
Adaptive Ray Packet Reordering
Solomon Boulos† Ingo Wald� Carsten Benthin�

†Stanford University � Intel Corporation

Figure 1: Our three test scenes rendered with two bounces of diffuse path tracing and one light sample per bounce (six rays per path) at 64 paths
per pixel. Our reordering method maintains high SIMD utilization even for these incoherent ray distributions, achieving 1.2M rays per second for
the conference scene (far right) (1.5× faster than BVH packet traversal and single ray traversal for 4-wide SIMD). As SIMD width increases, our
SIMD speedup increases as well providing more than a 6× reduction in box tests compared to a single ray implementation for 16-wide SIMD.

ABSTRACT

Modern high-performance ray tracers use large ray packets and
SIMD instruction sets to decrease both the computational and band-
width cost compared to a single ray implementation. Current global
illumination renderers, however, are still based around single ray
implementations and interfaces. The presumption is that while
packets have been shown to work well for highly coherent rays, in
the presence of less coherent secondary ray distributions the gains
of both packet and SIMD techniques dwindle rapidly. With low
enough coherence, performance can be reduced to being as slow as
reasonable single ray code – if not worse – so the benefit of pack-
ets for a global illumination system is assumed to be next to none.
With SIMD width expanding in future architectures, leaving SIMD
units underutilized means a massive loss in performance compared
to the maximum performance achievable. In this paper, we present
a method for recovering packet and SIMD coherence for incoherent
secondary ray distributions through demand-driven reordering of
rays into more coherent packets. We demonstrate that the reorder-
ing overhead is outweighed by the increased coherence within a
prototypical implementation in the Manta realtime ray tracer among
a wide variety of ray distributions, including diffuse path tracing.

1 INTRODUCTION

The real advantage of ray tracing is the ability to easily produce
fuzzy effects, such as soft shadows, glossy reflections, motion blur,
depth of field, and diffuse global illumination. To do so, how-
ever, requires either irregular, stochastic sampling [5] or massive
amounts of regular, coherent sampling [24]. Recent research has fo-
cused immense effort at improving high coherence situations while
ignoring the most common use for ray tracing: fuzzy effects includ-
ing global illumination.

Current interactive ray tracers rely on SIMD instructions and
packets to achieve high performance. Packets benefit these systems
by reducing the amount of computation and bandwidth required to
trace a set of rays. Computation is reduced either by amortizing
computations over an entire packet for packets larger than the SIMD
width (e.g. 64 rays miss a bounding box) or by using the SIMD in-
structions available on modern processors to perform SIMD-width
computations for approximately the cost of a single computation.
Similarly, bandwidth is reduced because geometry or acceleration
structure data is only fetched once for a traversal step; fewer traver-
sal steps yields less geometry bandwidth requirements. These tech-
niques explicitly rely on high coherence, either SIMD or packet,
to provide any benefit over traditional ray tracers using single rays.
Worse still, there is a programming burden for using packets of rays
that permeates the architecture of the rendering software.

The drive for interactivity has pushed speed at the cost of qual-
ity. This has led to interesting research into previous problem areas
for ray tracing such as handling dynamic geometry, but has also
led to the bizarre situation that many modern ray tracers produce
low quality images (albeit quickly). There are two major contribut-
ing factors to this situation: programming difficulty and low per-
formance. Writing complicated shaders using packets and SIMD
instructions is painful but solvable through tools [14] The perfor-
mance issue for tracing incoherent packets of rays has received
almost no attention in the interactive ray tracing community (we
highlight exceptions to this in the next section).

Worse yet, the focus on primary rays ignores a simple fact: pri-
mary rays are the minority of rays in high quality renderings. For
renderings that send multiple shadow rays per light source or com-
pute multiple bounces of reflections, the first level of rays does not
account for a large percentage of the rendering time. While the
“secondary” rays are not necessarily completely random, it is well
understood that they do not behave in the same manner as coherent
primary rays. Algorithms that are focused on primary rays are in
some sense focused on the wrong target.

Current architectural trends also point to an expansion in SIMD

131

IEEE/EG Symposium on Interactive Ray Tracing 2008
9 - 10 August, Los Angeles, California, USA
978-1-4244-2741-3/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

width over recent commodity x86 hardware. Even the initial SSE
instruction set [8] implementations were 2-wide in hardware with
4-wide implemented through lock step pairs of instructions; only
recently has the hardware truly supported 4-wide instructions. In-
tel has also announced that future x86 parts will use 8-wide SIMD
instructions [9]. Recent GPUs are similar in their use of many par-
allel floating point units (usually referred to as stream processors in
engineering specifications) with modern NVIDIA parts containing
up to 128 such units [13] (in similar terms an 8 core Clovertown
system has 32 such units).

The upcoming Larrabee [19] architecture will use 16-wide
SIMD units further pushing the amount of data parallel perfor-
mance available on a single general purpose chip. With such high
peak performance capability, getting high utilization from incoher-
ent secondary rays seems mandatory. While this also means current
methods for tracing coherent rays will instantly become faster, this
only means that the difference between what ray tracers are good at
and what they should be good at will widen.

We see three possible options to regain benefits from packets for
a global illumination system. The first is to throw out algorithms
that shoot incoherent rays. While there are approaches that lever-
age this, we feel the massive amount of oversampling required will
almost always be too great. The second is to abandon packets and
attempt to utilize SIMD within a single ray. This approach would be
prone to the same high bandwidth requirements as single ray code.
The last approach is to reorder the rays into more coherent groups
that can again be efficiently processed. This approach assumes that
there is coherence present, but that it is “hiding”. This reordering
introduces overhead that may not be easily overcome.

In this paper, we focus on reordering rays into new coherent
groups. Instead of grouping rays across small ray packets, we in-
stead will allow the rendering system to generate packets with ar-
bitrary length (up to some maximum size) and ray distributions.
Our goal is to regain the benefits of packets enjoyed in previous
approaches (both SIMD and otherwise) to reduce the total num-
ber of box tests (as we use a BVH), triangle tests, traversal steps
and primitive tests given the input ray distribution. We feel this
approach allows for maximum flexibility in shader authoring and
would allow for ray-scene queries to be cleanly separated from ray
generation and sampling. Packets that have hidden coherence will
benefit from our approach, however, we do not hope to magically
fix packets where no coherence exists. It is our assumption that even
for a few bounces of diffuse path tracing, enough coherence exists
for our approach to be useful. For more coherent ray distributions,
we would expect even larger gains.

2 RELATED WORK

2.1 Packets

Packets of rays were first introduced by Wald et al. [23] to utilize
SSE vector instructions. Performance gains were relatively good
for coherent primary rays and shadow rays from a point light, but
shading and reflection rays were handled in single ray code. In this
case, the implementation burden of writing shaders in SSE was a
major contributing factor to use of single ray code.

Wald et al. [21] demonstrated a packet algorithm for Bounding
Volume Hierarchies (BVHs) that resulted in high performance for
dynamic scenes. Reshetov adapted a BVH style traversal to kd-
trees to allow packets to remain together even when their directional
signs disagreed [17]. Even with this modification, incoherent ray
distributions led to extremely low SIMD utilization.

Reshetov [18] showed that a fast primitive culling test allowed
for shallower kd-trees with larger numbers of primitives per leaf
while maintaining similar rendering performance. The approach
was not investigated for incoherent rays; however, the utility of the
culling test clearly relies on ray coherence.

2.2 Ray Reordering
Pharr et al. [16] demonstrated the first deferred ray queueing im-
plementation in the Toro system. The goal was to only load and
tessellate geometry on demand to render scenes which would not
fit into main memory. Their implementation did not focus on fine
grained reordering and required the ability to queue a trace call.
Subsequently, not every arbitrary shader can be written within this
framework; however, any reasonable global illumination BRDF is
expressible. The Kilaeua system [10] descheduled shading when a
ray trace or photon map lookup was required to hide the latency of
performing these computations across a cluster; this allowed them
to remove the restriction of requiring shading authors to use “fire
and forget” ray tracing from Toro.

Boulos et al. [2] grouped rays based on ray type and found rea-
sonable gains over a single ray implementation. Their system used
ray tree attenuation to filter out low importance rays, however, so
the ray distributions were skewed towards early bounces and more
coherent rays. While this is reasonable, we have chosen to not re-
quire ray tree attenuation as shader authors may not be able to com-
pute an accurate estimate of importance (or may simply not do so).

Mansson et al. [12] investigated reordering methods for packets
of rays following the spirit of the Toro system. By grouping rays
into larger batches than their packet size and by shooting packet
sized subsets of this batch in sequence. None of the proposed
heuristics performed better than SIMD packet tracing in final ren-
dering performance. Navratil et al. [15] instead reordered rays at
queueing points within a kd-tree to reduce geometry traffic through
simulated L2 caches. The focus was directed at geometry and ray
bandwidth only, and no comparisons were made with respect to
absolute performance or reducing computational costs such as ray-
triangle tests.

2.3 Breadth First Ray Tracing
Breadth first ray tracing was first investigated by Hanrahan et al. [7].
It was also applied by Mahovsky et al. [11] to amortize the decoding
of a compressed BVH format. Finally, Wald et al. [22] investigated
breadth first ray tracing with reordering at every step. A practical
implementation was not produced, but served as a theoretical pre-
cursor to this work. Breadth first ray tracing greatly reduces the
number of node traversals required, however, it may introduce a
high reordering cost.

3 PENALTIES FOR TRACING INCOHERENT RAYS

While rendering complex scenes with global illumination algo-
rithms, rays quickly diverge in both hit points and directions. In
particular, current packet based systems rely on coherence so much
that they may perform worse than a standard single ray approach. In
this section, we outline a variety of problems with current methods
and present our own solution that seeks to remedy the issue.

3.1 Naı̈ve Packet Behavior
The BVH packet traversal from Wald et al. [21] performs a spec-
ulative “first hit” test and a conservative interval arithmetic based
“all miss” test to give packets an algorithmic advantage over single
ray traversal. The “all miss” test is conservative, but the worst that
can happen is that the test fails and performs no useful work. The
“first hit” test, on the other hand, is aggressively speculative, and
can, in the worst case, drag a full packet to leaves that only a single
ray wants to intersect (see Figure 2).

While this case is perhaps extreme, it demonstrates the inherent
problem with the speculative nature of the BVH packet traversal
method. This problem has surfaced even for primary rays. In the
original paper, Wald et al. [21] attempted to address this by adding
a simple “last active” test before primitive intersection. Unfortu-
nately, this simple test can easily be fooled (it too is speculative in
that it assumes all rays between the first active and the last active

132

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Figure 2: Standard BVH packet traversal (left) brings the other rays
along as well performing extra work compared to single ray traver-
sal (right). The first active ray (top) hits a box and descends into a
subtree testing two more boxes per ray (last active tests avoid the
triangles).

are active as well). This effect can be addressed by testing every ray
for overlap with the leaf bounding box before intersecting primi-
tives. While this final per-leaf testing avoids the (potential) O(MN)
ray-primitive intersections for N rays and M primitives, it instead
performs O(MN) ray-box tests.

As a further case of wasted work, we note that the interval arith-
metic data over the packet of rays was never recomputed in the orig-
inal approach. Essentially, this is another form of speculation: the
intervals are assumed to remain approximately similar. This causes
the “all miss” test to fail more often than it would otherwise.

3.2 SIMD Packet Traversal
The original SIMD packet tracing method [23] does not have any
speculative behavior at all. Instead, whenever ray coherence is low
the SIMD benefits are lost, but no additional box or triangle tests
outside of the SIMD group occur either. SIMD packet tracing, how-
ever, also doesn’t provide the opportunity for as large gains as the
BVH packet traversal method [21] since the maximum reduction
in box and triangle tests is tied to the SIMD width of the machine.
Once only 1 ray is active, SIMD packet traversal may be as slow as
a comparable single ray implementation.

3.3 Packet Filtering
While it appears as if the problem with BVH packet traversal ex-
clusively stems from the speculative first-hit descent, this is not the
case. Any packet technique that does not remove inactive rays from
the packet will suffer a similar problem albeit at a different scale.
We call removing/disabling inactive rays filtering.

If a packet is not filtered during traversal, any ray hitting a node
will drag the entire packet down into the node’s subtree. Con-
sequently, an N-ray packet hitting M different leaves would have
to consider all N rays in all M leaves. For SIMD packet tracing,
there is not much penalty compared in having inactive rays within
a SIMD group, however the gain beyond single ray is immediately
diminished.

A simple solution to avoiding this problem is to determine when
rays become inactive and to filter the packet by removing those rays.
In this sense, the first-active and last-active tracking are a very prim-
itive form of filtering packets. Filtering packets such that they still
align on SIMD boundaries is usually done to avoid unnecessary sin-
gle ray or masked SIMD code (which has a high penalty in SSE, see
Section 4.5).

3.4 Exact Filtering
The only way to avoid dragging any inactive rays to leaves would be
to filter them out at each traversal step. This requires distinguishing
between three cases: all rays hit, all rays miss, or only some hit a
node. In the case of a partial hit, it is necessary to determine which
rays miss in order to remove them from the packet.

The simplest approach to achieve this result would be to take an
input packet of rays and test all of them against the node to deter-
mine the “active mask”. While this extracts the maximum SIMD
utilization possible, it has not been shown that this technique would
be feasible due to the amount of reordering necessary.

4 ADAPTIVE REORDERING OF RAY PACKETS

We would like to combine the benefits of BVH packet traversal,
SIMD packet tracing, and breadth first ray tracing into one new
method. Specifically, we would like to retain the quick full packet
tests of BVH packet traversal along with the SIMD benefits of
breadth first SIMD tracing. However, we would also like to avoid
the downsides of both methods: extra work from speculation and
expensive reordering costs. At a high level, our combined algo-
rithm is described in Algorithm 1.

Algorithm 1 Psuedo-code for our adaptive BVH traversal. As with
the original packet method “all hit” and “all miss” are approxi-
mately the same cost as a single box test regardless of packet size.

if All Hit Enabled and All Rays Hit Box then
Intersect Rays with Children

else if All Miss Enabled and All Rays Miss Box then
Exit Early

else
Determine number of active rays
if Active Rays Below Threshold then

if Only Single Ray or SIMD Group Remains then
Use Optimized Single Ray/SIMD Path

else
Reorder rays
Compute New Intervals
Decide which packet tests to enable
Intersect Resorted Rays with Children
Update new hit results

end if
else

{All hit has failed and intervals are not updated }
Disable All Hit Test
Intersect Rays with Children

end if
end if

4.1 Full Packet Tests
As a first improvement on the BVH packet traversal, we replace the
speculative “first hit” with an exact “all hit” technique. Just as for
the “all miss” test we compute interval “ray parameters” (the inter-
val arithmetic analogue to the ray parameter interval resulting from
a box test) and determine whether every ray in the packet would
instead hit the box. To do so, we take the interval ray parameters
and determine interval “ray positions” (origin plus ray parameter
multiplied by ray direction). If the positions at the end of the tmin
interval are all inside the box, then every ray will make it inside the
box by their own tmin value. If this is the case, then all rays hit the
box.

The original “all miss” test also did not take into account the
ray parameters when performing its conservative all miss test. As
a simple improvement, we take this into account in our implemen-
tation as this improves our chance of determining that all rays miss
a box that is farther away than the current maximum intersection
value. We also note that alternatively, we could use a geometric
frustum defined by the ray packet [3, 18].

Finally, depending on the coherence of the rays the interval arith-
metic tests may not prove very useful. We can quantify the utility of
the interval arithmetic tests by computing the benefit of these tests
as N (the number of rays) if a test succeeds and −1 if a test fails
(since no useful work occurred). In the original paper for coherent
rays [21], interval arithmetic success rates of up to 73% are reported
for the conference scene (73% of all attempts reported a miss). It
seems clear that the success rate will be severely reduced for inco-
herent rays as the tests rely on ray coherence. Furthermore, the all

133

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

miss test may be used more often since the speculative first hit test
has been replaced by a conservative all hit test (the speculative first
hit test covered 50% of all tests). Currently, we disable the all hit
test if we do not recompute the intervals (since it will clearly con-
tinue to fail) and disable both interval tests if the packet is smaller
than some multiple of the SIMD width (since the maximum benefit
is now low).

4.2 Partial Packet Overlap
If both of the full packet tests fail, we resort to determining the ac-
tive rays intersecting the box. This requires a linear sweep over
all the rays while we compute the “active mask”. If we decide to
reorder our packet, we copy any data necessary to perform inter-
section tests (i.e. ray origins, directions, hit distance, etc), continue
traversal with the new ray packet, and then merge the results back
in if new intersections are found.

This reordering can also be done in place as the active mask par-
titions the input rays into two disjoint groups. However, in our
implementation we use a new ray packet and copy the results back
instead (stack space is a minor concern on a CPU). In place sorting
also removes the need to copy back the newly found intersection
results but is more complicated to implement. We note that with
BVHs there is no need to transfer the active mask up and down a
stack as it is always computable and it would save no work to skip
inactive rays within SIMD groups (any ray that misses a parent box
will also miss a child box).

With an identical traversal path, this simple method never per-
forms more ray-box tests or ray-triangle tests than a single ray im-
plementation would (excluding the “all miss” and “all hit” tests).
Due to whatever heuristic is used for traversal order for a packet,
however, the final statistics might differ as compared to a single ray
traversal. The success of the original packet method for coherent
rendering suggests that it is unnecessary to perform such a resort
at every node. It also seems possible that the cost of resorting or
computing the active mask might dominate computation time and
still produce a renderer slower than a single ray implementation.

4.3 Adaptive Reordering Heuristic
In a packet with many rays, reordering when even one ray becomes
inactive seems wasteful. Instead of performing reordering at every
step, we only reorder when the “packet utilization” drops below a
threshold. We define packet utilization to be: A/N, where A is the
number of active rays in the packet and N is the total number of rays
in the new packet (i.e. the size following the first active and last ac-
tive filtering). We can compute SIMD utilization of a SIMD group
of rays for a target SIMD width fairly similarly: A/(W), where A
is now the number of active rays in the SIMD group and W is the
SIMD width. The average SIMD utilization for the packet is simply
the average of the SIMD utilization over all the SIMD groups.

In our implementation, we reorder whenever the packet utiliza-
tion drops below 50%. Intuitively, this balances between the cost of
reordering all the rays for each step and the overhead of low SIMD
utilization. Empirically, our threshold of 50% works rather well (for
more detailed comparisons see Section 5), but a more complicated
heuristic might reorder less often for the same reordering gain.

4.4 Computing Tight Intervals
The original BVH packet traversal computed the “ray intervals”
once per packet before traversal, however, our adaptive reordering
method recomputes them whenever we reorder the packet. While
a first approach would be to simply compute the intervals over the
new subset of rays, we can do better.

Because the rays traversing a subtree can only intersect geometry
between their ray intervals, we move the ray origins to their inter-
section points with the current bounding box and similarly clip the
ray parameter to the exit point of the bounding box (see Figure 3).

This improves tightness for incoherent rays in a similar manner that
Reshetov’s [18] vertex culling frustum is built over the intersection
of the rays with the current bounding box.

Figure 3: Two initial rays and their bounding region shown in red. Af-
ter they intersect the bounding box, the new bounding region (shown
in blue) is tighter. While this example is a best case (the rays con-
verged), computing tighter bounds in this way is never worse than
using the original bounds. This is true for both geometric and interval
arithmetic based approaches.

4.5 Single Active Ray or SIMD Group

Another option is to switch to an optimized single ray (or single
SIMD group) traversal once coherence is deemed to be too low. For
many renderers, there is nearly no benefit to switching to anything
lower than the SIMD width of the machine. It is possible, however,
that a single ray implementation can be faster than a single SIMD
group. For example, in SSE any store needs to be converted into a
masked store which involves a load of the previous data, the com-
putation of the mask, three bitwise masking instructions (or, and,
and complemented and), and finally the store. In our implementa-
tion, we switch to single ray only when our packets reach a single
active ray.

4.6 Reordering Shading

Given a packet of shading points from an arbitrary input ray packet
the distribution of shaders could vary wildly. In particular, even
with only a single shader on all geometry many of the rays could
exit the scene and hit the background. With the exception of a hard
coded constant background, this requires either shading in “runs”
or grouping the resulting hit points into groups as well (see Boulos
et al. [2] for the definition of runs versus groups).

Ignoring this step would vastly decrease the number of rays a
shader would cast in a path tracing setting. For example, for the
packet shown in Figure 4, the maximum shadow packet size is 1
despite a total of 9 necessary shadow rays. To remedy this issue, we
reorder the shading requests by grouping them by material model
using a single linear pass over the shading points and copy their
results back into the original ray packet after they have been shaded.

Figure 4: Nine input rays (shown in orange) that hit 9 different objects
each with a different diffuse color. All the surfaces are lambertian,
however, so they share an identical material model. Without grouping
the hit points by material model they would not be shaded together.

134

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

As an implementation detail, we have chosen to treat all shaders
of the same “material model” as one shader with textured inputs.
This then moves the “runs” shading problem into texturing, which
is already a scalar code path. This also provides another opportu-
nity to reorder the shading points within a shading packet by the
texture they want to fetch from. In systems we have worked with,
the only utility of using packets for texture lookups comes from
system cache performance and amortizing virtual function calls. In
systems with dedicated texture units (such as GPUs) this might pro-
vide a larger benefit by making larger requests for a single texture.

5 EXPERIMENTS AND RESULTS

To demonstrate the feasibility of our approach, we extended the
Manta Interactive Ray Tracer [1] with our adaptive reordering
traversal method. We ran all of our results on a 3.0 GHz Intel
Clovertown system running Mac OS X Leopard (10.5). All results
are specified in seconds per frame for a single core unless specified
otherwise; we feel this allows our results to be more easily com-
pared to other systems and can be scaled based on the number of
cores in a given system. In all cases we also compute speedup over
our single ray implementation as our goal is to inform the design of
global illumination systems.

For our test scenes, we used the Sponza Atrium, Utah Fairy, and
MGF Conference scenes. These scenes have varying complexity
(76k, 174k, and 282k triangles respectively) of at least reasonable
size to demonstrate the utility of our method. In particular, scenes
with low geometric complexity (like erw6) do not rely much on
traversal performance and have such large primitives as to generate
unusually high coherence.

Each test scene was rendered at 1024× 1024 resolution with a
single area light source and we vary the maximum number of re-
flection bounces. Because the Sponza and Fairy scenes have open
tops many rays will hit the background and not reach the maxi-
mum bounce depth. For completeness, two bounces means that we
shoot one level of primary rays, two reflection rays, and three sets
of shadow rays (see Figure 5). We do not densely sample the light
source for direct lighting (e.g. shooting 16 samples per light source)
so that we can be sure our method is robust to direct lighting meth-
ods used for larger number of light sources [20]. We use large area
lights (for the Conference scene the light is almost the full ceiling)
to further ensure that we represent this case accurately. Shooting
more samples per light source could increase coherence for packet
methods, but we would prefer our method to be robust to this likely
ray distribution as well.

Figure 5: Our rendering setup with 2 bounces.

We chose three basic material types to provide a range of ray
distributions: pure specular, glossy, and diffuse. The pure specular
material evaluates the Blinn-Phong model and traces a secondary
ray in the direction of perfect reflection. The glossy model is a cou-
pled diffuse-specular model that only samples the specular compo-
nent following Boulos et al. [2] with the same specular exponent as
used in that paper. Finally, the diffuse case samples the hemisphere
with respect to projected solid angle (cosine sampling).

Unlike the results in Boulos et al. [2], we do not use ray tree
attenuation. Ray tree attenuation is a realistic assumption for both
Whitted and Distribution Ray Tracing, but is commonly replaced
with russian roulette in a path tracing setting. In any case, to be
robust to arbitrary shaders (that may not compute importance ag-

gressively), we focus our results on incoherent ray distributions that
have not been filtered by ray tree attenuation.

For each scene and rendering style, we compare single ray, sin-
gle SIMD group, standard BVH packet traversal with 64 rays per
packet, and our new adaptive reordering packet traversal with 256
rays per packet. For all packet methods we group the shading points
by material to maximize the average ray packet size (i.e. only sin-
gle ray avoids this step). As Manta does not have an explicit single
ray mode, we set the ray packet size as small as possible (4). Not
doing so causes an unreasonable penalty in performance for single
ray code due to cache behavior; we also explicitly copy the ray el-
ements out of the packet for our single ray traversal to avoid this
during BVH traversal.

5.1 Perfect Specular
In Table 1 we compare the four traversal methods on the three
scenes at three difference bounce depths (2, 5, and 10). We ignore
lower bounce depths for this case to focus on the incoherent rays
that occur after many bounces. The results demonstrate that stan-
dard BVH packet traversal is still very applicable for short bounce
depth specular chains while reordering is more useful with higher
bounce depths.

Scene Single SIMD Packet Reordered
Sponza 7.7 3.4 (2.2×) 2.1 (3.7×) 2.5 (3.1×)
Fairy 5.5 2.9 (1.9×) 2.2 (2.6×) 2.2 (2.5×)
Conference 7.8 4.2 (1.9×) 2.8 (2.8×) 2.8 (2.8×)
Sponza 15.4 8.0 (1.9×) 6.6 (2.3×) 7.3 (2.1×)
Fairy 7.5 4.4 (1.7×) 3.8 (2.0×) 3.5 (2.1×)
Conference 17.3 10.0 (1.7×) 8.2 (2.1×) 7.9 (2.2×)
Sponza 27.6 18.5 (1.5×) 22.1 (1.2×) 21.0 (1.3×)
Fairy 9.5 6.0 (1.6×) 5.8 (1.6×) 4.8 (2.0×)
Conference 32.2 22.8 (1.4×) 24.4 (1.3×) 22.0 (1.5×)

Table 1: Performance in seconds per frame for the three different
traversal methods with 2 (top), 5 (middle) and 10 (bottom) perfect
specular reflections. For SIMD, packet, and reordered traversal, the
relative speedup over single ray is also computed. Reordering is
competitive with packet tracing for small numbers of bounces and
pulls further away for higher numbers.

5.2 Glossy
Table 2 compares the four traversal methods for our glossy reflec-
tion model, continuing our progression from coherent to incoherent
distributions. For the no bounces case, we are essentially evaluat-
ing the shading model and computing soft shadows. Just as before,
the speculation present in the original packet method can pay off
for low bounce depths, however, the situation quickly worsens for
higher bounce depths.

5.3 Diffuse Path Tracing
Diffuse path tracing is the most incoherent ray distribution we
tested. We trace only a single sample for direct lighting and a sin-
gle hemispherical sample. As we can see in Table 3, our adaptive
reordering technique gains ground over the packet and SIMD trac-
ing techniques after only a single bounce. By two bounces, packet
tracing is now as slow as a single ray implementation, while our
adaptive reordering gives an improvement even for 4-wide SIMD.

5.4 Performance Independent Statistics
We now focus on diffuse path tracing in the conference scene to
report our timing independent improvements of our algorithm. The
conference scene, while being perhaps overly detailed, is one of the

135

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

Scene Single SIMD Packet Reordered
Sponza 2.4 1.0 (2.4×) 0.5 (4.8×) 0.7 (3.4×)
Fairy 2.1 1.1 (1.9×) 0.8 (2.6×) 0.8 (2.6×)
Conference 2.3 1.2 (1.9×) 0.9 (2.6×) 0.8 (2.9×)
Sponza 5.2 2.9 (1.8×) 2.2 (2.4×) 2.2 (2.4×)
Fairy 4.4 2.5 (1.8×) 2.2 (2.0×) 2.0 (2.2×)
Conference 5.0 2.9 (1.7×) 2.4 (2.1×) 2.0 (2.5×)
Sponza 8.2 5.3 (1.5×) 4.9 (1.7×) 4.3 (1.9×)
Fairy 5.8 3.8 (1.5×) 3.7 (1.6×) 3.0 (1.9×)
Conference 8.0 5.2 (1.5×) 4.9 (1.6×) 3.9 (2.1×)

Table 2: Performance in seconds per frame for the three different
traversal methods with 0 (top), 1 (middle) and 2 (bottom) glossy
bounces. As before, relative speedup over single ray is given in
parentheses.

Scene Single SIMD Packet Reordered
Sponza 2.4 1.0 (2.4×) 0.5 (4.8×) 0.6 (4.0×)
Fairy 2.1 1.0 (2.1×) 0.8 (2.6×) 0.8 (2.6×)
Conference 2.3 1.2 (1.9×) 0.9 (2.6×) 0.7 (3.3×)
Sponza 6.0 3.9 (1.5×) 4.4 (1.4×) 3.4 (1.8×)
Fairy 4.1 2.7 (1.5×) 3.0 (1.4×) 2.2 (1.9×)
Conference 5.0 3.3 (1.5×) 3.7 (1.4×) 2.6 (1.9×)
Sponza 8.8 7.3 (1.2×) 9.8 (0.9×) 7.2 (1.2×)
Fairy 5.3 4.1 (1.3×) 5.0 (1.1×) 3.1 (1.7×)
Conference 8.0 6.0 (1.3×) 7.7 (1.0×) 5.3 (1.5×)

Table 3: Performance in seconds per frame for diffuse path tracing 0
(top), 1 (middle) and 2 (bottom) diffuse bounces. While many meth-
ods are competitive for the shadows only case (0 bounces) BVH
packet tracing become as slow as or worse than single ray by the
second bounce.

few “closed” models that is freely available and used for compar-
ison. This causes it to actually have high bounce depth computa-
tions, whereas in the other models many rays can escape the scene
fairly quickly. We note that the conference scene is not actually
closed (rays can escape through the vents), so there are still a small
number of rays that hit the background.

In Table 4 we report box tests, interval arithmetic tests, rays re-
ordered, triangle tests, traversal steps, and primitive tests divided by
the total number of rays. A SIMD box or triangle test counts as a
single test, and we do not distinguish between the all hit and all miss
tests (each count as one interval test). We feel these timing indepen-
dent statistics are useful to understand where potential performance
improvements come from. As the majority of intersection cost is
in these five statistics, we feel the point of any improved traversal
algorithm is to reduce these values in relation to single ray code.

Single SIMD Packet Adaptive Exact
Box 46.6 23.1 49.4 16.3 14.0
IA 0.0 0.0 6.7 0.2 0.2
Reorder 0.0 0.0 0.0 3.2 8.9
Tri 6.0 4.7 7.5 4.9 4.2
Trav 46.6 23.1 7.9 4.5 4.5
Prim 6.0 4.7 3.1 2.2 2.2

Table 4: Performance independent statistics for 2 bounce diffuse path
tracing on the Conference scene. All numbers are averages per ray
for the full rendering. A SIMD box or triangle test counts as 1 test.

As we can see from Table 4, our algorithm successfully reduces

the number of box tests by a large margin over single ray traver-
sal (2.9×) while also decreasing the total number of triangle tests
slightly. As our method is packet based, we also gain a large re-
duction in traversal steps (10.4×) and primitive tests (2.7×) per ray
by amortizing these over large packets. The reduction in traversal
steps gives our method a substantial geometry bandwidth advantage
compared to SIMD or single ray approaches. Compared to exact re-
ordering, approximately 2.8× fewer rays are reordered on average
with only slight changes in other statistics.

As mentioned in Section 4, the interval arithmetic tests are only
useful when they quickly report an all miss or an all hit for a large
number of rays. These tests rely on ray coherence and so we would
assume that they would be less useful as bounce depth increases.
In Figure 6, we plot the average interval arithmetic benefit for our
three bounce depths without our interval test disabling technique
(to evaluate the maximum possible benefit) and see that this is the
case. As mentioned in Section 4, in our implementation we disable
the interval tests when the number of active rays decreases below a
small multiple of the target SIMD width.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25

I
n
t
e
r
v
a
l

A
r
i
t
h
m
e
t
i
c

B
e
n
e
f
i
t

Tree Depth

0 Bounces Loose
1 Bounces Loose
2 Bounces Loose
0 Bounces Tight
1 Bounces Tight
2 Bounces Tight

Figure 6: Interval arithmetic benefit versus tree depth for our three
bounce depths. IA benefit is the number of ray-box tests that are
skipped with interval tests less the number of interval tests used.
The tighter intervals are always at least as good as the loose ones,
but the difference is only slightly visible.

Finally, we note that increasing the number of samples per pixel
has nearly no effect on the coherence of the secondary rays for dif-
fuse path tracing. This is unsurprising as the incoherence comes
from random directional scattering which is not tied to the amount
of spatial antialiasing.

5.5 Increasing SIMD Width
While our results using SSE are already an improvement on previ-
ous methods, we highlight the possibility of greater improvements
with larger SIMD width. Figure 7 shows the SIMD speedup for
both box and triangle tests for the diffuse path traced conference
scene with two bounces. For increasing SIMD width, our method
achieves an increase in SIMD speedup (SIMD width multiplied by
utilization) for box tests but has nearly no effect on triangle tests
(on average only 2 rays reach leaf nodes for our method). Our
SIMD utilization is highest for 4-wide SIMD, but the decrease in
utilization is not by a factor of 2 for each increase in SIMD width
(the bars are not flat across SIMD width). It is important to note
that simple SIMD packet tracing also benefits from the increase in
SIMD width as well. This is especially true as we reach very high
SIMD widths where our reordering method still uses only 256 rays
per input packet.

The majority of our SIMD utilization improvement comes from
the higher levels in the BVH. As shown in Figure 8 for 16-wide
SIMD, our method keeps SIMD utilization above standard packet
tracing but only while enough rays are available. Once the input set

136

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

 0

 2

 4

 6

 8

 10

4 8 16 32 64

S
p
e
e
d
u
p

SIMD Width

SIMD Speedup (Box Tests)

SIMD
Adaptive

Exact

 0

 2

 4

 6

 8

 10

4 8 16 32 64

S
p
e
e
d
u
p

SIMD Width

SIMD Speedup (Tri Tests)

SIMD
Adaptive

Exact

Figure 7: SIMD speedup for box tests (top) and triangle tests (bot-
tom) for two bounce diffuse path tracing on the Conference scene.
The SIMD packet tracing uses exactly SIMD width number of rays
per packet while both reordering methods use 256 rays per packet.
SIMD speedup is SIMD utilization multiplied by the SIMD width (for
easier comparison across widths). While utilization goes down as
the SIMD width gets larger, the amount of useful work done still in-
creases for box tests. Adaptive reordering also regains nearly as
much speedup as exact reordering but with a lower reordering cost.

of rays is below the SIMD width of our target architecture, we can
no longer provide any useful reordering.

6 DISCUSSION

In this paper, we have presented a new method that combines the
benefits of BVH packet traversal with the benefits of breadth first
ray tracing. Our method accepts arbitrary input packets and at-
tempts to extract the maximum coherence available. The following
are a number of important questions that we feel are important to
discuss in relation to this work.

How is this different from previous approaches? The most
similar work to our own is the Toro system from Pharr et al. [16].
In Toro, a coarse uniform grid is used as a queuing system for a
finer resolution uniform grid. In a sense, this method can be seen
as similar to ours where the reordering is chosen statically to be at
every node in the coarse uniform grid (which in our system would
be similar to grouping at say every few levels of the BVH). This ap-
proach, however, unnecessarily penalizes coherent rays by forcing
them to queue up and be reordered (SIMD Stream Tracing [22] suf-
fers from the same behavior). Similarly, incoherent rays that might
need more fine grained scheduling than the coarse grid resolution

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

S
I
M
D

U
t
i
l
i
z
a
t
i
o
n

(
P
e
r
c
e
n
t
)

Tree Depth

Exact Reordering
Adaptive Reordering

SIMD Packet
Single Ray

Figure 8: Comparison of SIMD packet tracing and our reordering
methods for a target SIMD width of 16 (two bounce path tracing for
conference scene). Our reordering method maintains higher SIMD
utilization in the upper parts of the tree where SIMD coherence pays
off the most. Adaptive reordering also has nearly as much benefit
as exact reordering. All methods deteriorate towards the leaves to
having only 1 or 2 rays active at a time.

chosen would also fall through the cracks.
In contrast, even our simple dynamic utilization threshold creates

an effective set of reordering points for each packet individually.
We don’t foresee an effective method to statically choose a set of
BVH nodes that would have similar properties.

Deep Coherent Ray Tracing [12] instead queued rays into a
generic bin and attempted to produce packets from this general
pool. These packets were then traversed through a kd-tree with
traditional SIMD packet tracing. We feel it would be difficult to
determine a priori which rays within a large group would follow
similar traversal paths before actually tracing the rays.

Can we do better? As SIMD width increases for next gen-
eration hardware, we believe our approach will provide additional
benefits. We have reported the SIMD speedup we would obtain
for multiple SIMD widths that match current and potential future
hardware systems. Our approach, however, does seem to approach
the limits of SIMD utilization through naı̈vely accepting the input
ray packets (at least with our data structure) and certainly leaves
much to be desired (our 16-wide SIMD utilization is approximately
45%). While increasing our starting packet improves utilization
further (we have separately tested 1024 rays per packet), this has
a negative effect on rendering performance for our 4-wide system
due to the large amount of cache misses caused by using such a
large packet. A more detailed analysis of this tradeoff would war-
rant future investigation, however, from this simple experiment it is
already clear that the resource requirements of extremely large ray
packets are most likely untenable on current architectures.

Combining our approach with methods that resort larger batches
of incoherent rays [12] might prove fruitful as well. Perhaps more
promising, however, would be to switch to a method that could fully
utilize SIMD units when the benefits of packets disappear. The
method employed by Pixar for subdivision surfaces [4] works par-
ticularly well as the SIMD width is naturally tied to the subdivision
algorithm. In our approach, this would be allowed through the op-
timized fast path for single rays. A traversal method of this kind
might suggest switching to single rays sooner than we do now. We
are cautious, however, of losing the bandwidth savings that pack-
ets provide at the higher levels of the tree (where coherence is very
high).

This might suggest that building shallower trees as Reshetov [18]
has done could be beneficial to increase SIMD utilization again.
However, as always the goal is to actually reduce the amount of

137

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

work done, so simply using shallower trees would not accomplish
this. In the limit, trees would disappear and every ray would be
tested against every primitive (albeit at 100% SIMD utilization).

What about shader or texture coherence? The experiments
in this paper explicitly avoid focusing on shading coherence. As
mentioned in Section 4, we follow Boulos et al. [2] and group the
packet by material. Currently, we do this in a linear sweep over the
packet. For scenes with many materials, our simple approach would
fail to provide enough rays in the initial packet to allow for substan-
tial benefit. In these cases, we feel that previous solutions that could
group rays from different shaders [6, 12, 16] seemingly provide the
only way out. As in our description of our method, however, we
distinguish between actual differences in material model and sim-
ply a difference in material inputs (same code, different data).

Do I need to worry about generating coherent packets? The
original BVH packet traversal method was very sensitive to the or-
der in which rays appeared in the original packet. In contrast, our
method is essentially agnostic to the order the rays appear since we
would reorder them almost immediately. However, given a coher-
ent input packet our method like the original BVH packet traversal
will perform better than given an incoherent packet. In a scenario
with multiple shadow rays per shading point, it may be beneficial
to explore different combinations to produce shadow packets (e.g.
64 shadow samples per shading point in each packet, instead of 64
packets with 1 shadow ray per shading point).

7 CONCLUSIONS AND FUTURE WORK

For incoherent ray distributions, our method produces improve-
ments in SIMD and packet coherence for a variety of SIMD tar-
gets. Correspondingly, global illumination systems could expect
anywhere between a 2× and 6× speedup over a single ray imple-
mentation using our method (depending on SIMD width). We note,
however, that our method achieves only approximately a 2× gain
over SIMD packet tracing for these types of rays (assuming 16-
wide SIMD) so automatically generated SIMD packet code may
be preferable from an implementation and maintenance standpoint.
We believe our adaptive method represents the best performance
achievable across arbitrary input ray distributions using ray packets
for our current data structure.

Our method is simple and practical enough to demonstrate
speedups within a current 4-wide SIMD architecture in the Manta
Interactive Ray Tracer. As SIMD width increases, our relative per-
formance gain over single ray code will increase as well. On ar-
chitectures with support for gather, scatter, and bit counting oper-
ations, the relative frequency of reordering may be increased fur-
ther for slight improvements due to the decreased cost for reorder-
ing. Our results with “exact reordering” seem to suggest that our
current thresholds are sufficient for all scenes we tested. We also
tested larger packets (1024 rays) and found that the resource re-
quirements increased so much as to reduce rendering performance
(due to L2 cache misses) . On resource constrained architectures,
such as GPUs, this effect would be more likely to occur so there is
a open question of choosing the right packet size with our method.
While it is clear that SIMD utilization will increase as ray packet
size increases if coherence is available, the resource requirements
may outweigh the benefits. As a simple choice, we would use what-
ever size ray packet can be reasonably kept within the on chip re-
sources of a given architecture.

We also found that the seemingly useful interval arithmetic ap-
proach from standard BVH packet traversal simply breaks down in
the presence of incoherent secondary rays. It is useful to include
these interval tests in our method to transparently accelerate coher-
ent rays, however, a system focused on incoherent rays may not
need them. It may be interesting to investigate geometric frustum
based approaches, but we are unconvinced they would present a
significant gain.

REFERENCES

[1] J. Bigler, A. Stephens, and S. G. Parker. Design for parallel interac-
tive ray tracing systems. In Proceedings of the IEEE Symposium on
Interactive Ray Tracing, pages 187–195, 2006.

[2] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald. Packet-based whitted and distribution ray tracing. Pro-
ceedings of Graphics Interface 2007, pages 177–184, 2007.

[3] S. Boulos, I. Wald, and P. Shirley. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Technical Report UUCS-06-010,
2006.

[4] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali. Ray tracing for
the movie ‘Cars’. In Proceedings of the IEEE Symposium on Interac-
tive Ray Tracing, pages 1–6, 2006.

[5] R. L. Cook. Stochastic sampling in computer graphics. ACM Trans-
actions on Graphics, 5(1):51–72, 1986.

[6] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. Mark. Ra-
zor: An Architecture for Dynamic Multiresolution Ray Tracing. ACM
Transactions on Graphics (conditionally accepted), 2007.

[7] P. Hanrahan. Using caching and breadth first search to speed up ray
tracing. In Proceedings of Graphics Interface, pages 55–61, 1986.

[8] Intel Corp. Intel Pentium III Streaming SIMD Extensions. http://-
developer.intel.com/vtune/cbts/simd.htm, 2002.

[9] Intel Corp. Intel AVX. http://softwareprojects.intel.com/avx, 2008.
[10] T. Kato. Kilauea—-parallel global illumination renderer. Parallel

Computing, 29(3):289–310, 2003.
[11] J. Mahovsky and B. Wyvill. Memory-Conserving Bounding Volume

Hierarchies with Coherent Raytracing. Computer Graphics Forum,
25(2):173–182, 2006.

[12] E. Mansson, J. Munkberg, and T. Akenine-Moller. Deep Coherent
Ray Tracing. Proceedings of the IEEE Symposium on Interactive Ray
Tracing, pages 79–85, 2007.

[13] NVIDIA Corp. NVIDIA GeForce 9800 GTX Specification. http://-
www.nvidia.com/object/geforce 9800gtx.html.

[14] S. Parker, S. Boulos, J. Bigler, and A. Robison. RTSL: a Ray Tracing
Shading Language. Proceedings of the IEEE Symposium on Interac-
tive Ray Tracing, pages 149–160, 2007.

[15] Paul Arthur Navrátil and Donald S. Fussell and Calvin Lin and
William R. Mark. Dynamic Ray Scheduling to Improve Ray Coher-
ence and Bandwidth Utilization. Proceedings of the IEEE Symposium
on Interactive Ray Tracing, 2007.

[16] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering com-
plex scenes with memory-coherent ray tracing. In Proceedings of SIG-
GRAPH, pages 101–108, 1997.

[17] A. Reshetov. Omnidirectional ray tracing traversal algorithm for kd-
trees. In Proceedings of the IEEE Symposium on Interactive Ray Trac-
ing, pages 57–60, 2006.

[18] A. Reshetov. Faster Ray Packets-Triangle Intersection through Ver-
tex Culling. Proceedings of the IEEE Symposium on Interactive Ray
Tracing, pages 105–112, 2007.

[19] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan. Larrabee: A many-core x86 ar-
chitecture for visual computing. ACM Transactions on Graphics, to
appear, 27(3), 2008.

[20] P. Shirley, C. Wang, and K. Zimmerman. Monte Carlo techniques for
direct lighting calculations. ACM Transactions on Graphics, 15(1):1–
36, 1996.

[21] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1):6:1–6:18, Jan. 2007.

[22] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler. SIMD Ray Stream
Tracing - SIMD Ray Traversal with Generalized Ray Packets and On-
the-fly Re-Ordering. Technical Report UUSCI-2007-012, 2007.

[23] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Render-
ing with Coherent Ray Tracing. In Proceedings of EUROGRAPHICS,
pages 153–164, 2001.

[24] D. Wexler, L. Gritz, E. Enderton, and J. Rice. GPU-accelerated high-
quality hidden surface removal. Proceedings of Graphics Hardware,
pages 7–14, 2005.

138

Authorized licensed use limited to: Intel Corporation via the Intel Library. Downloaded on July 8, 2009 at 17:49 from IEEE Xplore. Restrictions apply.

