27617 21404 0.131 s
Yes / No 543868 543868 1240978 4.50 s
Yes / Yes 543868 26655 1240978 0.705 s

Table 1: Summary of kd-tree build performance with and
without lazy build and multiresolution. All results use the
scene graph hierarchy and a scan-based SAH approxima-
tion. The multiresolution setting tessellates patches to a
specified maximum size (in this case, 64 pixels/triangle-
vertex for eye rays) and uses a specialized acceleration
structure for tessellated surface patches that is always in-
stantiated lazily even when the kd-tree is not built lazily.
These results are taken from Razor on a single core of a
2.6GHz Intel Core 2 Duo, for frame 230 of the “Court-
yard64” animation.

which simplifies toO(v) with the reasonable assumption that
log(n) ≪ v. The scan-based approximation to the SAH does
not change any of these asymptotic results as compared to a
sort-based SAH builder when using hierarchy, but does pro-
vide better constant factors. For the case of lazy buildwith-
out an initial hierarchy, the scan-based SAH does reduce the
asymptotic operation count fromO(nlogn+ vlogvlogv) to
O(n+vlogv), given certain other reasonable assumptions.

These operation counts do not include the cost of updating
the scene graph hierarchy each frame. For coherent motion
in a system with a “good” hierarchy and lazy updates, that
cost isO(logn), so the total cost of scene graph update plus
build remainsO(v+ logn), which is a major improvement
over theO(nlogn) cost without these techniques.

Table1 shows that lazy build is very effective at reduc-
ing build time in a scene with high depth complexity. It also
shows that when multiresolution patch tessellation is turned
on (producing a large number of triangles), the use of a spe-
cialized acceleration structure for mesh geometry permits
the build to remain relatively fast.

5.3. Handling semi-hierarchical motion using
motion decomposition and fuzzy kd-trees
Although the presented methods to construct kd-trees are
much faster than previous work they still need considerable
time when the number of visible triangles is large.

Another approach that exploits coherence of motion in an-
imations and dynamic scenes was introduced 2006 by Gün-
ther et al. [GFW∗06]. Theirmotion decompositiontechnique
builds on the idea of transforming rays instead of moving ge-
ometry [LAM01,WBS03].

Coherently moving parts of the scene are found automat-
ically in a preprocessing step and affine transformations are
computed to express the common motion. The residual mo-
tion is handled by a so calledfuzzy kd-trees. Because the
fuzzy kd-trees allow for small movement of its primitives
they can be built in a preprocessing step and stay valid during
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(a) (b) (c) (d) (e)

Figure 2: Motion decomposition together with fuzzy kd-trees allow for ray tracing deforming meshes by decomposing the
motion of the mesh into an affine transformation plus some residual motion. (a) One frame of an animated hand. (b) The
deforming mesh is split into submeshes of similar motion, shown in the rest pose. (c) Reconstruction of frame (a) using the
affine transformations of each cluster only. (d) Close-up view of (c) revealing the erroneous mesh when approximated only by
affine transformations. (e) Adding the residual motion handled by the fuzzy kd-trees yields the original mesh.
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Figure 3: Example of a motion decomposition. Top row:
Three frames of an animation where a ball is thrown onto a
floor, together with the bounding boxes and local coordinate
systems of the two objects. The motion of these objects is en-
coded by affine transformations. Bottom row: Visualization
of the bounded residual motion in the local coordinate sys-
tem of the ball – coherent dynamic geometry is now “almost
static”. Note that the affine transformations can also com-
pensate the shearing of the ball in the third frame yielding
smaller fuzzy boxes.

scene animation, almost completely avoiding the expensive
reconstruction of kd-trees. At least for for skeleton-driven
skinned meshes–by exploiting the present bone and skinning
information, Günther et al. have shown that this limitation to
predefined animations can also be removed [GFSS06].

5.3.1. Method overview
The concept and motivation of the motion decomposition
framework is sketched in Figure2. In the following we de-
scribe in more detail the individual parts.

Motion decomposition. The motion decomposition ap-
proach requires that the connectivity of the deformable mesh
is constant and that the motion is semi-hierarchical. In par-
ticular Günther et al. assume that the motion is locally co-
herent. If this is the case they can decompose the motion
into two parts:affine transformationand residual motion.
Subtracting the affine transformation from the deformations
yields a local coordinate system in which the (residual) mo-
tion of the vertices is typically much smaller (see Figure3).

To find the affine transformations that approximately
transform the coherent parts of a predefined animation to

Figure 4: The residual motion of each triangle (green) is
bounded by a fuzzy box (red). Although the triangles move
a little bit in the local coordinate system their fuzzy boxes
do not change. As the fuzzy kd-tree is built over these fuzzy
boxes instead of the triangles it is valid forall time steps.

the next timestep, a linear least square problem on the ver-
tex positions is solved [GFW∗06]. For skinned animations
this task is simpler: The affine transformations are directly
provided from the application in form of bone transforma-
tions [GFSS06].

Fuzzy kd-tree. The residual motion is only in seldom cases
zero (e.g. when there are only rigid-body transformations).
To handle non-zero residual motion Günther et al. intro-
duced fuzzy kd-trees. The residual motion of each triangle
is bounded by afuzzy box, a box bounding the motion of
each vertex in the local coordinate system. A kd-tree is then
built over the fuzzy boxes of the triangles instead of the tri-
angles themselves, resulting in a fuzzy kd-tree. As long as
the fuzzy boxes are not violated by too strong residual mo-
tion the fuzzy kd-trees stay valid even during mesh anima-
tions (see Figure4). Thus fuzzy kd-trees can be built in a
preprocessing phase and do not require rebuilding.

For predefined animations, conservative fuzzy boxes can
be computed in a preprocessing step [GFW∗06]. For skinned
animations, the fuzzy boxes are found by sampling the pose
space of the skinned mesh [GFSS06].

Two-level kd-trees. Because the relationship between the
coherently moving parts of an animation and their motion is
determined by affine-only transformations Günther et al. use
a two-level acceleration structure in the spirit of [LAM01]
and similar to [WBS03]. For each frame to be rendered they
update the transformations and current bounding boxes of
objects having an own fuzzy kd-tree. Then a small top-level
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kd-tree is built over these bounding boxes. Only this top-
level kd-tree needs to be rebuilt every frame, which can be
done very quickly because the number of moving objects
is usually small (less than 100), allowing interactive frame
rates.

Ray traversal works as in [WBS03] by transforming the
rays into the local coordinate system of objects encountered
in top-level leaves and continuing traversal of the corre-
sponding fuzzy kd-tree.

5.3.2. Clustering of coherently moving primitives
Motion decomposition is only efficient when it operates on
coherently moving primitives. However, there are often nu-
merous parts of a dynamic scene that move independently.
Thus it is necessary to identify and to separate these parts,
which is performed automatically in a preprocessing step
by specialized clustering algorithms. The measure to guide
these clustering algorithms is the residual motion, which
should be minimized to get efficient fuzzy kd-trees.

Predefined animations.To partition the primitives of a pre-
defined animation into clusters Günther et al. apply a gen-
eralized Lloyd relaxation [Llo82,DFG99,GG91] algorithm.
In each iteration step they firstly find affine transformations
that minimize the residual motion of each cluster and subse-
quently reassign each primitive to the cluster where its resid-
ual motion is smallest. The iteration process stops when the
clustering converged, i.e. when no primitive change its clus-
ter anymore.

As Lloyd relaxation is prone to find local minima and the
optimal number of clusters is not known in advance, they
start with one cluster and iteratively insert a new cluster un-
til the cost function converges. When inserting a new cluster
it is initialized with few seed primitives – the primitives with
the largest residual motion. The already existing clusters are
also newly initialized with seed primitives having thesmall-
estresidual motion in each cluster. These seed primitives act
as prototypes of the common motion of the (currently) clus-
tered primitives and ensure a stable clustering procedure.

Skinned meshes.For skinned meshes the clustering is sim-
pler because the potential clusters are already given in form
of the bones. By sampling the pose space Günther et al. as-
signed each primitive to the bone/cluster where its residual
motion is smallest. The full pose space can be sampled by
rotating each bone arbitrarily. However, tighter fuzzy boxes
and thus better ray tracing performance can be achieved by
restricting the bone rotation relative to its parent bone. Addi-
tional information from the rendering application – such as
joint limits – can be used to restrict the pose space, because
arbitrary bone rotations are quite unnatural for most models.

5.3.3. Results and discussion
Using the motion decomposition approach, interactive frame
rates have been reported for both animations [GFW∗06] and
on-the-fly skinned meshes [GFSS06]. (see Figure5. Ray
tracing with a top-level kd-tree and fuzzy kd-trees is about

Figure 5: “Cally” featuring self shadowing in interactively
changeable poses, ray traced with 4 frames per second at
10242 pixels on a single 2.4GHz AMD Opteron [GFSS06].

2× slower compared to using a kd-tree optimized for one
single time step (that does not support dynamic changes).
This overhead is caused by (1) the reduced culling efficiency
of the kd-trees due to overlapping object bounding boxes
and/or overlapping fuzzy boxes, (2) the time needed to re-
build the top-level tree, and (3) the more complex ray traver-
sal that includes the transformation of rays between coordi-
nate systems.

However, using a top-level acceleration structure also pro-
vides additional benefits. It is easy to instantiate one object
several times. Furthermore, the local coordinate system of
the axis-aligned fuzzy kd-trees can be rotated to achieve bet-
ter bounds and thus performance.

The motion decomposition approach is restricted to semi-
hierarchical, locally coherent motion – handling random mo-
tion is not supported. Furthermore, the help of the applica-
tion is needed to provide additional information such as bone
and skinning information.

These motion clustering methods can also provide topo-
logical information to guide the construction of other accel-
eration structures, e.g. for a BVH to minimize degeneration
after bounding box updates due to moving primitives.

6. BVH-based approaches

As mentioned before, kd-trees have enjoyed great popular-
ity in real-time ray tracing [WSBW01,RSH05,SWS02], and
have even once been declared the “best known method” for
fast ray tracing [Sto05]. While a strong contender for the
most efficient data structure with respect to rendering time,
they also have a number of drawbacks, partially addressed
above. First among these is that kd-trees are not particu-
larly well suited to dynamic updates, because even small
changes to the scene geometry typically invalidate the tree.
Consequently, kd-tree-based ray tracers must typically build
a new kd-tree from scratch for every frame, either using the
fast build techniques described in Section5.1, or a lazy/on-
demand build scheme as outlined in Section5.2.

As also argued above, bounding volume hierarchies dif-
fer from kd-trees in that a BVH is a hierarchy built over the
primitives, with bounding information stored at each node
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in the hierarchy. The beauty of BVHs with respect to dy-
namic scenes is that they are much more flexible in terms of
incremental updates as has been heavily exploited in the col-
lision detection community [JP04,LAM05,vdB97,TKH∗05,
LM04]. For deformable scenes, just re-fitting a BVH – i.e.,
recomputing the hierarchy nodes’ bounding volumes, but not
changing the hierarchy itself – is sufficient to produce a valid
BVH for the new frame. BVHs also allow for incremental
changes to the hierarchy [YCM07, EGMM06] (see below),
and referencing each primitive exactly once greatly simpli-
fies the build [WBS07,WK06,EGMM06].

Though a BVH’s advantages with respect to dynamic
scenes are well known, many researchers previously as-
sumed that a bounding volume hierarchy could not be com-
petitive with either kd-trees or grids with respect to render
time [HPP00,ML03]§. Consequently, BVHs have long been
ignored in real-time ray tracing, until their advantages with
respect to dynamic updates led to renewed interest. How-
ever, in practice properly constructed BVHs achieve quite
competitive performance even for single ray code. Beyond
just building strategy, many of the techniques originally de-
veloped for tracing packets or frusta with kd-trees are also
applicable to BVHs [LYTM06, WBS07]. In the remainder
of this section, we will first discuss how to quickly traverse
BVHs, and then discuss the various approaches to using
them for animated scenes.

As for kd-trees, traversal performance for a BVH depends
on two parts: the effectiveness of the actual hierarchy, and
the efficiency of the traversal methods. In principle, BVHs
can use arbitrary branching factors, and arbitrarily shaped
bounding volumes. In practice, however, BVHs are usually
binary trees of axis-aligned bounding boxes (AABBs) and
we will focus on these.

6.1. Building effective BVHs
The effectiveness of a BVH depends on what actual hier-

archy the build algorithm produces. Like for kd-trees, best
results seem to be achieved using top-down, surface area
heuristics-based builds. The earliest method specified the hi-
erarchy by hand [RW80], but this was soon replaced by split
in the middle with cycling axes [KK86]. Both techniques
can result in rather inefficient BVHs, and realistically only
the automatic generation of a BVH is feasible.

Goldsmith and Salmon proposed the use of a cost esti-
mate to minimize a BVHs expected traversal cost [GS87].
This was later refined by MacDonald and Booth [MB89]
into a greedy build for kd-trees. The original Goldsmith and
Salmon algorithm built a tree incrementally by successively
inserting primitives into a tree, and letting those “trickle
down” into the subtrees with minimum expected cost.

§ Arguably, the reason these studies indicated inferior performance
is that these studies only considered BVHs built with Goldsmith
Salmon-like, bottom up build strategies, which tend to perform
worse than kd-tree like top-down builds (also see [Hav07]).

Today, the state of the art in building effective BVHs is to
use SAH top-down builds similar to the way SAH kd-trees
are built. Applying an SAH build to BVHs was first proposed
by Müller and Fellner [MF99], but unfortunately that result
was not widely appreciated until recently. The same is true
for related work by Masso et al. [ML03].

Following [WBS07], a pseudo-code implementation for a
top-down SAH build (withO(N log2 N) runtime complexity)
is detailed in Algorithm1. The BVHs built with this algo-
rithm are essentially the same as the ones built by Müller’s
method except that Algorithm1 uses the centroid of the
primitive’s bounding box to decide on which side of a “split
plane” to place a primitive instead of using the axis aligned
“edges” of the primitive. Note, however, that even though
the decision on which side to place a polygon is based on its
centroid, the cost evaluation uses the correct bounding vol-
umes over the primitives, not over the centroids.

Algorithm 1 Centroid-based SAH partitioning

function partitionSweep(Set S)
bestCost = Ttri * |S| {cost of making a
leaf}
bestAxis = -1, bestEvent = -1
for axis = 1 to 3 do

sort S using centroid of boxes in cur-
rent axis
{sweep from left}
set S1 = Empty, S2 = S
for i = 1 to |S| do

S[i].leftArea = Area(S1) {with
Area(Empty) = ∞}
move triangle i from S2 to S1

end for
{sweep from right}
S1 = S, S2 = Empty
for i = |S| to 1 do

S[i].rightArea = Area(S2)
{evaluate SAH cost}
thisCost = SAH(|S1|, S[i].leftArea,
|S2|, S[i].rightArea)
move Triangle i from S1 to S2
if thisCost < bestCost then

bestCost = thisCost
bestEvent = i
bestAxis = axis

end if
end for

end for
if bestAxis = -1 then {found no partition
better than leaf}
return make leaf

else
sort S in axis ’bestAxis’
S1 = S[0..bestEvent); S2 =
S[bestEvent..|S|)
return make inner node with axis
’bestAxis’;

end if
end
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Figure 6: Two screenshots from Lauterbach et al.’s BVH
based ray tracing system. Left: One frame from a 40K tri-
angle dress simulation animation, running at 13 frames per
second (512×512 pixels, one point light) on a dual 2.8GHz
Pentium IV PC. Right: a fracturing bunny including shad-
ows and reflections, running at an average of 6 frames per
second on same hardware.

6.2. Fast BVH traversal
After the BVH is built, there are many factors that determine
the overall traversal speed. Given AABBs as bounding prim-
itives, one of the first choices is which ray-box test to use. A
variety of tests exist [KK86,MW04,WBMS05] but most sys-
tems today seem to use the SLABS algorithm [KK86] (also
see [BWS06]). In addition, a number of useful optimizations
for single ray code related to tree layout or traversal order
have been proposed [Hai91, Smi98, Mah05]. Most of these
optimizations are still useful to packet traversal.

6.2.1. Packet tracing
The use of packets for BVH traversal was proposed in-
dependently by Wald et al. [WBS07] and Lauterbach et
al. [LYTM06]. Both demonstrated that by using packets,
BVHs can be competitive with kd-trees for raw render-
ing performance. Lauterbach’s system originally used SIMD
packet traversal with 2×2 rays per packet, but later imple-
mented a frustum method similar to Reshetov et al. [RSH05]
for higher performance – depending on scene complexity –
for packets of up to 16×16 rays (also see Figure6).

6.2.2. DynBVH packet-frustum traversal
In addition to SIMD packet tracing proposed by Lauterbach
et al., Wald et al. [WBS07] proposed a modified traversal
algorithm that can lead to higher amortization – and ulti-
mately, higher performance – than that afforded by SIMD
alone. The algorithm proposed in [WBS07] essentially com-
bines four independent algorithmic optimization into one
new traversal algorithm: a speculative “first hit” descend,
first active ray tracking, interval arithmetic-based culling,
and SIMD processing for all operations.

Early hit test with speculative descent.In a standard
packet tracer all rays are tested at each tree node (albeit pos-
sibly 4 at a time if SIMD instructions are used). In principle,
there is no need to test all rays, as even a single hit requires
recursion into that respective subtree. For kd-trees or bound-
ing plane hierarchies, the fastest known traversal algorithms

track the active ray intervals [Hav01,Wal04], and thus have
to process all rays even if recursion is already required. For a
BVH, however, this is not the case, and upon any successful
intersection, the packet can immediately enter this subtree
without considering any of the remaining rays.

By having all rays in a packet descend to the two chil-
dren when the first ray hits the parent, theN ×N (packet
size) ray-box tests are often replaced with only a single test.
This comes at the cost of some rays (speculatively) descend-
ing that miss the parent, but this is no different from a pure
SIMD packet traversal.

Tracking the first active ray. As just described, as soon as
any ray in a packet hits the box they all descend. However,
the ray that hits the box may not be the first ray in the packet.
Moreover, a ray that has missed a node will also miss all
child nodes. Packets can take advantage of this by not testing
rays that have already missed an ancestor of the current node.
This is easily accomplished by storing the index of the first
ray that has not yet missed an ancestor and starting the loop
over rays at that index. Packets still immediately descend as
soon as a hit is detected.

Early miss exit. The combination of early hit tests and first
active ray tracking essentially makes those cases in which

Algorithm 2 Pseudo-code for the fast packet/box intersec-
tion. Both “full hits” (i.e., first ray that hits parent also hits
box) and “full misses” (i.e., a covering frustum misses the
box) are very cheap, and have a constant cost independent
of packet size. Only for rays partially hitting the box does
the method perform more than the first two cheap tests.

{Compute ID of first ray hitting AABB box}
{’first’ is the ID of the first ray hitting
box’ parent}
function findFirst(ray[maxRays], int first,
AABB box)

{First: Quick “hit” test using ’first’
ray}
if ray[parentsFirstActive] intersects box
then

{first one hits → packet hits...}
return parentsFirstActive

end if

{Second: Quick “all miss” test using ei-
ther frustum or interval arithmetic}
if frustum(ray[0..N]) misses box then
return maxRays {all rays miss}

end if

{Neither quick test helped, test all rays}
for i = parentsFirstActive .. do
if ray[i] intersects box then
return i {all earlier ones missed}

end if
end for
return maxRays {all rays have missed}

end
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Figure 7: Some examples from systems using the DynBVH traversal algorithm. a) The Utah Fairy model (180k triangles),
with textures and shadows from one point light, running at 3.7 frames per second (including BVH updates) on a 2.6GHz
dual-core Opteron PC [WBS07]. b+c) The same system, extended to handle Whitted-style ray tracing anddistribution ray
tracing [BEL∗07], though running at much lower frame rates (largely due to the higher number of rays to be traced). d) An
extension of that system to ray tracing iso-surfaces of tetrahedral meshes, showing a 225k tet “buckyball” running at 42 frames
per second on a 2.4GHz 16-core Opteron workstation.

the packet actually overlaps the box very cheap. However, if
the packet misses the box, all the rays in the packet would
still be tested to find that none of them hits the box.

For this case, BVHs can employ a similar idea as pro-
posed for kd-trees by Reshetov et al. [RSH05]. Using in-
terval arithmetic, an approximate (but conservative) packet-
box overlap test can be performed. This conservative tests
can immediately signal that the traversal should skip further
tests as no rays in the packet can possibly intersect the box.
Instead of interval arithmetic, one can also use actual geo-
metrical frusta [RSH05,BWS06], the efficiency is similar.

The first hit test and early miss test can also be combined.
Combining the two inexpensive tests allows the traversal to
usually determine whether or not the packet should descend
with at most two tests for a fullN×N packet. It is important
to note that the two tests cover orthogonal cases and so the
order in which they are applied is not critical.

Testing the remaining rays. If both the first hit test and
the conservative miss test failed, the remaining rays in the
packet are intersected until one is found to hit. The pseudo-
code for the resulting packet-box intersection test is given in
Algorithm 2. Compared to the other two cases that have con-
stant cost, testing the remaining rays is linear in the number
of rays in the packet. Though implemented in SIMD the test
can be quite costly. Fortunately, this case happens rarely as
shown empirically in Section6.2.3.

Leaf nodes. When reaching a leaf node, the triangles in
that leaf get intersected. In addition to the first active ray,
the original DynBVH system also computed the last active
ray every time a leaf was reached, and intersected only all
rays inbetween. In some cases, higher performance can be
reached by testing all rays against the box, and skipping tri-
angle intersections for inactive rays [WFKH07]. Obviously,
the triangle intersections are performed in SIMD batches of
four, and with SIMD frustum culling [DHS04,BWS06].

6.2.3. DynBVH performance
Using this traversal algorithm, the fast early hit and frus-
tum exit tests can reduce the number of ray-box tests by
roughly an order of magnitude compared to a pure packet
traverser [WBS07] (Table2).

scene (A) early (B) frustum (C) last resort
hit exits exits packet test

erw6 52.3% 42.9% 4.8%
conference 51.9% 35.3% 12.8%
soda hall 49.5% 27.5% 23.0%
toys 49.7% 32.2% 18.1%
runner 44.1% 25.3% 30.6%
fairy 49.1% 30.2% 20.7%

Table 2: Relative number of cases where Algorithm2 can
immediately exit after the first test, after the second test, and
during the loop over all rays respectively for ray casting with
16×16 rays per packet. Data from [WBS07].

In combination, algorithmic optimizations and SSE pro-
cessing allow the DynBVH system to achieve performance
that is quite interactive, and roughly on par with the best
known performance for kd-trees (see Table3). The actual
impact of the algorithm depends heavily on scene and ray
distribution: As the traversal algorithm exploits coherence,
its performance somewhat suffers for packets with lower co-
herence and for scenes with subpixel-sized geometry, and
performance in those cases can deteriorate to that of a pure
packet traverser.

Extensions. In its original publication, the DynBVH algo-
rithm was presented only for triangle meshes, for relatively
simple shading and ray distributions, and for a refitting-only
approach to handling changing geometry. Since then, Bou-

OpenRT MLRTA BVH
Pentium4 Xeon 3.2GHz Opteron

Scene anim. #tris 2.4GHz w/ HyperThr. 2.6GHz

erw6 no 800 2.3 50.7 31.3
conf no 280k 1.9 15.6 9.3
soda no 2.5M 1.8 24 10.9
toys yes 11k – – 21.9
runner yes 78k – – 14.2
fairy yes 180k – – 5.6

Table 3: Performance in frames/sec. (at 10242 pixels, single
2.6GHz Opteron CPU, including simple shading) compared
to the OpenRT and MLRTA systems. Performance data is
taken from [WBS07], and is for a variety of both static and
animated models detailed in that publication.
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los et al. [BEL∗07] have investigated how the algorithm
would behave for more realistic ray distributions like those
produced by either Whitted-style recursive ray tracing and
Cook-style distribution ray tracing (see Figure7b+c). They
found that the algorithm worked quite well even for these
non-primary ray distributions, and that both Whitted- and
Cook-style ray tracing achieved similar number of rays per
second as ray casting with shadows (i.e. within a factor of 4).
Although the increase in the total number of rays in a frame
resulted in lower absolute frame times. It should be noted
that Boulos et al. disabled several optimizations in their sys-
tem that only apply to ray casting or ray casting with shad-
ows (RCS) that were used in the original paper [WBS07].
This differences, including differences in the shading model
and normalized directions for camera rays, account for their
lower performance for RCS.

As compared to secondary ray tests by Reshetov [Res06],
the Boulos et al. [BEL∗07] system retained SIMD benefits
for several bounces of reflection. In addition to a SIMD ben-
efit, the traversal algorithm still provided further speedup be-
yond a simple SIMD benefit alone.

While the original DynBVH system relied exclusively
on refitting, the current code base also includes fast from-
scratch rebuilds in the spirit of Wächter et al. [WK06]
and Shevtsov et al. [SSK07] (see below), as well as a
and a hybrid approach that mixes refitting and fast, asyn-
chronous rebuilding [IWP07]. A CELL variant of the Dyn-
BVH algorithm was presented by Benthin et al. [BWSF06],
which through low-level, architecture-specific optimizations
achieved up to 8× the performance of the CPU-based vari-
ant, up to a total of 231.4 frames per second (for ray casting
the erw6 scene) on a single 2.4GHz CELL processor.

Apart from its application to triangle meshes, the Dyn-
BVH algorithm was also applied to interactively visualizing
iso-surfaces in tetrahedral meshes [WFKH07] (Figure7d). It
allowed for handling time-varying data, and achieved inter-
active frame rates even for highly complex models.

6.3. Variations and hybrid techniques
In the previous section, we have focused on the DynBVH
system, as its traversal algorithm gives it a speed advantage
over other, single ray or purely packet-based systems. How-
ever, a large number of possible variations exist, most of
which are orthogonal to the techniques used above. For ex-
ample, Yoon et al. [YM06] have proposed cache-oblivious
data layouts that improve memory efficiency (similar tech-
niques exist for kd-trees [Hav97]); Mahovsky et al [MW06]
proposed a Q-Splat like compression approach to reduce
the BVH’s memory footprint. Other variations that have not
been properly investigated yet include the use of BVHs with
higher branching factors than two, or BVHs with non-AABB
bounding volumes, both of which may be beneficial.

SKD-Trees. One particular popular variation is to encode
the BVH using a hierarchy of bounding planes: instead of
storing a full 3D bounding box in each node, each node

stores a set of two parallel planes that partition the cur-
rent node’s bounding volumes into two (potentially overlap-
ping) halves. The resulting data structure looks similar to
kd-trees but behaves like a bounding volume hierarchy. In
particular, the data structure allows for refitting like a BVH
does, and, while known outside graphics since Ooi’s paper
from 1987 [OSDM87], for ray tracing dynamic scenes were
proposed independently by Havran et al. [HHS06], Woop
et al. [WMS06], and Wächter et al. [WK06] (albeit under
three different names, calling them skd trees, b-kd trees, and
bounding interval hierarchies, respectively). Though their
data structure is similar in nature, there are several impor-
tant differences in the focus of each of those papers.

Wächter et al. focused on fast building and presented
an O(N) algorithm for building the tree. Their build strat-
egy only uses spatial median builds that may prove inef-
ficient. Woop et al. [WMS06] use a four-plane hierarchy
in each node (two planes per child) that leads to a slightly
different data structure; apart from that, they focus on us-
ing this technique to support dynamic scenes on a ray trac-
ing hardware architecture that was originally built for kd-
trees [SWS02,WSS05]. The paper by Havran et al. [HHS06]
follows Ooi’s originally proposed skd-trees, but goes a step
further, and proposes H-trees that consist of two splitting
planes: bounding nodes and splitting nodes (skd-tree nodes).
Bounding nodes are put only optionally based on an approx-
imative SAH cost model. The paper also contains the de-
scription of AH-trees that resembles the use of radix sort for
spatial data structures with construction timeO(N log logN).

How bounding plane hierarchies compare to traditional
BVHs has not been fully investigated, yet. On the positive
side, bounding plane hierarchies are similar to kd-trees, and
allow for using traditional kd-tree traversal algorithms with
a minimum of modifications. They also have a smaller node
layout than BVHs, but are as fast to build and as easy to
update. On the downside, traditional BVHs will yield some-
what tighter bounding volumes (since they bound each sub-
tree in 3 dimensions, not only one), do not have to deal
with splits producing “empty” subtrees, and feature some-
what simpler traversal codes (because the traversal does
not have to track per-ray overlap intervals). Lauterbach et
al. [LYTM06] report roughly comparable performance for
his BVH implementation than for a reference skd-tree im-
plementation; Wald et al.’s BVH-based system [WBS07] is
much faster than either, but uses a different traversal algo-
rithm that could also be applied to skd-trees.

6.4. Fast BVH building and updating
Like any data structure, BVHs become invalid if the under-
lying geometry undergoes motion. Though their suitability
to refitting was one of the main reasons for using BVHs,
refitting only works for deformable meshes. While refitting
may cover an important class of applications, no practically
relevant ray tracer will be able to rely on refitting alone.

In practice, both BVHs and kd-trees are binary, axis-
aligned, and hierarchical data structures that are ideally built
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using top-down SAH strategies. As such, most of the trade-
offs and techniques for handling rebuilds and updates for
kd-trees (see previous Section) apply similarly to BVHs. In
particular, any or all of the techniques used in the Razor
framework (scene graph-guided rebuild, lazy construction,
and multiresolution geometry) would be applicable without
major changes; the same is true for approaches like motion
decomposition (Section5.3), rigid-body animation through
local-coordinate transformations (Section4.3), and fast, ap-
proximate SAH builds (Section5.1).

6.4.1. Incremental updating
As already mentioned before, if the scene only containsde-
formablegeometry, a BVH can be updated to reflect the new
positions of the geometry. While this can lead to deteriora-
tion of the BVH, a BVH chosen over a range of animation
can help to reduce this deterioration [WBS07]. While this
deterioration can be reduced for either known animations or
for ranges of motion similar to known poses, other kinds of
motion require more general techniques.

Periodic rebuilding. Rebuilding per frame is the most gen-
eral, but also most expensive; refitting is extremely fast, but
can lead to excessive BVH deterioration. Instead of rely-
ing on only one of these techniques, they can be combined.
This was first proposed by Lauterbach et al. [LYTM06],
who used fast refitting most of the time, and only rebuilt
the BVH from scratch whenever a given cost heuristic indi-
cated excessive quality deterioration of the BVH. This low-
ered the average frame time, sometimes significantly; how-
ever the frame waiting for the rebuild to finish would take
much longer to complete, leading to a disruptive pause. Ize
et al. [IWP07], handle the refitted BVH deterioration with-
out introducing disruptions by using a fraction of the com-
putational resources for rebuilding a BVH asynchronously
while the rest of the computer renders and refits the current
BVH. Then when the asynchronously built BVH is ready, it
can be used for rendering and refitting while a new BVH is
rebuilt. This takes advantage of the growing parallelism in
multi-core architectures.

Incremental hierarchy updates. Instead of always rebuild-
ing BVHs from scratch, incremental updates should suffice
for coherent motion. Since each node in a BVH is referenced
exactly once, incremental updates are rather simple: an en-
tire subtree can be moved by updating a few pointers and
refitting the affected nodes and some of their ancestors. The
tricky part lies in determining which updates to perform.

The basic idea for this approach was also proposed by
Lauterbach et al. [LYTM06], who proposed to selectively
re-build those parts of the hierarchy that his rebuild heuris-
tic flagged as deformed. However, this did not affect nodes
higher up in the tree, so unsatisfactory results were reported.
More recently, Yoon et al. [YCM07] presented an approach
to selectively update BVHs that could also handle highly
complex scenes with strong deformations: based on a heuris-
tics that essentially measures the overlap of subtrees, the al-

gorithm recursively finds – and fixes – pairs of BVH nodes
whose overlap is a) high, and b) can be reduced through
swapping their subtrees. Keeping these pairs in a priority
queue, the algorithm always fixes the worst deformations
first, and can, in particular, be given a fixed time budget.
The generated trees will likely not be as efficient as those
built from scratch (in particular, the generated trees are not
the same as those built by a surface area heuristic), but the
overall performance for complex dynamic scenes has been
shown to be faster than using a rebuild heuristic [YCM07].

6.4.2. Fast BVH building
Refitting and incremental updates can handle a wide range
of different models, but are inherently limited to deformable
models. For other cases, full rebuilds are required. The BVH
build algorithm mentioned in Section6.1 (Algorithm 1)
serves as a baseline for the state of the art in buildinggood
BVHs. Though much faster than corresponding SAH-builds
for kd-trees (compare, e.g., [WBS07] and [WH06]), it is still
non-interactive except for trivial models. As for kd-trees,
there is a trade-off between build quality and build time, and
significantly faster build times are possible if a certain redic-
tion in BVH quality is allowed.

BIH-build: Fast spatial median build. Probably the fastest
way of building BVHs known today is an adaption of the
fast spatial median split introduced by Wächter et al. in their
Bounding Interval Hierarchy paper [WK06]. While this al-
gorithm was originally proposed for two-plane hierarchies,
it can be applied directly to BVHs. Just like Algorithm1,
the BIH-style build works only on the centroids, not on ac-
tual primitives, but instead of building with an expensive
cost function, it successively splits along the spatial median
until less than a threshold number of primitives per leaf is
reached. A key point of the algorithm is to compute the cen-
troids’ bounding box only once at the beginning, and then
to successively subdivide this box just like a spatial subdivi-
sion would do (i.e., without ever re-computing a sub-tree’s
bounding box until the BVH is fully built); this not only
results in a very regular subdivision that could be built in
O(N) complexity, it also seems – at least in our experience –
to result in better trees than those produced by successively
splitting the bounding box of each subtree, though the exact
reasons for this are still somewhat unclear.

As no cost function is used, the resulting BVHs are less
efficient than BVHs built with Algorithm1 (see Table4), but
the exact performance impact depends on the scene. Note
that anotherO(N) algorithm for building BVHs has been
proposed independently by Eisemann et al. [EGMM06], but
real-time data is not available for this algorithm.

Binned SAH builds. In addition to the BIH-build, it is also
possible to implement an SAH-based binning strategy as dis-
cussed above for kd-trees (Section5.1). Since no fast BVH
build numbers have been published, yet, we have imple-
mented a preliminary version of this algorithm, which works
almost exactly as proposed by Shevtsov et al. [PGSS06],
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build time (abs) render perf (rel)
scene #tris sweep BIH binned BIH binned
fairy 174K 893 ms 33 ms 100 ms 80% 97%
conf 282K 1.4 s 60 ms 172 ms 66% 90%
buddha 1.08M 6.5 s 255 ms 469 ms 79% 88%
thai statue 10M 85 s 3.3 s 6 s 84% 102%

Table 4: Build times for a baseline SAH sweep build, a BIH-
style spatial median build, and a binned SAH build; as well
as impact on render time relative to the SAH sweep build.
Impact on render performance corresponds to the DynBVH
system with packets of 8× 8 rays, and may vary for other
traversal algorithms; absolute build times are for a single
thread running on a 2.6GHz Xeon 5355 (Clovertown).

except for two modifications: Instead of binning the actual
primitive extends as required by a kd-tree, we can again use
only the centroids for the build; we therefore start with a
bounding box for the centroids, and subdivide that intoN
equally-sized binsBi along the bounding box’ axis of ma-
jor extent. We then project each primitive’s centroid into its
respective bin, and compute, for each bin, the number of
primitives projecting to it, as well as the actual geometry
bounds of all primitives associated with that bin; and evalu-
ate the SAH for theN−1 possible partitions intoB0..Bi−1
andBi ..BN−1, and take the partition with lowest cost.

As can be seen from Table4, for a reasonable number of
bins (∼ 8−16) this build provides nearly the same build per-
formance as the BIH-style build, while providing nearly the
same quality as the full SAH build. In general, it seems that
like for traversal, most of the techniques developed for kd-
trees work just as well for BVHs; in this case, the build is
even simpler for BVHs, as trees as generally shallower (i.e.,
less splits to be determined), multiple references are not al-
lowed, and each partitioning can be done strictly “in place”
in a quicksort-like algorithm (also see [Hav07]). Being only
a preliminary experiment, a more highly optimized imple-
mentation might yield even better performance, and paral-
lelization was not fully implemented yet at all.

6.5. BVH-based approaches – Summary

Though long neglected, BVHs have recently regained favor.
While this was mostly due to their capabilities for refitting,
it now appears that BVHs in general perform well once the
same effort is made to optimize them as was invested in kd-
tree traversal. On comparable hardware, BVH performance
still lags somewhat behind the fastest published performance
for kd-trees (Reshetov’s MLRT system [RSH05]), but not
conclusively so. With respect to dynamic scenes, kd-trees
seem have received more attention than BVHs (Razor, ap-
proximate SAH-builds, . . . ), but most of these techniques
generalize to BVHs, which are arguably somewhat more
flexible with respect to updating and building. In most other
respects (memory consumption, traversal algorithms, suit-
ability for packets, frusta, complex scenes, . . . ), BVHs and
kd-trees are very competitive.

7. Grid-based approaches
In this section we present techniques for traversing and
building grid acceleration structures.

We will begin by contrasting the grid acceleration struc-
tures with kd-trees and BVHs. While both kd-trees and
BVHs are hierarchical, adaptive data structures, grids fall
into the category of uniform spatial subdivision. The trade-
off between uniform and adaptive subdivision has been dis-
cussed in Section3.1.3: adaptive subdivision often works
better for complex scenes with uneven geometry distribu-
tions, but are generally harder to build. As evident from the
previous two sections, several techniques for fast building
of adaptive data structures have been developed, and at least
for special cases like deformable motion, refitting and in-
cremental updates can be really fast. Nevertheless, building
hierarchical data structures is still significantly more costly
than simply “rasterizing” the triangles into a regular grid,
which is conceptually similar to a radix sort [Knu98]. Build-
ing a regular grid can be done in a single pass, in paral-
lel [IWRP06], and is roughly as fast for complete rebuilds
as simple refitting is for BVHs.

Being able to rebuild from scratch every frame, the grid
does not need to make any assumptions on the kind of mo-
tion. Despite these advantages, grids until recently received
little attention.

7.1. Parallel grid rebuilds
Rebuilding a grid acceleration structure consists of three
main steps: clearing the previous grid cells and macro cells
of previous triangle references; inserting the triangles into
the grid cells that they intersect; and building the macro
cells. We specifically handle the clearing of the grid our-
selves, rather than throwing it away and creating a new data
structure for two reasons: firstly, this lowers the number of
expensive memory allocations/deallocations required; and
secondly, by iterating through the previous macro cells, we
can quickly find the grid cells that require clearing, rather
than going through all grid cells. Ize et al. [IWRP06] con-
tain more details on the cell clearing and macro cell building
steps, and how they can be trivially parallelized.

Ize et al. [IWRP06], parallelized the triangle insertion by
recognizing it is equivalent to triangle rasterization onto a
regular structure of 3D cells, and then showing that a sort-
middle approach works better than sort-first and sort-last
approaches [MCEF94]. In their sort-middle approach, each
thread performs a coarse parallel bucket sort of the triangles
by their cell location. Then each thread takes a set of buck-
ets and writes the triangles in those buckets to the grid cells.
Since each thread handles writing into different parts of the
grid, as specified by the buckets, there is no chance of mul-
tiple threads writing to the same grid cells; thus expensive
mutexes are not required.

This sort-middle method is relatively straightforward to
load balance, each triangle is read only once, and there are
no write conflicts. There is no scatter read nor scatter write,
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which is good for broadband/streaming architectures. The
disadvantage is that it requires buffering of fragments be-
tween the two stages, however in practice the buffering can
be implemented efficiently, and was shown to produce al-
most no overhead.

7.2. Coherent grid traversal
Implementing ray packets for a grid is not as straight for-
ward as for the tree-based acceleration structures. The pri-
mary concern with packetizing a grid is that with a 3DDDA,
different rays may demand different traversal orders. Wald et
al. [WIK∗06] solve this by abandoning 3DDDA altogether,
and propose an algorithm that traverses the gridslice by slice
rather than cell by cell. For example, the rays in Figure9 can
be traversed by traversing through vertical slices; from cell
A in the first slice, the rays are traversed to cells B and D in
the second slice, then to C and E in the third, and so on. In
each slice, all rays would intersect all all of the slice’s cells
that are overlapped by any ray. This may traverse some rays
through cells they would not have intersected themselves,
but will keep the packet together at all times. In practice, ray
coherence easily compensates for this overhead.

The rays are first transformed into the canonical grid co-
ordinate system, in which a grid ofNx×Ny×Nz cells maps
to the 3D region of[0..Nx)× [0..Ny)× [0..Nz). In that coor-

Figure 8: Examples of dynamic scenes (full rebuilds occur
every frame) that benefit from coherent grid traversal: The
running character model (78k triangles) and the animated
wind-up toys (11K triangles) that walk and jump incoher-
ently around each other respectively achieve 7.8 and 10.2
frames per second on a dual 3.2GHz Xeon with shading
and hard shadows. The next two images show 213k sphere
and 815k sphere scientific visualizations of particle data
sets [GIK∗07] and achieve 8.8 and 6.9 frames per second
with area lights sampled 16 times per hitpoint when run on
a 16 core shared memory 2.4GHz Opteron system.

G

A B C

D E F

Figure 9: Five coherent rays traversing a grid. The rays
are initially together in cells A and B, but then diverge at
B where they disagree on whether to first traverse C or D in
the next step. Even though they have diverged, they still visit
common cells (E and F) afterwards.

dinate system, the cell coordinates of any 3D pointp can be
computed simply by truncating it. Then, the dominant com-
ponent (the±X, ±Y, or±Z axis) of the direction of the first
ray is picked. This will be themajor traversal axisthat we
call ~K; all rays are then traversed along this same axis; the
remaining dimensions are denoted~U and~V.

Now, consider a slicek along the major traversal axis,~K.
For each rayr i in the packet, there is a pointpin

i where it
enters this slice, and a pointpout

i where it exits. The axis
aligned boxB that encloses these points will also enclose
all the 3D points – and thus, the cells – visited by at least
one of of the rays. OnceB is known, truncating its min/max
coordinates yields theu,v extents of all the cells on slicek
that are overlapped by any of the rays (Figure10d).

Extension to frustum traversal. Instead of determining the
overlapB based on the entry and exit points ofall rays, one
can compute the four planes bounding the packet on the top,
bottom, and sides. This forms a bounding frustum that has
the same overlap boxB as that computed from the individual
rays. Since the rays are already transformed to grid-space,
the bounding planes are based on the minima and maxima
of all the rays’u andv slopes along~K. For a packet ofN×N
primary rays sharing a common origin, these extremal planes
are computed using the four corner rays; however for more
general (secondary) packets all rays must be considered.

Traversal Setup. Once the plane equations are known, the
frustum is intersected with the bounding box of the grid; the
minimum and maximum coordinates of the overlap deter-
mine the first and last slice that should be traversed. If this
interval is empty, the frustum misses the grid, and one can
terminate without traversing.

Otherwise, one computes the minimum and maximumu
andv coordinates of the entry and exit points with the first
slice to be computed. Essentially, these describe the lower
left and upper right corner of an axis-aligned box bounding
the frustum’s overlap with the initial slice,B(0). Note that
one only needs theu andv coordinates of eachB(i), as thek
coordinates are equal to the slice number.

Incremental traversal. Since the overlap boxB(i) for
each slice is determined by the planes of the frustum,
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Figure 10: Given a set of coherent rays, the coherent grid
traversal first computes the packet’s bounding frustum (a)
that is then traversed through the grid one slice at a time
(b). For each slice (blue), the frustum’s overlap with the slice
(yellow) is incrementally computed, which determines the
actual cells (red) overlapped by the frustum. (c) Indepen-
dent of packet size, each frustum traversal step requires only
one four-float SIMD addition to incrementally compute the
min and max coordinates of the frustum slice overlap, plus
one SIMD float-to-int truncation to compute the overlapped
grid cells. (d) Viewed down the major traversal axis, each
ray packet (green) will have corner rays that define the frus-
tum boundaries (dashed). At each slice, this frustum covers
all of the cells covered by the rays.

the minimum and maximum coordinates of two succes-
sive boxesB(i) andB(i+1) will differ by a constant vector
∆B. With each slice being 1 unit wide, this∆B is simply
∆B = (dumin,dumax,dvmin,dvmax), where thedumin/max and
dvmin/max are the slopes of the bounding planes in the grid
coordinate space.

Given the overlap boxB(i), the next slice’s overlap box
B(i+1) is incrementally computed viaB(i+1) = B(i) + ∆B.
This requires only four floating point additions, and can be
performed with a single SIMD instruction. As mentioned
above, once a slice’s overlap boxB is known, the range
[i0..i1]× [ j0.. j1] of overlapped cells can be determined by
truncatingB’s coordinates and converting them to integer
values. This operation can also be performed with a single
SIMD float-to-int conversion instruction. Thus, for arbitrar-
ily sized packets ofN×N rays, the whole process of com-
puting the next slice’s overlapped cell coordinates costs only
two instructions: one SIMD addition, and one SIMD float-
to-int conversion. The complete algorithm is sketched in Fig-
ure10.

7.3. Efficient slice and triangle intersection
Once the cells overlapped by the frustum have been deter-
mined, all the rays in a packet are interescted with the trian-

a) b)

Figure 11: Since a grid (b) does not adapt as well to the
scene geometry as a kd-tree (a), a grid will often intersect
triangles (red) that a kd-tree would have avoided. These tri-
angles however usually lie far outside the view frustum, and
can be inexpensively discarded by inverse frustum culling
during frustum-triangle intersection.

gles in each cell. Triangles may appear in more than one cell,
and some rays will traverse cells that would not have been
traversed without packets. Consequently, redundant triangle
intersection tests are performed. The overhead of these addi-
tional tests can be avoided using two well-known techniques:
SIMD frustum culling and mailboxing.

SIMD frustum culling. A grid does not conform as tightly
to the geometry as a kd-tree, and thus requires some trian-
gle intersections that a kd-tree would avoid (see Figure11).
To allow for interactive grid builds, cells are filled if they
contain the bounding boxes of triangles rather than the tri-
angles themselves, further exacerbating this problem. How-
ever, as one can see in Figure11, many of these triangles
will lie completely outside the frustum; had they intersected
the frustum, the kd-tree would have had to perform an inter-
section test on them as well.

For a packet tracer, triangles outside the bounding frustum
can be rejected quite cheaply using Dmitriev et al.’s “SIMD
shaft culling” [DHS04]. If the four bounding rays of the frus-
tum miss the triangle on thesameedge of the triangle, then
all the rays must miss that triangle. Using the SIMD trian-
gle intersection method outlined in [Wal04], intersecting the
four corner rays costs roughly as much as a single SIMD 4-
ray-triangle intersection test. As such, for anN-ray packet,
triangles outside the frustum can be intersected at4

N the cost
of those inside the frustum.

Mailboxing. In a grid, large triangles may overlap many
cells. In addition, since a single-level grid cannot adapt to
the position of a triangle, even small triangles often straddle
cell boundaries. Thus, most triangles will be referenced in
multiple cells. Since these references will be in neighboring
cells, there is a high probability that the frustum will inter-
sect the same triangle multiple times. In fact, as shown in
Figure12this is much more likely for frustum traversal than
for a single-ray traversal: While a single ray would visit the
same triangle only along one dimension, the frustum is sev-
eral cells wide, and will re-visit the same triangle in all three
dimensions.

Repeatedly intersecting the same triangle can be avoided
by mailboxing [KA91]. Each packet is assigned a unique
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a) b)

Figure 12: While one ray (a) can re-visit a triangle in mul-
tiple cells only along one dimension, a frustum (b) visits the
same triangle much more often (even worse in 3D). These
redundant intersection tests would be costly, but can easily
be avoided by mailboxing.

ID, and a triangle is tagged with that ID before the intersec-
tion test. Thus, if a packet visits a triangle already tagged
with its ID, it can skip intersection. Mailboxing typically
produces minimal performance improvements for single ray
grids and other acceleration structures, when used for inex-
pensive primitive such as triangles [Hav02]. As explained
above, however, the frustum grid traversal yields far more re-
dundant intersection tests than other acceleration structures
and thus profits better from mailboxing. Additionally, the
overhead of mailboxing for a packet traverser becomes in-
significant; the mailbox test is performedper packetinstead
of per ray, thus amortizing the cost as we have seen before.

Mailboxing and frustum culling are both very useful in
reducing the number of redundant intersection tests, and to-
gether they remedy the deficiencies of frustum traversal on
uniform grids. Ultimately, these two tests will often reduce
the number of redundant intersection tests for a frustum grid
traversal by an order of magnitude, so that the resulting
number of actual ray-triangle intersections tests performed
roughly matches that of a kd-tree [WIK∗06].

7.4. Extension to hierarchical grids

Wald et al. [WIK∗06] show that it is simple to extend the
frustum grid traversal to use a multi-level hierarchical grid
based on macrocells, and that this noticeably improves per-
formance. Macrocells are a simple hierarchical optimiza-
tion to a base uniform grid, often used to apply grids to
scalar volume fields [PPL∗99]. Macrocells superimpose a
second, coarser grid over the original fine grid, such that
each macrocell corresponds to anM×M×M block of orig-
inal grid cells. Each macrocell stores a Boolean flag specify-
ing whether any of its corresponding grid cells are occupied.
Frustum grid traversal with macrocells is simple: the macro-
cell grid in essence is just anM×M×M downscaled version
of the original grid, and many of the values computed in the
frustum setup can be re-used, or computed by dividing by
M. During traversal, one first considers a slice of macrocells,
and determine all the macrocells overlapped by the frustum
(usually but one in practice). If the macrocells in the slice
are all empty,M traversal steps are skipped on the original
fine grid. Otherwise, these steps are performed as usual.

Using macrocells was found to improve performance by
around 30% [WIK∗06], which is consistent with improve-
ments seen for single ray grids. Additional levels of macro-
cells could further improve performance for more complex
models with larger grids, or for zoomed in camera views.
More robust varieties of hierarchical grids could speed up
large scenes with varying geometric density, at the cost of
higher build time.

8. Summary and conclusion
In this STAR, we first discussed the basic design decisions
that have to be addressed in the context of real-time ray
tracing of dynamic scenes. We concluded that the conflict-
ing goals of real-time traversal performance and per-frame
data structure updates/rebuilds add a new dimension to the
problem that further complicates the different trade-offs to
be taken in any real-time ray tracing system. These trade-
offs eventually force us to re-investigate the merits of vari-
ous data structures, as well as the algorithms used to build
them.

We also discussed the most popular acceleration struc-
tures – grids, kd-trees, and BVHs – and their respective prop-
erties and trade-offs with respect to these design issues, and
have covered the various different systems and algorithms
proposed for either particular sub-problems (like, for exam-
ple, how to quickly build a kd-tree), or for complete systems
(like Razor, or the respective systems by researchers at Utah,
Intel, Saarbrücken, or UNC).

Based on these approaches, we briefly re-visit some of the
design questions posed in Section3. Overall, we still can-
not give definitive, conclusive answers to any of these ques-
tions. One reason for this is that even though a large number
of approaches have been proposed, it is very challenging to
compare them to each other because they use different code
bases, hardware, optimization levels, traversal algorithms,
kinds of motion, test scenes, and ray distributions. Second,
with so many factors influencing the relative pros and cons
of the individual approaches, the “best” approach will al-
ways depend on the actual problem, with some approaches
best in some situations, and others in other situations.

Nevertheless, we would at least like to comment on a few
issues on which there is a broad consensus at least among
the authors of this STAR (which after all represent widely
varying schools of thought within the ray tracing commu-
nity). Because different systems have hard-to-compare per-
formance, it is hard to know which acceleration structure
is the fastest, and to what extent performance is likely to
change as hardware evolves. Grids are very useful for cer-
tain types of scenes and are very fast to build. In particular,
for certain dominantly non-axis-aligned scenes if the grid is
built with a triangle-in-box test [AM01] it will normally out-
perform kd-trees and BVHs built using axis aligned splits
and bounding boxes. In fact, for certain scenes even a sin-
gle ray grid will outperform other axis-aligned structures.
However, for geometrically wide ray packets grids do not
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perform as well. Kd-trees have the fastest reported times for
viewing and shadow rays, but they are not easy to update,
and it is not clear how well they perform for wide ray pack-
ets. Traversal for BVHs is almost as fast as kd-trees, and
they can be updated rapidly, but BVHs are about as expen-
sive as kd-trees to rebuild from scratch. Overall, the com-
munity should continue to investigate all three approaches,
as well as looking onto other possibilities such as oriented
structures. The difficulty in actually implementing these dif-
ferent traversal methods is also important to consider. The
coherent grid traversal algorithm is likely the most difficult
to efficiently implement, while the BVH is the easiest of the
three acceleration structures to implement, and would be ef-
ficient even without using SIMD instructions. A BIH style
BVH is faster to build than a SAH-style BVH, not signifi-
cantly slower to traverse, and much easier to implement, and
therefore is recommended as the first type of build method
to implement in an interactive ray tracer.

Concerning whether to rebuild from scratch or rely on up-
dating, the authors agree that future systems will likely use
a combination of both, where rebuilding from scratch every
frame is used some of the time and/or for some parts of the
hierarchy, and refitting or incremental updates are used for
the deformable parts of the scene when it does not intro-
duce too much degradation. Lazy or partial builds are likely
to receive more attention, but require active support from
the application. This argues for some co-existence of both
approaches depending on whether the application provides
such information, or whether it only produces a “direct ren-
dering mode” triangle soup; the same is true for hierarchical
techniques and multiresolution approaches.

These statements reflect the authors’ personal opinions,
and future research may change some of these conclusions.

In general, adding animated scenes to real-time ray trac-
ing has made ray tracing research considerably more varied;
and more interesting, too, by having opened new questions,
and by having re-opened old ones that had already been con-
sidered solved. Though the field has recently seen tremen-
dous progress, there is no clear winner, yet, and arguably,
with so many different variations of the problems no single
technique can ever be best in all cases.

Despite the flurry of recently published systems, the space
of as yet unexplored combinations is still huge. In particu-
lar, future work is likely to focus on better evaluating the
relative strengths and weaknesses of kd-trees and BVH: for
example, fast, approximate, and scalable parallel builds are
known for kd-trees, and should apply similarly to BVHs, but
have not been fully investigated, yet; the same is true for
the various BVH-based respectively kd-tree-based traver-
sal algorithms. How these approaches compare with respect
to different hardware architectures like GPUs or upcoming
multi-core architectures is also interesting, as is the question
how to handle wider than four SIMD widths, or more gen-
eral secondary ray packets. Multiresolution geometry and
lazy/partial builds require more attention, but ultimately ray

tracers have to be integrated into real-world graphics work-
loads to see how these approaches behave (the same is true
for triangle soup approaches). Finally,all of the systems dis-
cussed above depend on packets and frustum techniques to
achieve high performance, but apart from the obvious ques-
tion on how different ray distributions work for the various
data structures (that we partially addressed above), the more
general question of how to use these techniques in a “real”
rendering system (i.e., where these packets come from in the
first place) is an open question for future research.
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