
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

A Coherent Grid Traversal Approach to Visualizing
Particle-Based Simulation Data

Christiaan P. Gribble, Thiago Ize, Andrew Kensler, Ingo Wald, and Steven G. Parker

Abstract— We present an approach to visualizing particle-
based simulation data using interactive ray tracing, and describe
an algorithmic enhancement that exploits the properties of these
datasets to provide highly interactive performance and reduced
storage requirements. This algorithm for fast packet-based ray
tracing of multi-level grids enables interactive visualization of
large, time-varying datasets with millions of particles and incor-
porates advanced features like soft shadows. We compare the
performance of our approach with two recent particle visualiza-
tion systems: one based on an optimized single ray grid traversal
algorithm, the other on programmable graphics hardware. This
comparison demonstrates that the new algorithm offers an
attractive alternative for interactive particle visualization.

Index Terms— Particle visualization, interactive ray tracing,
coherent grid traversal, large and time-varying particle datasets

I. INTRODUCTION

PARTICLE methods are commonly used to simulate com-
plex phenomena in many scientific domains, including

astronomy, biology, chemistry, and physics. Using these tech-
niques, computational scientists model such phenomena as
a system of discrete particles that obey physical laws and
possess certain properties. Particle-based simulation methods
are particularly attractive for problems with high deformations
or complex geometries, and are used to solve time-dependent
problems on scales from the atomic to the cosmological.
Frequently, millions of particles are required to capture the
behavior of a system accurately, leading to large, complex
datasets such as those depicted in Figs. 1 and 2. An effec-
tive visualization method will communicate subtle changes
in the three-dimensional structure, spatial organization, and
qualitative trends within the simulation as it evolves, as well
as enable easier navigation and exploration of the data through
interactivity.

Interactive visualization of particle datasets typically serves
one of three purposes: data analysis, code development, or
generation of publication quality images. First, an interactive
visualization process enables users to identify and explore
the salient features of their data more effectively. Second,
the ability to debug ill-behaved solutions is an obvious, but
important, consequence of highly accessible interactive visu-
alization. Finally, an interactive environment allows a user to
quickly identify optimal views in which each image or frame
of an animation conveys the most pertinent information.

Unfortunately, the size and complexity of typical particle
datasets make interactive visualization a difficult task. Particle

The first author is with the Department of Computer Science at Grove City
College. Mailing address: 100 Campus Drive, Grove City, PA 16127. E-mail
address: cpgribble@gcc.edu. The remaining authors are with the Scientific
Computing and Imaging Institute in the School of Computing, University of
Utah. Mailing address: 50 S Central Campus Drive, MEB 3490, Salt Lake
City, UT 84112. E-mail addresses: {thiago|aek|ingo|sparker}@cs.utah.edu.

Fig. 1. Visualizing particle-based simulation data with efficient ray tracing.
We describe a new algorithm based on coherent grid traversal that efficiently
renders large, time-varying particle-based simulation data at highly interactive
rates. The performance of this approach compares favorably with systems that
represent the current state-of-the-art in particle visualization.

values can be projected to a three-dimensional grid, and
the transformed data can then be visualized using standard
techniques such as direct volume rendering [1] or isosurface
rendering [2]. Grid-based representations of the data are
suitable for some, but not all, particle visualization tasks.
For example, the need to simultaneously visualize both the
large- and small-scale features within the data often make
grid-based representations problematic. Additionally, interpo-
lation may hide features or problems present in the original
particle data [3], while isosurface extraction can be very time-
consuming, particularly for large datasets.

Particle data can also be represented directly by simple
iconic shapes called glyphs. For many applications, a sphere
or an ellipsoid is a natural representation of an individual
particle. Using graphics hardware, particle data can be visu-
alized directly by rendering either highly tessellated spheres
or high quality spherical impostors (textured billboards). Un-
fortunately, tessellating millions of particles often results in
too many triangles to be rendered at interactive rates, and
implementing advanced visualization features such as soft
shadows with impostor-based geometry is non-trivial.

In this paper, we investigate the use of interactive ray tracing
for visualizing large, time-varying particle-based simulation
datasets. We present an efficient algorithm using fast packet-
based ray tracing and multi-level grids. Currently, there are

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Advanced visualization features for particle datasets. Our approach renders datasets with millions of particles at highly interactive rates. The system
also provides run time control of several advanced visualization features, including color mapping, soft shadows, and parameter range culling.

three acceleration structures that support packet-based ray
tracing: kd-trees [4], bounding volume hierarchies (BVHs) [5],
and multi-level grids [6]. We explore the latter for three
reasons: First, the radii of particles within these datasets are
often uniform in size or fall within a well-defined range,
and grids typically perform well for such uniformly sized
primitives. Second, the particles are typically either uniformly
distributed throughout the environment or densely packed with
large regions of empty space between them. While hierarchical
data structures like kd-trees or BVHs often provide supe-
rior performance for scenes with varying primitive density,
a grid can skip completely empty space as fast as these
structures using a macrocell hierarchy [7]. In addition, grids
can be advantageous for densely packed regions and often
provide the best performance. Third, parallel grid construction
algorithms [8] enable these structures to be built on-the-
fly for time-varying datasets, and thus offer the potential
for computational steering within integrated problem solving
environments. In this paper, we introduce optimizations that
exploit the properties of particle-based simulation data to tailor
the coherent grid traversal algorithm [6] for particle datasets,
achieving both improved performance and reduced storage
requirements. While we demonstrate the effectiveness of our
approach using the results of material point method [9], [10]
simulations of structural mechanics problems, our approach is
applicable to particle data from other simulation methods and
other application domains as well.

II. BACKGROUND AND RELATED WORK

Our approach builds upon several existing techniques from
various fields, which we briefly review below.

A. Interactive Particle Visualization

Interactivity encompasses a wide range of activities in the
context of particle visualization. For example, interactive view-
ing and lighting enable investigators to identify and interrogate
specific features within the data more easily. Interactivity also
provides important visual cues from relative motion [11],
[12] and environmental frame of reference [13], while ad-
vanced features such as parameter range culling (discussed in
Section III-D) and color mapping [14] provide opportunities
for additional insights. Using the algorithm we describe in
Section III, each of these activities is under the full control of
a user at run time and can be changed at interactive rates.

In addition to these interaction features, important percep-
tual cues from non-local shading effects are easily integrated
into our algorithm because it is based on ray tracing. For
example, shadows are a well-studied visual cue that provide

important information about shape and relative position [13],
[15]. We use soft shadows from area light sources because
they typically exhibit a smooth transition from shadowed to
unshadowed regions, are less likely to be misinterpreted, and
provide additional visual cues about the relative position of
objects in complex datasets [16], [17]. Using our approach,
investigators are able to interactively control both the size
and position of the light source, as well as the shadow
quality. Recent research has shown that visual cues from
advanced shading models such as physically based diffuse
interreflection can also be beneficial in the context of particle
visualization [18]. Although advanced shading models have
not yet been implemented in this system, they are, in principle,
easily integrated as well.

Finally, parallel grid construction algorithms [8] accommo-
date the time-varying nature of particle datasets in a straight-
forward manner. These datasets are quite large, containing
many millions of particles across tens or hundreds of time
steps. In our approach, grids for time-varying datasets are
constructed on-the-fly, so the user can easily cycle through
all of the time steps at run time. This process accommodates
the changing structure of the data as the simulation evolves,
enabling interaction with millions of particles across the entire
simulation. Moreover, because scientists can interact with the
whole dataset, a clear understanding of the physical state of
each particle, as well as its relationship to the full computa-
tional domain, can be achieved.

Many efforts have explored techniques to render large
numbers of spheres efficiently, from rasterization on massively
parallel processors [19], visualization clusters [20], custom
hardware [21], [22], and programmable graphics hardware [23]
to interactive ray tracing on tightly coupled supercomput-
ers [24]. Additional aspects of particle visualization, including
silhouette enhancement and advanced shading models [18],
[24], [25], have also been investigated.

Two recent systems represent the current state-of-the-art in
interactive particle visualization. On the one hand, interactive
ray tracing on tightly-coupled supercomputing platforms is
used to visualize large, time-varying particle datasets at in-
teractive rates [24]. Unfortunately, the hardware costs of such
a system are often prohibitive and impede accessibility. At
the other extreme, programmable graphics hardware brings
interactive particle visualization to the desktop [23]. Though
such hardware is widely accessible, interactive performance
is constrained by the fill rates of current GPUs, which limits
interaction to datasets with at most a few hundred thousand
particles. In addition, advanced visualization features such as

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

soft shadows are difficult to implement with impostor-based
rendering. In Section III, we present an efficient algorithm for
ray tracing large, time-varying particle datasets at interactive
rates. This approach not only satisfies the requirements of an
effective particle visualization method as outlined in Section I,
but it is more accessible than previous systems that require
expensive hardware and easily incorporates advanced features
that are difficult to implement using current graphics hardware.

B. Interactive Ray Tracing

This work also builds upon recent research concerning inter-
active ray tracing, specifically efficient acceleration structures
for packet-based ray tracing. We extend the coherent grid
traversal (CGT) algorithm [6] to efficiently visualize large
numbers of particles represented by spherical glyphs. We
combine elements of offset surfaces [26], which are commonly
used for collision detection in a wide variety interactive
applications, with the frustum based ray traversal algorithm by
exploiting the properties of particle-based simulation datasets.

In CGT, ray packets are traversed through the grid by
considering vertical slices rather than individual cells. Multiple
cells in each slice are traversed by all of the rays in a packet,
and each ray is tested against all of the objects within a
given cell. Although this approach implies that some rays will
traverse cells they would not have otherwise considered, the
packet is traced as a coherent whole in each step, and no
splitting or merging operations are required (Fig. 3).

Fig. 3. Packet traversal in a grid. In coherent grid traversal, rays step along
vertical slices in the major traversal direction. Rays traverse the grid as a
coherent whole, so no splitting or merging operations are required (left). The
bounding frustum overlaps the same cells as the individual rays, and this
frustum can be used to guide ray traversal (right).

III. COHERENT GRID TRAVERSAL FOR PARTICLE DATA

Our approach to particle visualization is inspired by the
CGT algorithm described above. We use packet-based ray
tracing and multi-level grids to achieve interactive perfor-
mance for large, time-varying particle datasets. Frustum based
traversal achieves lower per-ray cost by amortizing traversal
operations over multiple rays in a packet, and the algorithm
is well-suited to SIMD implementation. Further, advanced
visualization features such as soft shadows are integrated
easily because they can be implemented naturally in a ray
tracing framework. We thus extend the original CGT algorithm
to efficiently visualize large, time-varying particle datasets by
exploiting the properties of particle-based simulation data to
improve performance and reduce storage requirements.

A. The Sphere-Center Method

The CGT algorithm can be optimized for glyph-based
particle visualization by leveraging the fact that all primi-
tives are spheres. In particular, several observations permit

optimizations beyond those employed by the original CGT
algorithm. First, a sphere S with center C and radius r is
symmetric, so determining whether S overlaps a frustum F
is analogous to testing whether C is in the r-neighborhood of
F . Second, testing whether the distance from C to the planes
of F is less than r is the same as testing whether C is inside
another frustum Fr that has been enlarged by r. Thus, if we
traverse the grid using an enlarged frustum, we only need to
intersect those spheres whose centers lie inside that frustum,
and therefore only have to store each sphere at exactly one
location: the cell in which its center is located. We call this
approach the sphere-center method.

Using the enlarged frustum Fr for traversal requires a priori
knowledge of r, a value that (potentially) varies with each
sphere. However, for our application, the radii are either
uniform or lie within some small range, so the maximum
radius rmax across all particles can be used to generate the
enlarged frustum Fr. Using this value, the distance each plane
must be shifted is given by:

s = rmax

√
1+dU2

where dU is direction vector of the given plane’s normal
(Fig. 4). Thus, the enlarged frustum can be computed in just
five SIMD operations: three additions, two multiplies, and a
single square root. The near and far planes of the frustum must
be shifted by rmax as well, and the early ray termination criteria
must be adjusted to accommodate potentially intersecting
spheres whose centers lie in the next slice.

Fig. 4. Shifting the bounding planes. We observe that testing whether a
sphere of radius r intersects a bounding frustum (red) is equivalent to testing
whether a frustum enlarged by rmax (blue) contains the center of the sphere.

In a traditional grid, primitives often overlap multiple cells,
which results in redundant computation and storage, as well
as additional levels of indirection. A mailbox structure [27]
can be used to avoid redundant intersection computation, but
requires additional storage and computation and may not be ef-
fective for primitives with inexpensive ray intersection routines
such as spheres or triangles. While reordering techniques [28]
can be used to minimize the overhead introduced by pointer
indirection, the cost of this process means that reordering is
not well-suited to acceleration structures that are built on-the-
fly during rendering.

The sphere-center method avoids these problems. The
sphere-center method obviates the need for mailboxes: spheres
are stored in exactly one grid cell, and will be intersected no
more than once during traversal. In addition, data duplication
is never required because the primitives are stored directly in

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

the grid, and the center of each sphere is guaranteed to lie
in exactly one cell. As a consequence, locality of reference
for spatially local primitives is improved without an explicit
sorting or data reorganization process.

The sphere-center method is motivated by observations
similar to those motivating so-called offset surfaces, which are
often used for collision detection in interactive applications
such as video games [26]. In this case, the collision of an
object with its environment can be computed quickly by
offsetting the geometry of the environment according to the
dimensions of the object. The object is then represented by a
point, and a line captures the motion of the object through the
environment. A simple line segment check can then be used
to detect a collision between the object and the environment.
In a similar manner, the sphere-center method permits a
simplified representation of the objects (in our case, spheres)
by offsetting the frustum that guides ray traversal through
the grid. However, the sphere-center method is used as a ray
tracing acceleration technique; our algorithm combines these
observations with fast, packet-based grid traversal to reduce
memory requirements and improve interactive performance.

B. Grid Organization

The organization and design of our multi-level grid follows
that of a typical hierarchical structure. Primitives are stored
at the finest level of the grid, the resolution of which is
determined such that the number of cells is a multiple of the
total number of particles N, denoted by λ . Cubically shaped
cells minimize surface area with respect to volume, and thus
reduce the expected cost of traversal, so the resolution of the
grid is given by:

Nx = dx
3

√
λN
V

,Ny = dy
3

√
λN
V

,Nz = dz
3

√
λN
V

,

where ~d is the diagonal and V the volume of the grid.
Once the grid resolution has been determined, the data

associated with each particle are inserted directly into the
appropriate grid cells. To facilitate efficient insertion, culling,
and ray/sphere intersection tests, these values are stored in
two consecutive 16-byte aligned SIMD variables (Fig. 5). The
position and radius (x, y, z, and r) are stored in the first
SIMD variable, while up to four scalar properties from the
simulation (v0, v1, v2, and v3) are stored in the second. As will
be discussed in Section III-D, these values allow investigators
to isolate particles with properties falling within some range
of interest, a technique we call parameter range culling.

Fig. 5. Data layout for the new CGT algorithm. The data associated with
each sphere are stored in two consecutive SIMD variables, which facilitates
efficient insertion, culling, and ray/sphere intersection tests.

To facilitate a more efficient traversal, the grid is organized
hierarchically. Hierarchical grids typically divide densely pop-
ulated regions of space more finely than empty regions. There
are several ways to accomplish this task [7], [29]–[31], and we
leverage the macrocell hierarchy described by Parker et al. [7].

Each level in this hierarchy imposes a coarser grid over
the previous level, and each macrocell corresponds to an
M×M×M block of cells in the underlying level. In the current
implementation, we use a simple two-level hierarchy: one level
of macrocells imposed on top of the actual grid.

To support run time parameter range culling, the macrocell
hierarchy differs from the one used in the original CGT
algorithm and more closely resembles one used in interactive
volume visualization applications [7]. In particular, a macro-
cell must store the minimum and maximum values of each
parameter across all of the particles it contains, rather than
a Boolean flag indicating indicating an empty or non-empty
condition.

We use the sort-middle construction algorithm described
by Ize et al. [8] to quickly rebuild the grid in each frame
for time-varying datasets. In this approach, the construction-
related tasks corresponding to disjoint sections of the grid
are statically distributed among all of the threads in the
system. The sort-middle insertion essentially performs a coarse
parallel bucket sort of the particles by their cell locations,
and each thread inserts the particles in its set of buckets into
the appropriate grid cells. The regions corresponding to each
bucket are disjoint, so each thread inserts its particles into
different parts of the grid. Write conflicts are thus avoided, and
mutexes or other synchronization primitives are not necessary.

C. SIMD Sphere/Frustum Culling

Mailboxes and fast SIMD frustum culling are critical com-
ponents of the original CGT algorithm. These operations are
typically much faster than packet/primitive intersection tests,
the cost of which is linear in the number of rays in each packet.
While the sphere-center method described in Section III-A
prevents redundant intersection tests and alleviates the need
for mailboxes, we use frustum culling to prevent unnecessary
ray/sphere intersection tests and further improve performance.

The two sources of potentially unnecessary intersection tests
with our approach are illustrated in Fig. 6. First, a sphere may
lie within a cell through which the enlarged frustum passes, but
the sphere does not overlap either the enlarged or the original
frustum. Second, the radius of a given sphere may be smaller
than the maximum radius rmax used to compute the enlarged
frustum, again implying a potential intersection when there
is actually no overlap. We use frustum culling to efficiently
reject non-overlapping spheres.

Fig. 6. Avoiding unnecessary ray/sphere intersection tests. Even if a sphere
lies within a cell through which the enlarged frustum passes, the sphere may
not overlap either the original or the enlarged frustum (left). Additionally,
a sphere whose radius is less than rmax may overlap the enlarged frustum,
but not the original one (right). SIMD sphere/frustum culling detects these
situations and discards the spheres.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 7. Run time parameter range culling. Using parameter range culling,
particles representing the bone and internal tissues within the BulletTorso
dataset (top) and only those representing the alloy container in the Thunder
dataset (bottom) have been isolated. Parameter range culling puts the range
of valid parameter values used during visualization under the full control of
the user at run time, and these values can be changed interactively.

The original CGT algorithm employs SIMD shaft
culling [32] to prevent unnecessary intersection tests by
quickly discarding triangles that lie outside the current bound-
ing frustum, but this technique works only for primitives that
possess planar edges. Fortunately, a much simpler test can be
used to quickly cull spheres and avoid unnecessary intersection
tests: if the signed distance from the center of a given sphere
to any of the planes of the bounding frustum is greater than the
radius of the sphere, the rays bounded by the frustum cannot
intersect the sphere.

D. Run Time Parameter Range Culling

To gain additional insight into the behavior of a simulation,
investigators may isolate particle subsets with parameters that
take on a particular value or that lie within some range of
values (Fig. 7). Particles whose range of values do not overlap
the currently valid range must be culled.

Parameter range culling is first applied to large groups
of particles via the macrocell hierarchy. The minimum and
maximum parameter values stored in each macrocell are used
during traversal to determine whether or not any spheres within
a macrocell will potentially produce a valid intersection. The
cost of the range checking operations becomes trivial when
amortized over the number of particles contained within a
typical macrocell, and is significantly less than the cost of the
ray/sphere intersection tests that would otherwise be required
for each of the particles within a macrocell.

When the values of at least one particle lie within the
currently valid range, the macrocell cannot be skipped and pa-
rameter range culling must be applied at the level of individual
particles. We ensure that each particle lies within the currently
valid range before actually performing the intersection test.

E. Soft Shadows

As discussed in Section II-A, shadows provide important
visual cues about the relative position of objects in complex
datasets. Soft shadows are preferable to hard shadows because
the smooth transition from shadowed to unshadowed regions
is less likely to be misinterpreted as a discontinuity in the
underlying data. Although shadows and other global effects are
difficult to implement in rasterization systems using impostor-
based geometry, these effects are easily integrated into our
approach because it is based on ray tracing.

In particular, packets of coherent shadow rays can be gener-
ated by connecting the hit point of each primary ray to multiple
samples on an area light source. Thus, the shadow rays share
a common origin and can be traversed in a manner identical
to that used for primary ray packets. With this approach, both
the number of shadow rays and the size of the light source can
be controlled interactively by the user, enabling performance-
for-quality trade-offs.

IV. RESULTS

We evaluate the performance of the new CGT algorithm
using several particle datasets of varying sizes and complexity
with a working implementation. The pertinent characteristics
of these datasets and the viewpoints used during testing are
given in Table I. We first discuss the impact of the various
parameters and optimizations in the new algorithm, and then
compare the performance of our approach with other state-of-
the-art particle visualization systems. Unless stated otherwise,
the results were gathered by rendering 1024× 1024 images
using an Opteron machine with eight 2.4 GHz dual-core
processors and 64 GB of physical memory.

A. Impact of Grid and Packet Resolution

Like the original CGT algorithm, the performance of our
approach is governed by four parameters: grid resolution,
macrocell resolution, ray packet size, and image resolution. As
described in Section III-B, the grid resolution is determined
using λ , a parameter that relates the number of cells in the grid
to the total number of particles. However, unlike the original
CGT algorithm, in which most scenes were largely insensitive
to the value of λ , the performance of the new algorithm
varies widely with different values of λ . This difference is
a result of the extremely large number of particles in the test
datasets. Testing several values in the range [0.2,5] shows that
λ = 1 provides the best performance for all of the datasets
we use. Further testing shows that a macrocell resolution of
6 × 6 × 6 yields reasonable performance for these datasets.
Although tuning the parameters for each dataset may yield
slight performance gains, we use these parameter values for
all of the tests reported in this section.

Ray packet size has a significant impact on interactive
performance. For a given packet size, the cost of a traversal
step is constant while the cost of intersecting the cells in a
given slice increases with the number of cells the frustum
overlaps. The frustum bounding a small ray packet will overlap
fewer cells than that of a larger packet, but large packets
amortize the costs over more rays, so there is an obvious trade-
off between packet size and performance.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

TABLE I
PARTICLE DATASETS USED TO EVALUATE OUR APPROACH

Cylinder JP8 Bullet Thunder Foam BulletTorso

particles 212980 815345 2.1 M 2.8 M 7.2 M 34.9 M
Data size 6.50 MB 21.77 MB 47.75 MB 86.33 MB 136.52 MB 1.04 GB
Frame rate 100.20 fps 99.88 fps 126.93 fps 40.86 fps 14.34 fps 18.31 fps

These datasets exhibit a wide variety of sizes and geometric complexity, and each represents a single time step of the full simulation. We evaluate a working
implementation of our algorithm using the viewpoints and time steps shown above. The frame rates reported in this table were achieved by rendering
1024×1024 images using 16 threads, 8×8 ray packets, and Lambertian shading. (Performance with soft shadows is reported below.)

Table II gives the frame rates achieved when rendering each
of the test datasets with a single thread using various packet
sizes. The number of particles in these datasets ranges from
a few hundred thousand to tens of millions, so the resulting
grids are often several hundred cells in each dimension. As
can be seen, 4×4 and 8×8 packets typically provide the best
performance by balancing traversal cost with the number of
overlapped cells. Unless stated otherwise, we use 8× 8 ray
packets for the remainder of our tests.

B. Impact of Image Resolution

In addition to grid resolution (and thus the number of
particles), the optimal packet size is also influenced by the
image resolution: high resolution images result in higher ray
density and permit larger packet sizes. As noted, a resolution
of 1024×1024 pixels, which is suitable for current displays,
is used as the default value for these experiments. However,
the aliasing problem, which is particularly acute for the large
numbers of particles and complex geometries, increases the
demand for oversampling (which is equivalent to higher image
resolutions).

Ray tracing cost is typically linear in the number of pixels,
but because higher resolution images allow larger ray packets,
the new algorithm scales sublinearly with image resolution, as
demonstrated by the data in Table III.

C. Impact of the Sphere-Center Method

The sphere-center method introduced in Section III-A alle-
viates many problems associated with grids. In this method,
each particle is stored in exactly one grid cell so data is not

TABLE II
IMPACT OF PRIMARY RAY PACKET SIZE

Dataset 2×2 4×4 8×8 16×16

Cylinder 3.99 6.94 7.29 4.32
JP8 2.78 5.92 8.10 5.93
Bullet 4.26 8.04 9.42 6.41
Thunder 2.96 3.80 2.95 1.32
Foam 1.37 1.65 0.98 0.25
BulletTorso 1.42 1.83 1.32 0.43

Frame rates achieved using a single thread for various packet sizes. In general,
4×4 and 8×8 packets provide the best performance for the datasets tested.

TABLE III
IMPACT OF IMAGE RESOLUTION

10242 20482

Dataset 4×4 8×8 8×8 16×16 Ratio

Cylinder 6.83 7.25 2.95 2.32 0.41
JP8 5.84 8.06 3.04 2.91 0.38
Bullet 8.01 9.37 3.32 2.97 0.35
Thunder 3.56 2.79 1.74 0.98 0.49
Foam 1.57 0.95 0.74 0.31 0.47
BulletTorso 1.79 1.30 0.90 0.46 0.50

Frame rates using a single thread for various packet sizes and image
resolutions. The new CGT algorithm scales sublinearly with image resolution.

duplicated, locality of reference is improved, and schemes to
prevent redundant intersection tests become unnecessary.

It is not immediately clear that traversing the enlarged
frustum required by the sphere-center method would not
simply cancel these benefits or actually degrade performance.
As the data in Table V demonstrates, however, frame rates
improve by a factor of 1.02–1.27 over a standard grid that
stores references to the particle data in (possibly) many cells.

TABLE V
IMPACT OF THE SPHERE-CENTER METHOD

Dataset Standard Sphere-Center Speed-up

Cylinder 6.58 7.29 1.11
JP8 7.91 8.10 1.02
Bullet 9.21 9.42 1.02
Thunder 2.37 2.95 1.24
Foam 0.81 0.98 1.21
BulletTorso 1.04 1.32 1.27

Frame rates achieved using a single thread for standard and sphere-center
grids. Though originally designed to reduce storage overhead and simplify
data access, the rendering performance improves by a factor of 1.02–1.27.

In addition, the sphere-center method reduces the memory
footprint of our application by a factor of 2. Primitive data
is stored directly in the finest level of the grid, and is
neither duplicated nor referenced by pointers. For example,
the BulletTorso dataset, which consists of nearly 35 million
particles and consumes just over 1 GB of storage, results in
a 420× 198× 432 grid. The average particle overlaps 16.19
grid cells in this case, and a standard grid implementation

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

TABLE IV
COMPARISON OF GRID CONSTRUCTION TIMES

Standard Grid Sphere-Center Grid
Dataset Insert Merge Mcell Total Insert Merge Mcell Total Speed-up

Cylinder 3.42 11.33 15.11 32.88 1.67 8.09 6.86 18.79 1.75
JP8 9.16 43.23 54.12 116.77 5.35 25.57 23.88 62.10 1.88
Bullet 34.76 308.99 166.88 546.11 11.77 80.77 44.81 159.75 3.42
Thunder 31.90 187.61 178.64 428.69 15.79 131.13 98.66 271.69 1.58
Foam 77.28 364.08 491.54 1023.89 39.34 233.06 235.41 566.44 1.81
BulletTorso 758.85 6541.34 3041.65 10961.80 191.29 1254.40 830.86 2560.25 4.28

Time (in milliseconds) for the major stages of the grid construction process, including total build time, using eight threads for the standard and sphere-center
grids. The sphere-center method allows a more efficient construction process, improving total build times by a factor of 1.58–4.28.

Fig. 8. Time-varying datasets. Using the sphere-center method, grid construction is more efficient, so grids can be built on-the-fly during rendering. Shown
here are several images from an interactive session with the entire JP8 dataset, which consists of more than 140 million particles over 173 time steps.

that stores particle identifiers (as 4-byte integers) in each
cell adds an additional 2.11 GB. However, using the sphere-
center method, only 1.04 GB of storage is required: 32 bytes
(8 data values × 4-byte floating point numbers) for each of
34.9 million spheres. Using this method, the data consumes
less than half of the memory required by a standard grid.

Similarly, the results in Table IV indicate that the sphere-
center method also improves grid construction times by a
factor of 1.58–4.28. Spheres are placed in exactly one cell
by simply truncating the floating point values expressing their
centers in the grid coordinate space to integers, which requires
only one SIMD operation on modern CPUs. In addition, an
efficient construction process enables grids for time-varying
datasets to be built on-the-fly. Constructing the grid during
rendering saves the memory overhead associated with separate
data structures for each time step and thus allows more time
steps to be loaded. For example, Fig. 8 depicts an interactive
session with the entire JP8 dataset, which consists of more
than 140 million particles across 173 time steps.

D. Impact of Frustum and Parameter Range Culling

Efficient frustum culling plays an important role in the orig-
inal CGT algorithm, and the same holds true for our approach.
Uniform grids do not adapt to the local variations in primitive
density as well as structures like kd-trees or BVHs. As a result,
more primitive intersection tests are typically required during
traversal of a grid than for other structures. Frustum culling
cancels this behavior and reduces the number of ray/primitive
intersection tests actually performed, as demonstrated by the
results in Table VI. The efficient SIMD sphere/frustum culling
procedure described in Section III-C reduces the number of
ray/sphere intersection tests performed to 38–81% of the total

potential tests. This reduction improves performance by a
factor of 1.17–1.68 as shown in Table VII.

TABLE VI
STATISTICS FOR SIMD SPHERE/FRUSTUM CULLING

Dataset # potential tests # skipped % culled

Cylinder 219470 135722 61.84%
JP8 284990 231832 81.34%
Bullet 161938 108858 67.22%
Thunder 593191 346076 58.34%
Foam 2120452 1179271 55.61%
BulletTorso 925835 355538 38.40%

Number of potential ray/sphere intersection tests and number of tests skipped
by frustum culling. Efficient SIMD frustum culling reduces the number of
ray/sphere intersection tests required during grid traversal.

TABLE VII
IMPACT OF SIMD SPHERE/FRUSTUM CULLING

Dataset No culling Culling Speed-up

Cylinder 71.04 99.16 1.40
JP8 59.13 99.79 1.68
Bullet 87.20 123.37 1.41
Thunder 29.22 40.78 1.40
Foam 9.64 14.21 1.47
BulletTorso 15.69 18.31 1.17

Frame rates achieved with and without frustum culling. Interactive perfor-
mance improves by a factor of 1.17–1.68 for the test datasets.

As described in Section III-D, parameter range culling is
applied at the level of both the macrocells and the individual
particles. The results in Table VIII, which correspond to the
images in Fig. 7, indicate that this feature adds some additional
overhead. However, efficient SIMD implementation of the
range checking operations decreases performance by only a

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

factor of 1.38–2.28 over preprocessed versions of the data.
Some of this performance difference can be attributed to the
slight difference in the grid bounds (with smaller bounds
leading to fewer packet traversals), but the 16 SIMD operations
implementing macrocell and particle range checking also adds
some computational overhead. Nevertheless, parameter range
culling provides additional flexibility during the data analysis
process, a benefit that clearly outweighs the relative impact on
interactive performance.

TABLE VIII
IMPACT OF PARAMETER RANGE CULLING

Dataset % total PR culling PR culling Preprocessed
(w/o mcells) (w/ mcells)

Thunder 43.00% 14.23 43.06 59.55
BulletTorso 34.17% 3.17 11.18 25.49

Frame rates achieved for run time parameter range culling and preprocessed
data. Parameter range culling adds some additional overhead, but interactive
performance degrades only slightly when compared to preprocessed datasets
composed of the same particles.

E. Impact of Soft Shadows

To this point, we have only considered simple ray casting
and local shading; non-local effects such as shadows have not
been considered. However, using the approach described in
Section III-E, we can also support soft shadows quite easily.

Although interactive performance with soft shadows de-
pends heavily on the coherence exhibited by secondary ray
packets, the impact is sublinear in the number of shadow rays
traced, as demonstrated by the data in Table IX. Interactive
performance varies widely for the datasets and lighting con-
figurations tested, with the impact ranging from a factor of
2.42 (for 2×2 packets, or 4 shadow rays per primary ray) to
as much as 19.35 (for 8×8 packets, or 64 shadow rays).

TABLE IX
IMPACT OF SOFT SHADOWS

Dataset No shadows 2×2 4×4 8×8

Cylinder 100.20 14.91 10.47 5.34
JP8 99.88 16.31 12.21 6.65
Bullet 126.93 19.55 13.69 6.56
Thunder 40.86 14.07 10.74 6.45
Foam 14.34 4.38 2.51 1.17
BulletTorso 18.30 7.39 6.09 3.82

Frame rates achieved for various shadow settings. In these tests, the light
source area is rather large, at 5% of the solid angle subtended by the bounding
box of the scene.

The flexibility of an interactive visualization environment
puts these parameters under the full control of the user at run
time, allowing trade-offs between image quality and interactive
performance. For example, Fig. 9 shows the results of using
2×2, 4×4, and 8×8 shadow rays per primary ray. Quality
can be traded for performance by simply using fewer shadow
rays or by disabling shadows during periods of interaction.

F. Comparison with Other Approaches

Finally, we compare the performance of our approach with
two recent systems that, to our knowledge, represent the
current state-of-the-art in interactive visualization of large

No shadows 2×2

4×4 8×8
Fig. 9. Rendering with soft shadows. Soft shadows from area light sources
provide important visual cues about the relative position of objects in complex
datasets. Shadows and other global effects are easily integrated into an
approach based on ray tracing such as the one described here.

particle datasets. The first is based on an optimized single ray
grid traversal algorithm [24], [33], while the second leverages
programmable graphics hardware and software-based acceler-
ation techniques [23].

The results reported in Table X that correspond to optimized
single ray traversal have been gathered on the test machine
described above; those corresponding to the approach based on
programmable graphics hardware were gathered using a dual
processor workstation with 8 GB of physical memory and an
NVIDIA GeForce 7800 GT graphics card. As can be seen, our
CGT algorithm compares favorably with these systems for the
test datasets. The benefits of packet-based traversal become
evident when compared to single ray traversal: interactive
performance improves by a factor of 1.35–14.48 for the test
datasets. Though some of the improvement results from our
use of SIMD instructions that are not easily employed by a
single ray scheme, such an implementation usually provides
an improvement of only a factor of 2–3; the remainder is a
result of the cost amortization and algorithmic improvements
inherent to a packet-based traversal method. The overall im-
provement is consistent with that obtained by the original
CGT algorithm for polygonal scenes, despite the differences
in primitive type and density exhibited by our application.

Surprisingly, our approach also outperforms the system
based on programmable graphics hardware. This system uses
view-aligned, textured billboards to represent each particle.
Vertex and fragment programs manipulate this data to provide
a high-quality representation of each particle that is consistent
with the results of an approach based on ray tracing. In
addition, software-based acceleration techniques (including
basic frustum culling and more sophisticated occlusion culling
algorithms) are used to reduce the rendering workload in each
frame. Nevertheless, and despite the fact that our test machine

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

actually provides less raw FLOPS than the NVIDIA GeForce
7800 GT used to test the GPU-based system, our approach
outperforms this system by a factor of about 5 to almost 50
for the datasets tested.

TABLE X
COMPARISON OF PARTICLE VISUALIZATION METHODS

Dataset Our CGT RTRT GPU-based
Bigler et al. [24] Gribble et al. [23]

Cylinder 100.20 12.60 5.78
JP8 99.88 6.90 17.40
Bullet 126.93 11.90 2.56
Thunder 40.86 14.90 8.10
Foam 14.33 6.40 2.04
BulletTorso 18.31 13.50 1.56

Frame rates achieved using our CGT algorithm and two state-of-the-art
particle visualization systems. The benefits of packet-based traversal become
evident when compared to single ray traversal, and our approach also
outperforms an approach leveraging programmable graphics hardware.

V. CONCLUSIONS

We have presented a new algorithm for interactive particle
visualization that is based on efficient ray tracing using co-
herent grid traversal. We employ fast ray tracing methods for
multi-level grids, including ray packets, frustum based traver-
sal, frustum culling, and SIMD operations. The algorithm
exploits the properties of particle-based simulation data to im-
prove performance and reduce storage requirements using the
sphere-center method. This approach addresses some problems
traditionally associated with grids, namely duplicate data, little
locality of reference, and redundant ray/primitive intersection
tests. The sphere-center method not only reduces the memory
required when rendering large, time-varying particle datasets,
but also leads to improved performance and facilitates valuable
data exploration tasks such run time parameter range culling.
In addition, the grid construction process is made more effi-
cient with this method by replacing primitive/cell or bounding
box/cell overlap tests with a simple float-to-int truncation.
Additional optimizations based on efficient sphere/frustum
culling further improve the interactive performance of the
algorithm.

A. Discussion

We have evaluated the performance of our approach using a
system with eight 2.4 GHz dual-core processors (16 processing
cores total). The theoretical peak available on this machine
is less than 155 GFLOPS, which is an order of magnitude
less than the terascale performance of, for example, the ATI
X1900 graphics processing unit [34]. The evaluation of our
algorithm shows highly interactive frame rates on reasonably
priced multi-core platforms (a system with compute power
similar to the test machine would cost less than $35,000 at
the time of this writing). Moreover, it is only a matter of
time before compute power of this magnitude is available on
commodity desktop systems.

Our approach also compares favorably with recent systems
that represent the current state-of-the-art in interactive visual-
ization of large particle datasets. A previous approach based
on interactive ray tracing [24] utilizes single ray traversal, but

the new CGT algorithm has demonstrated a 35% to 700%
performance improvement over this system (Table X), and
reduces the hardware costs necessary to achieve interactivity.
Systems using programmable graphics hardware [23] also
offer a way to visualize large, time-varying particle datasets
at interactive rates. This hardware is widely available, and
a desktop system so equipped is considerably less expensive
(roughly a factor of 7) than the system used to evaluate our
algorithm. However, GPU-based approaches are not easily
extended to include visualization features like soft shadows
or advanced shading models, while an algorithm based on ray
tracing can be extended to include these features naturally. We
have achieved reasonably interactive performance with a naive
implementation of soft shadows, and advanced shading models
such as ambient occlusion or physically based diffuse inter-
reflection will become feasible with continued improvements
in both algorithmic design and CPU performance.

B. Future Work

Several areas require further attention. First, techniques
similar to the sphere-center method may be applicable to
other types of primitives such as triangles, and exploring these
methods is of interest. In addition, the current implementation
of soft shadows treats secondary rays in a manner identical to
primary rays. Additional improvements in performance may
result from optimizations specific to secondary ray packets.
Accelerating performance of secondary rays is also important
if the visual cues from advanced shading models like ambi-
ent occlusion and physically based diffuse interreflection are
to be used during interactive rendering. Exploring efficient
methods to include these effects is of particular interest.
Finally, multi-modal visualization of particle and volumetric
data, such as a container (particle-based simulation) in a pool
fire (computational fluid dynamics simulation), would also be
useful. Efficient techniques for packet-based volume rendering
are required to combine this visualization modality with the
particle visualization method we have described.

ACKNOWLEDGMENTS

We thank Jerry Seidler and Erin Miller, both of the Univer-
sity of Washington, and Scott Bardenhagen, of the Los Alamos
National Laboratory, for providing the Foam dataset. Parts of
this work were funded by the DOE ASC program.

REFERENCES

[1] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer
Graphics and Applications, vol. 8, no. 3, pp. 29–37, 1988.

[2] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm,” in International Conference on
Computer Graphics and Interactive Techniques, 1987, pp. 163–169.

[3] J. E. Guilkey, J. A. Hoying, and J. A. Weiss, “Computational Modeling
of Multicellular Constructs with the Material Point Method,” Journal of
Biomechanics, vol. 39, no. 11, pp. 2047–2086, August 2006.

[4] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-Level Ray Tracing
Algorithm,” ACM Transacions on Graphics, vol. 24, no. 3, pp. 1176–
1185, 2005, (ACM SIGGRAPH ’05).

[5] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies,” ACM Transactions on
Graphics, vol. 26, no. 1, 2007, (to appear).

[6] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker, “Ray Tracing
Animated Scenes using Coherent Grid Traversal,” ACM Transactions on
Graphics, vol. 25, no. 3, pp. 485–493, 2006.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

[7] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley,
“Interactive Ray Tracing for Volume Visualization,” IEEE Trans. on
Visualization and Computer Graphics, vol. 5, no. 3, pp. 238–250, 1999.

[8] T. Ize, I. Wald, C. Robertson, and S. G. Parker, “An Evaluation of
Parallel Grid Construction for Ray Tracing Dynamic Scenes,” in 2006
IEEE Symposium on Interactive Ray Tracing, 2006, pp. 47–55.

[9] D. Sulsky, S. Zhou, and H. L. Schreyer, “A Particle Method for His-
tory Dependent Materials,” Computer Methods in Applied Mechanical
Engineering, vol. 118, pp. 179–196, 1994.

[10] ——, “Application of a Particle-in-Cell Method to Solid Mechanics,”
Computer Physics Communications, vol. 87, pp. 236–252, 1995.

[11] S. Ullman, The Interpretation of Visual Motion. Cambridge, Mas-
sachusetts: MIT Press, 1979.

[12] H. von Helmholtz, Handbook of Physiological Optics. New York:
Optical Society of America, 1925.

[13] L. R. Wanger, J. A. Ferwerda, and D. P. Greenberg, “Perceiving
Spatial Relationships in Computer-Generated Images,” IEEE Computer
Graphics and Applications, vol. 12, no. 3, pp. 44–58, 1992.

[14] E. R. Tufte, The Visual Display of Quantitative Information. Cheshire,
Connecticut: Graphics Press, 2001.

[15] P. Mamassian, D. C. Knill, and D. Kersten, “The Perception of Cast
Shadows,” Trends in Cognitive Sciences, vol. 2, no. 8, pp. 288–295,
1998.

[16] P. Rheingans and C. Landreth, “Perceptual Principles for Effective
Visualizations,” Perceptual Issues in Visualization, pp. 59–74, 1995.

[17] M. Sattler, R. Sarlette, T. Mücken, and R. Klein, “Exploitation of Human
Shadow Perception for Fast Shadow Rendering,” in Proceedings of the
Second Symposium on Applied Perception in Graphics and Visualization,
2005, pp. 131–134.

[18] C. P. Gribble and S. G. Parker, “Enhancing Interactive Particle Visual-
ization with Advanced Shading Models,” in Proceedings of the Third
Symposium on Applied Perception in Graphics and Visualization, July
2006, pp. 111–118.

[19] M. Krogh, J. Painter, and C. Hansen, “Parallel Sphere Rendering,”
Parallel Computing, vol. 23, no. 7, pp. 961–974, 1997.

[20] K. Liang, P. Monger, and H. Couchman, “Interactive Parallel Visuliza-
tion of Large Particle Datasets,” in Eurographics Symposium on Parallel
Graphics and Visualization, 2004, pp. 111–118.

[21] P. Zemcik, P. Tisnovsky, and A. Herout, “Particle Rendering Pipeline,”
in 19th Spring Conference on Computer Graphics, 2003, pp. 165–170.

[22] P. Zemcik, A. Herout, L. Crha, O. Fucik, and P. Tupec, “Particle
Rendering Engine in DSP and FPGA,” in 11th International Conference
and Workshop on the Engineering of Computer-based Systems (ECBS
’04), 2004, p. 361.

[23] C. P. Gribble, A. J. Stephens, J. E. Guilkey, and S. G. Parker, “Visual-
izing Material Point Method Datasets on the Desktop,” in British HCI
2006 Workshop on Combining Visualization and Interaction to Facilitate
Scientific Exploration and Discovery, September 2006, pp. 1–8.

[24] J. Bigler, J. Guilkey, C. Gribble, S. Parker, and C. Hansen, “A Case
Study: Visualizing Material Point Method Data,” in Proceedings of the
Eurographics/IEEE Symposium on Visualization, 2006, pp. 299–306.

[25] M. Tarini, P. Cignoni, and C. Montani, “Ambient Occlusion and Edge
Cueing for Enhancing Real Time Molecular Visualization,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 12, no. 5, pp.
1237–1244, 2006.

[26] S. Melax, “Dynamic Plane Shifting BSP Traversal,” in Proceedings of
Graphics Interface ’00, 2000, pp. 213–220.

[27] D. Kirk and J. Arvo, “Improved Ray Tagging for Voxel-Based Ray
Tracing,” in Graphics Gems II. Academic Press, 1991, pp. 264–266.

[28] D. E. DeMarle, C. Gribble, and S. Parker, “Memory-Savvy Distributed
Interactive Ray Tracing,” in Eurographics Symposium on Parallel
Graphics and Visualization, 2004, pp. 93–100.

[29] F. Cazals, G. Drettakis, and C. Puech, “Filtering, Clustering and Hi-
erarchy Construction: a New Solution for Ray Tracing Very Complex
Environments,” Computer Graphics Forum, vol. 14, no. 3, 1995.

[30] D. Jevans and B. Wyvill, “Adaptive Voxel Subdivision for Ray Tracing,”
in Proceedings of Graphics Interface ’89, 1989, pp. 164–172.

[31] K. S. Klimaszewski and T. W. Sederberg, “Faster Ray Tracing using
Adaptive Grids,” IEEE Computer Graphics and Applications, vol. 17,
no. 1, pp. 42–51, January/February 1997.

[32] K. Dmitriev, V. Havran, and H.-P. Seidel, “Faster Ray Tracing with
SIMD Shaft Culling,” Max-Planck Institut für Informatik, Tech. Rep.
MPI-I-2004-4-006, 2004.

[33] S. Parker, W. Martin, P.-P. Sloan, P. Shirley, B. Smits, and C. Hansen,
“Interactive Ray Tracing,” in Symposium on Interactive 3D Graphics,
1999, pp. 119–126.

[34] D. E. Polkowski, “ATI’s Radeon X1900 Heats Up With 48 Shader
Units,” http://www.tomshardware.com/2006/01/24/, January 2006.

Christiaan P. Gribble is an Assistant Professor in
the Department of Computer Science at Grove City
College. His research focuses on global illumination
algorithms, interactive and realistic rendering, scien-
tific visualization, and high-performance computing.
Gribble has served as a post-doctoral research fellow
and research assistant for the Scientific Computing
and Imaging (SCI) Institute at the University of
Utah, and as a research assistant at the Pittsburgh
Supercomputing Center. In 2005, he received the
Graduate Research Fellowship from the University

of Utah. Gribble received the BS degree in mathematics from Grove City
College in 2000, the MS degree in information networking from Carnegie
Mellon University in 2002, and the PhD degree in computer science from the
University of Utah in 2006.

Thiago Ize received the BS degree in both mathe-
matics and computer science from the University of
Virginia in 2004. He is currently a PhD student in the
School of Computing and Scientific Computing and
Imaging (SCI) Institute at the University of Utah.
His research interests are in rendering, with a current
focus on interactive ray tracing.

Andrew Kensler is a PhD student in the School of
Computing at the University of Utah and a research
assistant with the Scientific Computing and Imaging
(SCI) Institute. He received the BA degree in com-
puter science from Grinnell College in 2001. His
research focuses on rendering, with interests in in-
teractive ray tracing, global illumination algorithms,
and photorealistic rendering.

Ingo Wald holds a PhD in engineering from
Saarbrücken University. After his PhD, he was a
post-doctoral research associate at the Max Planck
Institute for Informatics in Saarbrücken, Germany,
and is currently a Research Assistant Professor at
the University of Utah. His work concentrates on
all aspects of real time ray tracing, photorealistic
rendering, scientific visualization, efficient parallel
rendering, and massive model rendering. He has
written numerous ray tracers, and has founded and
led the OpenRT Realtime Ray Tracing Project.

Steven G. Parker is an Assistant Professor in
the School of Computing and Scientific Computing
and Imaging (SCI) Institute at the University of
Utah. His research focuses on problem solving en-
vironments, which tie together scientific computing,
scientific visualization, and computer graphics. He
is the principal architect of the SCIRun Software
System, which formed the core of his PhD disserta-
tion, and is currently the chief architect of Uintah,
a software system designed to simulate accidental
fires and explosions using thousands of processors.

He was a recipient of the DoE Computational Science Graduate Fellowship.
He received the BS degree in electrical engineering from the University of
Oklahoma in 1992, and the PhD degree from the University Utah in 1999.

