
Ray Tracing with the BSP Tree
Thiago Ize

University of Utah
Ingo Wald
Intel Corp

Steven G. Parker
NVIDIA

University of Utah

ABSTRACT

One of the most fundamental concepts in computer graphics is
binary space subdivision. In its purest form, this concept leads to
binary space partitioning trees (BSP trees) with arbitrarily oriented
space partitioning planes. In practice, however, most algorithms
use kd-trees—a special case of BSP trees that restrict themselves to
axis-aligned planes—since BSP trees are believed to be numerically
unstable, costly to traverse, and intractable to build well. In this
paper, we show that this is not true. Furthermore, after optimizing
our general BSP traversal to also have a fast kd-tree style traversal
path for axis-aligned splitting planes, we show it is indeed possible to
build a general BSP based ray tracer that is highly competitive with
state of the art BVH and kd-tree based systems. We demonstrate
our ray tracer on a variety of scenes, and show that it is always
competitive with—and often superior to—state of the art BVH and
kd-tree based ray tracers.

1 INTRODUCTION

High performance ray tracing usually requires a spatial and/or hi-
erarchical data structure for efficiently searching the primitives in
the scene. One of the most fundamental concepts in these data struc-
tures is “binary space partitioning” — successively subdividing a
scene’s bounding box with planes until certain termination criteria
are reached. The resulting data structure is called a binary space
partitioning tree or BSP tree.

The flexibility to place splitting planes where they are most ef-
fective allows BSP trees to adapt very well even to complex scenes
and highly uneven scene distributions, usually making them highly
effective. For a polygonal scene, a BSP tree can, for example, place
its splitting planes exactly through the scene’s polygons, thus ex-
actly enclosing the scene. In addition, their binary nature makes
them well suited to hierarchical divide-and-conquer and branch-and-
bound style traversal algorithms that in practice are usually quite
competitive with other algorithms. Thus, in theory BSP trees are
simple, elegant, flexible, and highly efficient.

However, “real” BSP trees with arbitrarily oriented planes are
used very rarely, if at all in practice. In collision detection, BSP
ray-shooting queries [1] do exist, but if applied to generating images
with ray tracing, would perform quite poorly. In ray tracing, we are
not aware of a single high-performance ray tracer that uses arbitrarily
oriented planes. Instead, ray tracers typically use kd-trees, which
are a restricted type of BSP tree in which only axis-aligned splitting
planes are allowed1. Kd-trees provide storage and computation
advantages but do not conform as well to scene geometry.

This focus solely on axis-aligned planes is somewhat surprising,
since in theory, a BSP should be far more robust to arbitrary ge-
ometry. In particular, it is relatively easy to “break” a kd-tree with
non-axis aligned geometry: consider a long, skinny object that is ro-
tated. While aligned to an axis, the kd-tree would be highly efficient,

1Somewhat surprisingly, while there are many papers on ray tracing with
“BSP trees” ([8, 10, 18] to name just a few), none of the papers we found
actually uses arbitrarily oriented planes!

Figure 1: The 283 thousand triangle conference room and three views
of the 2.2 million triangle UC Berkeley Soda Hall model, rendered
with a path tracer. For these views, our BSP outperforms a kd-tree
by 1.1×, 1.3×, 1.2×, and 2.5× respectively (and by 1.1×, 1.8×, 1.2×,
and 2.4× respectively, for ray casting)

but when oriented diagonally the kd-tree would be severely ham-
pered. With a BSP, in contrast, rotating the object should not have
any effect at all. In addition, since every kd-tree is expressible as a
BSP tree, a properly built BSP tree could never perform worse than
a kd-tree, while having the additional flexibility to place even better
split planes that a kd-tree could not. Despite being theoretically
superior on all counts, they are nevertheless not used in practice.

We believe that this discrepancy between theory and praxis stems
from three widespread assumptions: First, it is believed that travers-
ing a BSP tree is significantly more costly than traversing a kd-tree,
since computing a ray’s distance to an arbitrarily oriented plane
requires a dot product and a division, while for a kd-tree it requires
only a subtraction and a multiplication. Furthermore, a BSP tree
node requires more storage than a kd-tree node. Thus, any potential
gains through better oriented planes would be lost due to traversal
cost. Second, the limited accuracy of floating point numbers is be-
lieved to make BSP trees numerically unstable, and thus, useless
for practical applications. Third, the (much!) greater flexibility
in placing a split plane makes building (efficient) BSP trees much
harder than building kd-trees: For a kd-tree, when splitting a node
with n triangles there are only 6n plane locations where the number
of triangles to the left and right of the plane changes; for a BSP tree,
the added two dimensions for the orientation of the plane produces
O(n3) possible planes. Instead, recursively placing planes through



randomly picked triangles is likely to produce bad and/or degenerate
trees, and would likely result in poor ray tracing performance. Thus,
it is generally believed that naively building BSPs results in bad
BSPs, while building good BSP trees is intractable.

In this paper, we show that none of these assumptions is com-
pletely true, and that a building a BSP based ray tracer—when using
the right algorithms for building and traversing—is indeed possible,
and that it can be quite competitive to BVH or kd-tree based ray
tracers: While the numerical accuracy issues requires proper atten-
tion during both build and traversal, we will demonstrate our ray
tracer on a wide variety of scenes, and with both ray casting and path
tracing. We also show that the well-known surface area heuristic
(SAH) easily generalizes to BSP trees, and that SAH optimized
BSP trees—though significantly slower to build than kd-trees—can
indeed be computed with tractable time and memory requirements.
Based on a number of experiments, we show that our BSP based ray
tracer is at least as stable as a kd-tree based one, that it is always at
least roughly as fast as a best-of-breed kd-tree, and that it can often
outperform it.

2 BACKGROUND

2.1 Binary Space Partitioning Trees
BSPs were first introduced to computer graphics by Fuchs et al. to
perform hidden surface removal with the painter’s algorithm [4]. As
its name describes, a BSP is a binary tree that partitions space into
two half-spaces according to a splitting plane. This property allows
BSPs to be used as a binary search tree to locate objects embedded
in that space. If a splitting plane intersects an object, the object must
be put on both sides of the plane. This property can in theory lead to
poor quality BSP trees with Ω(n2) nodes for certain configurations
of n non-intersecting triangles in ℜ3 [13]. However, in practice
this will not occur and space should be closer to linear. In fact, if
we only have fat triangles — which means there are no long and
skinny triangles — then there exist BSP trees with linear size [3].
Assuming the tree is well balanced, query time is usually O(logn).
Build time depends on the algorithm used to pick the splitting planes.
An algorithm that chose the optimal splitting planes would likely
take at least exponential time which is not feasible. For this reason,
splitting planes are usually chosen at random, to divide space or the
elements in half, or using some other heuristic such as the greedy
SAH [5, 12].

2.2 Ray Tracing Acceleration Structures
There are currently three main classes of acceleration structures used
in modern ray tracers: kd-trees [16, 17], uniform grids (possibly with
multiple levels) [23], and axis-aligned bounding volume hierarchies
(BVHs) [11, 21]. These acceleration structures can be further accel-
erated by tracing packets of coherent rays, using SIMD extensions
on modern CPUs [19], and by using the bounding frustum [16, 23]
or interval arithmetic (IA) [21] to traverse the packet through the
acceleration structure by using only a small subset of the rays in the
packet. However, it is unclear how well SIMD, packet, and frustum
techniques will perform for secondary rays and so it is important to
still look into what the best single ray acceleration structure can do.

Kd-trees are a variant of BSP trees where the splitting planes
are only axis-aligned. This leads to an extremely fast tree traversal.
However, unlike an optimal BSP, an optimal kd-tree will not be
able to partition all the objects into individual leaves since axis-
aligned splits might not exist that cleanly partition triangles. This
results in more ray-object intersection tests (albeit potentially fewer
traversal steps) that must be performed. The prevailing belief has
been that the faster traversal of the kd-tree makes up for the increase
in intersection tests; however, in this paper we show that is not
always the case.

Kammaje and Mora showed that using a restricted BSP with
many split planes resulted in fewer node traversals and triangle

intersections than their kd-tree, but for almost all their test scenes,
the BSP resulted in slower rendering times [10]. One possible reason
for this is that the traversal differs from a kd-tree traversal too much
and ends up being too expensive. Another reason might be that at
the lower levels of the tree, the restricted BSP still suffers from the
same problem as the kd-tree, in that it is not able to cleanly split
triangles apart. In a certain sense their data structure inherits the
disadvantages of both kd-trees (not being able to perfectly adapt)
and BSP trees (costly traversal).

2.3 Surface Area Heuristic
When building an adaptive data structure like a BSP, kd-tree, or
BVH, the actual way that a node gets partitioned into two halves can
have a profound impact on the number of expected traversal steps
and primitive intersections. For kd-trees, the best known method to
build trees with minimal expected cost is the greedy surface area
heuristic (SAH). The greedy SAH estimates the cost of a split plane
by assuming that each of the two resulting halves l and r would
become leaves. Then, using geometric probability (see [6] for a
more detailed explanation) the expected cost of splitting node p is

Cp =
SA(vl)
SA(vp)

nlCi +
SA(vr)
SA(vp)

nrCi +Ct

where SA() is the surface area, n is the number of primitives, Ci is
the cost of intersecting a primitive, and Ct is the cost of traversing
a node. Though originally invented for BVHs and commonly used
for kd-trees, Kammaje and Mora recently showed how it can also be
applied to restricted BSPs [10] and the same theory works for BSP
trees too, so we will use it here.

Wald and Havran showed that an SAH kd-tree can be built in
O(n logn), although not at interactive rates [22]. Independently,
Hunt [9] and Popov [14] showed that the SAH kd-tree build can be
made faster by approximating the SAH cost with a subset of the can-
didate splits at the expense of a slight hit in rendering performance.

3 BUILDING THE BSP
The BSP build is conceptually very similar to the standard kd-tree
build. The differences occur mainly in the implementation in order
to handle the decreased numerical precision, computing the surface
areas of a general polytope (as opposed to an axis-aligned box), and
deciding which general split planes to use.

3.1 Intersection of Half-Spaces
The SAH requires the surface area of a node. For kd-trees this is
trivial to calculate, but a node in a BSP is defined by the intersection
of the half-spaces that make up that node. The intersection of half-
spaces defines a polyhedron, and more specifically in the case of
BSPs, a convex polytope since it can never be empty or unbounded
(we place a bounding box over the entire object). We thus need
to find the polytope in order to compute the surface area. As with
Kammaje and Mora, we form the polytope by clipping the previous
polytope with the splitting plane to get two new polytopes, and then
simply sum the areas of the polygonal faces [10].

3.2 Handling Numerical Precision
We use the SAH, which requires us to compute the surface area of
each node. As in [10], we find the surface area by computing the two
new polytopes formed by cutting the parent node with the splitting
plane. Care must be taken to make sure that the methods for comput-
ing the new polytope are robust and do not break down for very thin
polytopes, which are quite common. Numerical imprecision makes
it difficult to determine whether a vertex lies exactly on a plane.
Assume we have a triangulated circle and a plane that is supposed
to lie on that circle. If it is axis-aligned, for instance on the y-axis,
determining whether each vertex lies on the plane is simple since all



the vertices will have the same y value. But if we rotate the circle by
45 degrees so that the plane is now on x = y, the plane equation may
not evaluate exactly to zero for these vertices. Consequently, we
need to check for vertices that are within some epsilon of the plane.
The distance of the vertices from the true plane is small; however,
because we must use the planes determined from the triangles, the
error can become much larger. If the triangles are very small and the
circle they lie on very large, then a plane defined by a triangle on
one side of the circle might end up being extremely far away from a
triangle on the opposite side. If the epsilon is too small, tree quality
will suffer since many planes will be required to bound the triangle
faces when a single plane would have sufficed. This forces us to
pick a much larger epsilon. However, if the epsilon is too large then
a node will not be able to accurately bound its triangles. This can
cause rendering artifacts during traversal. For this reason we must
also include this epsilon distance in the ray traversal.

3.3 BSP Surface Area Heuristic
We support a tree with a combination of general BSP and axis-
aligned kd-tree nodes. Therefore we have two node traversal costs,
CBSP and Ckd-tree, that we must use with the SAH. However, using
these directly in the SAH results in BSP nodes being used predom-
inantly over the kd-tree nodes even when CBSP is set to be many
times greater than Ckd-tree. The reason for this is the assumption that
a split creates leaves with costs linear in the number of triangles.
When there is only one constant traversal cost, this works well since
the traversal cost affects only the decision of performing the split
versus terminating and creating a leaf node. However, in our case
we need to use the traversal cost not just to determine when to create
a leaf, but also whether a BSP split, with its more expensive traver-
sal, is worth using over a cheaper kd-tree traversal. Unfortunately,
this linear intersection cost will quickly dwarf the constant traversal
cost, causing the optimal split to be based almost entirely on which
splitting plane results in fewer triangle intersection tests. We handle
this problem by making CBSP vary linearly with the number of prim-
itives so that CBSP = αCi(n−1)+Ckd-tree, where α is a user tunable
parameter (we use 0.1). If after evaluating all splitting planes we
find that the cost of splitting is not lower than the cost of creating
a leaf node, then we evaluate all the BSP splitting planes again but
this time with a fixed CBSP. In practice this works much better than
using a fixed cost, however it is possible that an even better heuristic
exists.

3.4 Which Planes to Test
At each node we must decide with which splitting planes to evaluate
the SAH. While a kd-tree has infinitely many axis-aligned splitting
planes to choose from, Havran showed that only those splitting
planes that were tangent to the clipped triangles (perfect splits)
were actually required [6]. Since there are only 6 axis-aligned
planes per triangle that fulfill this criteria, this allowed for O(n) split
candidates per node. Directly extending Havran’s results to handling
the additional degrees of freedom in choosing the normal would
result in O(n3), or possibly even higher, split candidates, which is
often impractical.

To maintain a practical build time, we limit ourselves to only
O(n) split candidates for each BSP node, at the expense of possibly
missing some better splitting planes. For each triangle in a node, the
split candidates we pick are: the plane that defines the triangle face
(auto-partition), the three planes that lie on the edges of the triangle
and are orthogonal to the triangle face, and the same six axis-aligned
splitting planes used by the kd-tree. Note that the first four splitting
planes require a general BSP and would not work with a RBSP.

3.5 Build
Our build method is similar to those for building kd-trees with SAH,
except that we are not able to achieve the O(n logn) builds that are

possible for kd-trees [22] since we need to partition the triangles
along an arbitrary direction. We use the same build algorithm as
for the standard naive O(n2) kd-tree build [22]. At this point, we
cannot use the faster lower complexity builds since we cannot sort
the test planes. However, we are able to lower the complexity by
using a helper data structure for counting the number of triangles on
the left, right, and on the plane. This structure is a bounding sphere
hierarchy over the triangles, where each node has a count of how
many triangles it contains, so that if the node is completely to one
side of the plane the triangle count can be immediately returned.
We build this structure using standard axis-aligned BVH building
algorithms, so the tree can be computed extremely quickly [20]
compared to the BSP build time. If all the triangles lie on the plane,
then our current structure will end up traversing all the leaves and
take linear time for that candidate plane. This worst case time
complexity however will not increase the BSP build complexity
since we would have had to spend linear time counting anyway.
This can occur for portions of a scene, such as the triangles that
tesselate a wall. However, most of the scene will not lie on the same
plane and so for well-behaved scenes, this helper structure will give
the location counts in sub-linear time. While we must update this
structure after every split, and that takes O(n), that cost is the same
as the O(n) splitting plane tests performed, so it does not increase
the complexity. Thus, for almost any scene we are able to achieve
a sub-quadratic build. Like in kd-trees, clipping triangles to the
splitting plane results in a higher quality build [7].

4 RAY TRACING USING GENERALIZED BSPS

4.1 Traversal
A ray is traversed through a kd-tree by intersecting the ray with the
split plane giving a ray distance to the plane which allows us to
divide the ray into segments. The initial ray segment is computed
by clipping the ray with the axis-aligned bounding box. A node
is traversed if the ray segment overlaps the node. Since the two
child nodes do not overlap, we can easily determine which node is
closer to the ray origin and traverse that node first (provided it is
overlapped by the ray segment), thereby allowing an early exit from
the second node.

We use exactly the same traversal algorithm for the BSP tree
except for two modifications. First, computing the distance to the
plane now requires two dot products and a float division instead of
just one subtraction and a multiplication with a precomputed inverse
of the direction. Second, due to the limited precision of floating
point numbers, the stored normal for any non-axis-aligned plane
will always slightly deviate from the actual “correct” plane equation;
thus we cannot use the computed distance value directly, but have to
assume that all distances within epsilon distance of the plane could
reside on either side and so should traverse both nodes. Primarily
because of the two dot products and the division, a BSP traversal
test is significantly more costly; in our implementation, profiling
shows the BSP traversal is roughly 1.75× slower than the kd-tree
traversal. We thus use a hybrid approach where axis-aligned splits
can still use the faster kd-tree style traversal.

The initial ray segment is still computed by clipping the ray
with the original axis-aligned bounding box, exactly as with kd-
trees. Though we could in theory use an arbitrary or more complex
bounding volume, such as in the RBSP, we use the bounding box for
reasons of simplicity. This has the added advantage that it provides
a very fast rejection test for rays that completely miss the model.

4.2 Packet-Traversal
While we are primarily interested in single-ray traversal, as a proof
of concept we have also implemented a SIMD packet traversal
variant. While for single-ray traversal the BSP and kd-tree traversals
are nearly identical except for the distance computation, the packet
traversal has a few significant differences. In particular, for kd-tree



traversal one usually assumes that packets have the same direction
signs, and split packets with non-matching signs into different sub-
packets. Packets must have rays with matching direction signs so
that the signs of the first ray can then be used to determine the
traversal order of any given kd-tree node — since kd-tree planes are
axis-aligned, once all rays in a packet have the same direction signs
they will all have the same traversal order.

Since BSP planes can be arbitrarily oriented, this method of
guaranteeing that a packet will always have the same traversal order
no longer applies. Thus, traversal order must be handled explicitly in
the traversal loop, including the potential case that different rays in
a packet might disagree on the traversal order. For arbitrary packets,
this would actually require us to be able to split packets during
traversal. We avoid this by currently considering only packets with
common origin, in which case one can again determine a unique
traversal order per packet based on which side of the plane the
origin lies. This test is actually the same as the one proposed by
Havran for single-ray traversal [6], except in packetized form. The
resulting logic is slightly more complicated than the “same direction
signs” variant, but the overhead is small compared to the more costly
distance test, and it is independent of the orientation of the plane.

Since currently all our packets do have a common origin, the
current implementation is sufficient for our purposes (the kd-tree
code is optimized for common origins, too), but for practical appli-
cations this limitation would need to be addressed, perhaps by using
Reshetov’s omnidirectional kd-tree traversal algorithm [15].

4.3 Traversal Based Triangle Intersection
Since the BSP is able to perfectly bound most triangles and performs
ray-plane intersection tests at each traversal, we are able to do ray-
triangle intersection tests in the BSP for very little extra cost. This
requires a small amount of extra bookkeeping during traversal, but
by the time a ray reaches a leaf the hit point can be found for free.
We accomplish this by storing into each leaf node a flag for whether
the node can use traversal based intersection and the depth of the
splitting plane that corresponded to the triangle face. These values
can be stored into the node without using any extra space. During
traversal we keep track of the current tree depth and the depth of
the current near and far planes. With this we are able to determine
whether the triangle lies on the near or far plane, and if so, we get
the hit point for free from the already computed ray-plane hit points
used in the standard BSP/kd-tree traversal. This removes the need
for most explicit ray-triangle intersection tests.

4.4 Data Structure
Optimized kd-trees generally use an 8 byte data structure where 2
bits specify the plane normal (essentially the axis), 1 bit for a flag
specifying whether the node is internal or leaf, and 29 bits specify the
index of the child nodes in the case of internal nodes, or the number
of primitives in the case of leaf nodes. The remaining 4 bytes give
the floating point normal offset. The BSP node is essentially the
same, except that we must store 3 floats for the full plane normal.
The data required by the traversal based triangle intersection is only
needed by the leaf nodes, so we can easily store that in the 12 bytes
used the by normals in the internal nodes. BSP nodes therefore
require 20 bytes per node. The total storage requirements can be
computed by multiplying the number of nodes by 20 bytes.

5 RESULTS

Measurements were taken on a dual 2 Ghz clovertown (8 cores total).
Build times are using a single core and render times using all 8 cores.
We render both ray cast images using only primary rays with no
shadows or other secondary rays, and simple brute force Kajiya style
path traced images with multiple bounces off of lambertian surfaces.
The ray casting lets us test very coherent packets, in contrast to
the path tracing which exhibit extremely incoherent secondary ray

packets. Using an optimized path tracer might result in faster render
times, but it would not affect how the BSP compares with other
acceleration structures.

We compare the BSP against an optimized kd-tree acceleration
structure built using the O(n log2 n) SAH with triangle clipping,
and against the highly optimized SAH interval arithmetic (IA) BVH
from [21]. Both the BSP and kd-tree can traverse rays in either single
ray traversal or using SIMD packet traversal, but it cannot switch
between the two during traversal. Unlike Reshetov’s MLRTA [16],
neither our BSP nor our kd-tree use frustum traversal or entry point
traversal. Were they to do so, it is expected that the kd-tree would be
faster than the BVH [21], and those techniques could also be applied
to BSP traversal. The BVH always uses interval arithmetic traversal
with SIMD packets, with the traversal performance often gracefully
degenerating to single ray BVH performance for incoherent packets.

We use a variety of scenes (Figures 1 and 2) for our tests, some
of which were chosen because they highlight the BSP’s strengths
and others because they highlight the kd-tree’s strengths. Section 9
of the UNC power plant and the UC Berkeley Soda Hall show how
real scenes can contain many non-axis-aligned triangles for which
the BSP is able to significantly outperform competing acceleration
structures, in this case, by up to 3×.

The conference room was chosen as an example of a scene for
which axis-aligned acceleration structures excel since many of the
triangles are axis-aligned. As expected, the BSP does not show a
strong advantage over other structures, however it still proves to
be slightly faster than the kd-tree since most of the tree ends up
using kd-tree nodes and near the leaves the BSP is able to further
split triangles whereas the kd-tree and BVH would normally have
stopped and created leaves containing multiple triangles.

The Stanford bunny is a traditional example of a character mesh.
It is a well behaved scene that doesn’t favor any particular accel-
eration structure since most triangles are of similar size, not axis-
aligned, and not long and skinny. Note that the BVH does better than
the BSP and kd-tree at path tracing the bunny because the average
ray packet is still coherent because most secondary rays will im-
mediately hit the background and terminate. For enclosed (indoor)
scenes, rays can bounce around multiple times and therefore impact
the overall time more than the primary rays.

The pickup truck used for bullet ray vision by Butler and
Stephens [2] is a good example for where the expensive BSP build
cost is computed once in a preprocess and then easily offset by
having a faster interactive visualization. While the bullet vision
paper used a more complicated material to determine the amount of
transparency, we use a fixed value for the transparency for these tests.
However this does not affect the overall results when comparing
acceleration structures.

As a stress case for other axis-aligned structures, and to showcase
the abilities of the BSP, we compare against a non-axis-aligned
cylinder tessellated with many long skinny triangles. While this
is clearly not realistic and strongly favors the BSP, it does help to
illustrate the strengths the BSP has over other acceleration structures,
and helps to explain why the BSP can outperform other acceleration
structures.

Impressively enough in all the scenes with secondary rays, with
the exception of the bunny, the single ray BSP is able to outperform
all other acceleration structures including the SIMD packetized IA
BVH acceleration structure. In the bunny scene the BSP is able to
outperform only the kd-tree. The single ray BSP is always faster
than the single ray kd-tree and the SIMD BSP is usually as fast or
faster than the SIMD kd-tree.

The ray packet improvements for the BSP over the kd-tree are not
as pronounced as the single ray improvements because ray packets
benefit less from having triangles completely subdivided into sepa-
rate nodes. This is because the ray packet will often be larger than
the individual triangles.



Figure 2: Ray cast cylinder (596 tri) and transparent pickup truck (183k tri), rendered 26× and 1.3× faster than the single ray kd-tree. Path traced
bunny (69k), and section 9 of the UNC powerplant (122k) outperform the kd-tree by 1.2× and 2.4×.

Single Ray SIMD Ray Packet
BSP-orig BSP BSP-tri kd-tree BSP kd-tree BVH

Path Traced (frames per minute)
bunny 0.874 0.954 0.963 0.796 - - 1.306
conf 0.296 0.347 0.358 0.333 - - 0.218
soda room 0.233 0.349 0.363 0.314 - - 0.171
soda art 0.217 0.236 0.250 0.102 - - 0.116
soda stairs 0.170 0.224 0.242 0.188 - - 0.084
pplant9 1.51 1.74 1.76 0.731 - - 1.111
Ray Traced (frames per second)
cylinder 22.0 21.9 23.0 0.868 49.2 5.73 5.28
bunny 12.2 13.3 13.7 11.2 20.2 22.6 38.0
truck 2.46 2.75 2.80 2.19 - - 1.87
conf 8.87 10.9 11.6 10.3 26.2 25.7 31.9
soda room 4.17 7.43 7.6 6.33 23.7 21.9 25.0
soda art 6.09 9.06 9.7 4.01 30.6 16.9 26.0
soda stairs 6.47 8.07 8.7 4.79 25.8 17.3 11.6
pplant9 13.3 16.1 16.4 4.95 33.8 19.2 17.8

Table 1: Frame rate for rendering the 1024spp 512x512 path traced
scenes and the 1024x1024 ray cast scenes. BSP-orig is the BSP
without the kd-tree node optimization and BSP-tri is the BSP with
traversal based intersection.

In order to measure how including kd-tree nodes in the BSP
improves performance, we also compare our BSP with a BSP that
uses only general splitting planes and is built using a standard SAH;
we refer to this as BSP-orig. BSP-orig is still novel since we are
not aware of any general BSPs that are built with the SAH, and it
still performs better than the kd-tree for some scenes. However, we
do not advocate using it since the optimized BSP we present in this
paper is almost always faster, easy to implement, and the trees are
not much larger in size.

5.1 Statistical Comparison

From Table 2 we see that the BSP uses roughly as many traversal
steps as the kd-tree, with a fraction of those traversals going through
the more expensive BSP nodes. For this reason, the BSP will usually
take roughly as much, to slightly more time traversing than the kd-
tree. However, the advantage of the BSP is that it performs many
times less triangle intersections. Unfortunately, for scenes that a kd-
tree does well on, such as the conference room, the possible speedup
that the BSP can achieve over the kd-tree is limited since the kd-tree
only spends about 30% of the time intersecting triangles and roughly
55% of the time traversing nodes. Amdahl’s law thus states that even
if we eliminated the intersection cost completely without slowing
down the traversal, the overall speedup would only be 1.4×. We
reduced the number of triangle intersections by 4×, which would

have resulted in a 1.3× speedup if the traversal cost stayed the
same. However, instead the traversal cost also went slightly up so
in the end we got a 1.1× speedup. This means the BSP cannot be
significantly faster than the kd-tree unless it is also able to do many
fewer traversals or the cost of a BSP traversal went down. Since
our BSP is already very close to the minimum number of triangle
intersections (even fewer with traversal-based intersection), a higher
quality build, for instance from testing O(n3) possible splitting
planes at each node, would only be able to significantly improve
performance by reducing the number of traversals. However, for
certain scenes or viewpoints, for instance the soda hall art or section
9 of the power plant, the amount of time the kd-tree spends on
triangle intersections becomes quite high (two orders of magnitude
in these examples) and for these situations the BSP can offer very
significant improvements; this is where the BSP is truly superior.

Increasing Ci will result in more aggressive splits which ends up
further reducing the number of triangle intersections, at the expense
of more node traversals. When not performing traversal-based inter-
sections, this causes a slight negative performance hit. Overall, the
traversal-based intersection performs better since more triangles end
up being tightly bound by splitting planes. The results presented in
this paper are all using the lower intersection cost to build the BSP
tree.

Table 2 shows that the BSP-orig is able to perform fewer triangle
tests than the optimized BSP and often performs less total traver-
sal steps. However, since all those traversal steps are done using
the more expensive BSP traversals, the actual render time ends up
increasing as seen in Table 1.

Table 3 shows that the BSP is able to subdivide most triangles
into individual leaves. Contrast this with the kd-tree build for the
conference room which has 13 leaves with more than 100 triangles
and about 100K nodes with more than four triangles, and roughly as
many nodes with one triangle as with two or three triangles. Another
interesting point is that while the majority of nodes in the BSP tree
use general BSP nodes, Table 2 shows that most of the nodes actually
visited during traversal use the kd-tree style node. This is explained
by noting that most kd-tree nodes are higher up in the tree where
they are more likely to be visited, while the BSP nodes are usually
found near the leafs.

5.2 Absolute Performance Comparison

The BSP should always be roughly as fast or faster than the kd-tree
since the BSP can use kd-tree style traversal. Compared to the IA
BVH, the BSP tends to be faster only for non-coherent rays, as
evident in the path traced benchmarks, and for scenes with many
non-axis-aligned triangles. Performing the triangle intersection as
part of the BSP traversal will result in performance improvements
if most rays are intersecting triangles (indoor scenes or closeups of
polygonal characters).



cylinder pplant9 conf bunny truck sodahall
596 122K 283K 69K 183K 2.14M

BSP / kd BSP / kd BSP / kd BSP / kd BSP / kd BSP / kd
build time 9.2s / 0.24s 36m / 29.2s 112m / 1.2m 19m / 14.3s 65m / 46s 23.6h / 6.3m
max tree depth 26 / 33 48 / 75 47 / 89 33 / 59 44 / 135 60 / 108
# nodes 15K / 13K 3386K / 1645K 9246K / 3921K 1470K / 988K 3363K / 2870K 28.9M / 27.9M
% kd-tree nodes 15% / 100% 37% / 100% 21% / 100% 27% / 100% 27% / 100% 31% / 100%
leaf (0 tris) 3.3K / 3.7K 734K / 181K 2128K / 746K 423K / 250K 774K / 376K 6.73M / 3.36M
leaf (1 tri) 3.9K / 412 783K / 171K 2196K / 279K 309K / 24K 713K / 277K 6.41M / 2.29M
leaf (2 tris) 142 / 333 125K / 264K 275K / 383K 3.3K / 158K 176K / 440K 1.13M / 5.29M
leaf (3 tris) 30 / 1.2K 45K / 130K 21K / 333K 107 / 51K 15K / 217K 130K / 2.39M
leaf (4 tris) 0 / 131 3.5K / 41K 3.1K / 108K 2 / 9.6K 3.0K / 73K 20K / 403K
leaf (> 4 tris) 0 / 603 3.7K / 36K 493 / 111K 0 / 905 618 / 52K 8.7K / 209K
max tris in leaf 3 / 301 17 / 64 8 / 101 4 / 7 20 / 119 600 / 600

Table 3: Build statistics.

In the path traced bunny many primary rays miss the bunny,
and of those that do hit the bunny, most cast new rays that hit the
background. As such, the ray packets are much more coherent than
in interior path traced scenes, such as in the conference scene, and
so the IA BVH is able to outperform the BSP.

In Figure 3 we compare the per pixel rendering time when per-
forming just ray casting. In the first two columns, each pixel intensity
corresponds to the amount of time taken to render that pixel when
using a kd-tree and a BSP. The third column is the normalized dif-
ference of the first two columns, with white corresponding to the
kd-tree taking longer and red with the BSP. In the power plant, soda
hall, and cylinder scenes, the BSP clearly performs much better
than the kd-tree due to the kd-tree not being able to handle the long
skinny non-axis-aligned triangles. The brightened silhouettes on the
bunny comparison shows how the BSP is able to quickly get a tight
bound over the mesh. The BSP shows much less variation in render
time compared to the kd-tree which has substantial variation with
some regions of the scene clearly showing “hot-spots” where the
kd-tree breaks down.

If we position the camera on one of these hot-spots (white pixels),
the BSP will have a much bigger advantage. For instance, even
though for the camera view we used in the conference room the
BSP is only slightly faster than the kd-tree, the BSP can get an order
of magnitude improvement over the kd-tree simply by moving the
camera to look at just the chair arms. The same principle applies to
all the other scenes.

5.3 Build Time and Build Efficiency
The complexity of our BSP build algorithm for well behaved scenes
is sub-quadratic. From experimental observation it appears to be
around O(n log2 n), which makes the complexity fairly close to that
of kd-trees which can currently be built in O(n logn). But the BSP
is still almost 2 orders of magnitude slower. This is mainly due
to the large cost in calculating the surface area of a node. Since
the focus of this paper is not on fast builds, the BSP builder is left
unoptimized.

These build times are clearly non-interactive and are only useful
as a preprocess. However, note that the full quality kd-tree build is
also still non-interactive. The O(n logn) kd-tree build from Wald and
Havran [22] is 2 – 3× faster than our O(n log2 n) kd-tree build, but
also still a couple orders of magnitude too slow for interactive builds.
In order to get interactive kd-tree and BVH builds, the tree quality
must suffer. For coherent packet tracing, tree quality near the leaves
is not as important since the packets are often as large as each node,
and so using a lower quality approximate build will often result in
only a slight increase in intersection tests. However, for incoherent
packets where each ray intersects different primitives, the faster
approximate builds will result in a very noticeable performance
penalty as rays perform many more unneeded intersection tests.

6 SUMMARY AND DISCUSSION

We have shown that a general BSP is as good or better than a kd-tree
if build time can be ignored. For scenes with non-coherent rays or
with many long non-axis-aligned triangles, the single ray BSP is even
able to outperform the packetized SIMD IA-BVH. Furthermore, the
BSP is able to handle difficult scenes that other axis-aligned based
acceleration structures break down on. Even though the complexities
of kd-trees and BSPs are roughly the same, in practice, the BSP tree
allows for fewer triangle-ray intersection tests with only a minimal
increase in the traversal cost. The complexity of our current SAH
build is sub-quadratic, like the kd-tree, but it has a rather large
constant term due to the expensive computation of the surface area
formed by the intersection of half-spaces, which leads to slow build
performance. However, there are still many ways to improve the
build performance and we expect the BSP build to easily become
much faster than it is currently. Furthermore, as interactive ray
tracing begins to focus more on incoherent secondary rays, the
fast approximate interactive builds will not perform as well and
so for static scenes, slower but full quality builds will once again
be required. If the tree will be built offline as a preprocess, then
spending an hour instead of a minute in exchange for more consistent
frame rates with no trouble hot-spots can be a very worthwhile trade-
off for certain applications. Clearly, the BSP is currently not suitable
in situations where fast build times are required.

Numerical precision issues cause problems in the build. During
rendering, these precision issues can be easily handled by using an
epsilon test when doing a standard check for whether a ray-plane
intersection occurs on the near or far plane. This adds a negligible
two additional addition instructions and occasionally result in a few
extra unneeded traversals, but rendering quality is not affected.

In all of our tests, the BSP tree was always the fastest option for
single ray traversal and is robust to scene geometry, unlike other
acceleration structures which might perform well in some conditions
but poorly in others. Looking at the time visualizations from Figure 3
we saw that many scenes exhibit hot-spots when rendered with the
kd-tree, but not with the BSP. If the user were to by chance zoom
into one of these hot spots, the frame rate could go down by an order
of magnitude as in the soda hall, cylinder and conference room chair
arm examples. In some applications this is unacceptable and the
expensive BSP build would be fully justified, especially when used
as a one-time preprocess.

6.1 Future Work
Our implementation does not make use of frustum/IA-based traversal
present in the fastest acceleration structures. While this might be fine
when there is low ray coherence, such as in path tracing, for primary
rays this can sometimes make up to an order of magnitude difference
in performance [16, 21, 23]. Extending Reshetov’s MLRTA from kd-
trees to BSPs would likely be the best method. Another optimization



would be to dynamically use the packetized traversal for coherent
packets and single ray traversal for incoherent packets. This would
allow the BSP (and the kd-tree) to traverse the primary rays much
faster. This would likely remove the advantage the BVH had in
some scenes that were predominately primary rays, such as the path
traced bunny.

We would also like to improve the build performance. This can
be done in many ways. Optimizing the surface area calculation and
parallelizing the build are two obvious options and would likely
result in substantial speedups over our non-optimized code. Ran-
domly testing only a subset of the possible splitting planes would
trade build quality for build speed. Handling axis-aligned splits with
a traditional kd-tree build should give a significant improvement,
especially since many of the kd-tree nodes are near the top of the
tree where nodes have more splitting plane candidates and so are
more expensive. Since the top of the tree consists mainly of kd-tree
nodes, we could also only use a kd-tree build for the top of the tree
and switch over to general splits when there are less than a certain
number of triangles in a node or if performing a kd-tree split results
in a small improvement to the SAH cost.

Improving the selection of splitting planes could allow for further
improvements in tree quality. For instance, when using a triangle
edge as the split location, we set the plane normal to be orthogonal to
the edge and triangle normal. This is an arbitrary decision and will
not always result in an optimal split. For instance, if two triangles
share an edge and form an acute angle, the splitting plane on that
edge will place both triangles on the same side, which might not be
desirable. Likewise, if all the triangles are axis-aligned, but form
diagonal lines through stair-stepping, then the optimal split will be
those that are tangent to as many triangles as possible.

Our heuristic for combing CBSP and Ckd-tree is an improvement
over the standard SAH, but it is likely that an even better heuristic
exists that would further result in performance improvements.

Extending this to handle more expensive primitives, such as spline
patches could result in substantial improvements since minimizing
the number of ray-patch intersection tests would make a noticeable
difference. The only required modification would be in choosing
the candidate splitting planes and in removing the traversal based
triangle intersection. One possible way to select the planes would
be to use the axis-aligned planes that make up the bounding box as
well as randomly selecting planes that are tangent to the patch.

7 ACKNOWLEDGMENTS

We would like to thank Peter Shirley for his insightful advice. The
truck model is courtesy of the US Army Research Laboratory, and
the bunny comes from the Stanford 3D Scanning Repository.

REFERENCES

[1] Sigal Ar, Gil Montag, and Ayellet Tal. Deferred, Self-Organizing BSP
Trees. Computer Graphics Forum, 21(3):269–278, 2002.

[2] Lee Butler and Abe Stephens. Bullet Ray Vision. In Proceedings of
the 2007 IEEE/Eurographics Symposium on Interactive Ray Tracing,
pages 167–170, 2007.

[3] M. de Berg. Linear Size Binary Space Partitions for Fat Objects.
Proceedings of the Third Annual European Symposium on Algorithms,
pages 252–263, 1995.

[4] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface
generation by a priori tree structures. SIGGRAPH Comput. Graph.,
14(3):124–133, 1980.

[5] Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hi-
erarchies for Ray Tracing. IEEE Computer Graphics and Applications,
7(5):14–20, 1987.

[6] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Fac-
ulty of Electrical Engineering, Czech Technical University in Prague,
2001.

[7] Vlastimil Havran and Jirı́ Bittner. On Improving Kd Tree for Ray
Shooting. In Proceedings of WSCG, pages 209–216, 2002.

[8] Vlastimil Havran, Tomas Kopal, Jiri Bittner, and Jiri Žára. Fast robust
BSP tree traversal algorithm for ray tracing. Journal of Graphics Tools,
2(4):15–23, 1998.

[9] Warren Hunt, Gordon Stoll, and William Mark. Fast kd-tree Construc-
tion with an Adaptive Error-Bounded Heuristic. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing, 2006.

[10] Ravi P. Kammaje and Benjamin Mora. A study of restricted BSP
trees for ray tracing. In Proceedings of the 2007 IEEE/Eurographics
Symposium on Interactive Ray Tracing, pages 55–62, 2007.

[11] Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh
Manocha. RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, pages 39–45, 2006.

[12] J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 6(6):153–65, 1990.

[13] Michael S. Paterson and F. Frances Yao. Efficient binary space par-
titions for hidden-surface removal and solid modeling. Discrete and
Computational Geometry, 5(1):485–503, 1990.

[14] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp
Slusallek. Experiences with Streaming Construction of SAH KD-
Trees. In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing, 2006.

[15] Alexander Reshetov. Omnidirectional ray tracing traversal algorithm
for kd-trees. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, pages 57–60, 2006.

[16] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level
Ray Tracing Algorithm. ACM Transaction on Graphics, 24(3):1176–
1185, 2005. (Proceedings of ACM SIGGRAPH 2005).

[17] Gordon Stoll, William R. Mark, Peter Djeu, Rui Wang, and Ikrima
Elhassan. Razor: An Architecture for Dynamic Multiresolution Ray
Tracing. Technical Report 06-21, University of Texas at Austin Dep.
of Comp. Science, 2006.

[18] Kelvin Sung and Peter Shirley. Ray Tracing with the BSP Tree. In
David Kirk, editor, Graphics Gems III, pages 271—274. Academic
Press, 1992.

[19] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[20] Ingo Wald. On fast Construction of SAH-based Bounding Volume Hi-
erarchies. In Proceedings of the 2007 IEEE/Eurographics Symposium
on Interactive Ray Tracing, pages 33–40, 2007.

[21] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies. ACM
Transactions on Graphics, 26(1):1–18, 2007.

[22] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray
tracing, and on doing that in O(N log N). In Proceedings of the 2006
IEEE Symposium on Interactive Ray Tracing, pages 61–70, 2006.

[23] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G.
Parker. Ray Tracing Animated Scenes using Coherent Grid Traversal.
ACM Transactions on Graphics, 25(3):485–493, 2006. (Proceedings
of ACM SIGGRAPH).



Ray-Triangle Tests Node Traversals
standard traversal-based BSP kd-tree

raycast bunny
BSP-orig 0.07 0.40 21.6 -
BSP 0.11 0.36 5.8 18.4
kd-tree 2.3 - - 27.8

path traced bunny
BSP-orig 0.26 0.28 30.2 -
BSP 0.32 0.26 8.3 25.1
kd-tree 4.6 - - 36.8

raycast conference
BSP-orig 0.77 0.52 32.8 -
BSP 0.82 0.52 3.2 31.8
kd-tree 3.5 - - 33.5

pathtraced conference
BSP-orig 0.87 0.35 29.0 -
BSP 0.98 0.35 2.9 25.5
kd-tree 4.2 - - 29.2

raycast power plant 9
BSP-orig 0.04 0.24 23.3 -
BSP 0.09 0.21 4.9 19.9
kd-tree 18.5 - - 25.7

path traced power plant 9
BSP-orig 0.11 0.18 24.4 -
BSP 0.12 0.17 5.1 20.8
kd-tree 17.5 - - 26.6

raycast cylinder
BSP-orig 0.07 0.33 10.9 -
BSP 0.08 0.34 8.6 3.1
kd-tree 182.4 - - 15.2

truck
BSP-orig 1.4 0.40 27.4 -
BSP 1.4 0.45 7.1 22.3
kd-tree 7.5 - - 26.5

raycast sodahall stairs
BSP-orig 0.12 0.95 48.1 -
BSP 0.18 0.91 8.5 42.8
kd-tree 13.7 - - 58.6

path traced sodahall stairs
BSP-orig 0.24 0.57 39.2 -
BSP 0.27 0.57 4.1 33.6
kd-tree 4.9 - - 38.5

raycast sodahall room
BSP-orig 0.26 0.86 75.8 -
BSP 0.40 0.81 7.7 51.2
kd-tree 5.4 - - 61.9

path traced sodahall room
BSP-orig 0.32 0.51 46.9 -
BSP 0.39 0.48 4.3 36.4
kd-tree 5.9 - - 41.4

raycast sodahall art
BSP-orig 0.17 0.89 52.3 -
BSP 0.14 0.94 4.0 42.9
kd-tree 20.6 - - 41.8

path traced sodahall art
BSP-orig 0.22 0.70 47.4 -
BSP 0.31 0.69 8.6 43.2
kd-tree 44.4 - - 37.2

Table 2: Per ray statistics. The total number of ray-triangle tests is
the sum of the expensive standard tests and the very cheap traversal-
based tests. The total number of node traversals is also the sum
of the BSP and kd-tree node traversals. If traversal-based triangle
intersection tests are not used in the BSP, then the number of standard
triangle tests is roughly the sum of the standard tests and the traversal-
based tests mentioned in the table.

kd-tree BSP Difference

C
yl

in
de

r
Tr

uc
k

B
un

ny
Po

w
er

Pl
an

ts
ec

9
C

on
fe

re
nc

e
So

da
H

al
l-

St
ai

rs
So

da
H

al
l-

A
rt

So
da

H
al

l-
R

oo
m

Figure 3: Rendering time comparison (right) of kd-tree (left) with BSP
(middle). The time visualizations are rendered so that increasing
intensity corresponds to increased rendering time for the pixel. The
time comparisons are the normalized differences of the BSP and
kd-tree timings, with white corresponding to the kd-tree being slower
and red with the BSP being slower.


