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Figure 1: We present a method that enables fast, per-frame and from-scratch re-builds of a bounding volume hierarchy, thus completely removing
a BVH-based ray tracer’s reliance on updating or re-fitting. On a dual-2.6GHz Clovertown system (8 cores total), our method renders the
exploding dragon model (252K triangles) at around 13–21 frames per second (1024x1024 pixels) including animating the triangles, per-frame
rebuilds, shading, shadows, and display. The build itself takes less than 20ms, and is nearly agnostic to the distribution of the triangles; thus, the
variation in frame rate (21 fps for the initial, smooth frame, and 13 fps for the timestep corresponding to the fourth image) is due only to varying
traversal cost, without any deterioration in BVH quality at all (i.e., when starting with the last frame, the frame rate actually increases).

ABSTRACT

With ray traversal performance reaching the point where real-time
ray tracing becomes practical, ray tracing research is now shifting
away from faster traversal, and towards the question what has to
be done to use it in truly interactive applications such as games.
Such applications are problematic because when geometry changes
every frame, the ray tracer’s internal index data structures are no
longer valid. Fully rebuilding all data structures every frame is the
most general approach to handling changing geometry, but was long
considered impractical except for grid-based grid based ray tracers,
trivial scenes, or reduced quality of the index structure. In this pa-
per, we investigate how some of the fast, approximate construction
techniques that have recently been proposed for kd-trees can also
be applied to bounding volume hierarchies (BVHs). We argue that
these work even better for BVHs than they do for kd-trees, and
demonstrate that when using those techniques, BVHs can be rebuilt
up to 10× faster than competing kd-tree based techniques.

1 INTRODUCTION

While ray tracing has always been the method of choice for most
offline rendering systems, it was long considered impractical for
interactive applications, like games. With ever more capable hard-
ware1 and continuously improved algorithms, however, it is now
possible to trace severeal million rays per second on a desktop
PC. At this performance ray tracing slowly starts to get interesting
even for what eventually is the dominating application for graphics
technology—games. Games, however, are highly dynamic in na-
ture. Thus, the ray tracer has to either rebuild or update its internal
data structures every frame, and achieving interactive performance
requires to look at both traversal performance and rebuild/update
performance at the same time.

Though we refer the reader to a recent survey for a more com-
plete discussion on ray tracing animated scenes [20], the generally
accepted opinion today seems to be that among the three dominant
ray tracing data structures—grids, kd-trees, and BVHs—grids are
easiest to rebuild but less efficient to traverse, while kd-trees and
BVHs are more efficient, but harder to build (with the most effi-

1A dual-3 GHz Clovertown PC already reaches 192 GFLOPs peak (2

CPUs× 4 cores × 4-wide SIMD/cycle× MADD× 3 GHz=192GFLOPs)

cient techniques requiring many seconds even for moderately com-
plex scenes [19]).

For bounding volume hierarchies, this has led to various ef-
forts to avoid full rebuilding by relying on refitting the BVH [11,
18]–potentially coupled with selective restructuring [22] or in-
frequent/asynchronous rebuilding [8, 11]. Fast re-building from
scratch has received far less attention. Wächter et al [16] have pro-
posed a fast spatial-median build that was originally proposed for
their s-kd-tree like “bounding interval hierarchy” (BIH), but which
applies to traditional BVHs, too. Wächter’s BIH-style build—once
applied to BVHs—allows for fast building of BVHs, but leads to
somewhat reduced traversal performance because it no longer em-
ploys a surface area heuristics (SAH) for determining how to best
build the hierarchy, and instead always splits at the spatial median.

For kd-trees, the set of techniques for fast tree construc-
tion is much richer, including hierarchical ray transformation
schemes [17], “fuzzy” kd-trees and motion decomposition [3], and,
in particular, fast “scan”-techniques that still employ a (somewhat
simplified) surface area heuristic, but achieve significantly high
build performance by slightly approximating a full SAH build. In
addition, Hunt et al. [6] have shown that when some coarse scene
graph information is available, these fast scan-based techniques can
be accelerated by up to another order of magnitude if scanning,
build-from-hierarchy, and lazy construction are combined.

For BVHs, such fast from-scratch build techniques have not yet
been investigated. This is surprising, since BVHs have some nice
properties that make them, in fact, more amenable to these tech-
niques than kd-trees: First, BVHs have fewer nodes than a kd-tree,
so fewer operations have to be performed; second, all BVH build al-
gorithms to date use only the triangle centroids, anyway, so there is
no need for handling cases where triangles “overlap” a split plane
(in a BVH, a triangle will always be on exactly one side); third,
since each triangle is referenced exactly once the total number of
nodes in a BVH is bounded by 2N − 1 (where N is the number of
triangles), so the build can be performed fully in place without any
additional management of node memory2.

While being able to expect that binning techniques to be at least

2Note that in general this significantly over-estimates actual memory

consumption (at 4 triangles per leaf, it overestimates node memory by 4×),

but even then a BVH consumes less memory than a kd-tree [4].



as fast for BVHs as they are for kd-trees is a big plus, in addition we
can expect their negative impact on render performance to be lower
for a BVH than it is for a kd-tree: First, since we have to track
each bin’s exact bounds, anyway (see below), the area estimation
is not approximated to the same degree; second, since BVHs are
a object hierarchy–not a spatial subdivision–they never “subdivide”
more finely than a triangle’s bounding box, anyway, and thus do not
suffer from not considering “perfect splits” during the construction.

In summary, we conclude that the fast binning techniques devel-
oped for kd-trees should also be applicable to fast construction of
BVH from scratch; and that we can expect at least the same benefits
from these techniques, while at the same time suffering less from
their disadvantages. In the rest of this paper, we will first briefly
review relevant related work in Section 2. We then describe in de-
tail how the algorithm works in a single-threaded environment in
Section 3, followed by a discussion on how to parallelize the al-
gorithm on a multi-core architecture (Section 4. We then compare
our technique to existing techniques based on building kd-trees and
restructuring BVHs in Section 5, and conclude in Section 5.3.

2 RELATED WORK

Research on ray tracing goes back to the 80’ies, in particular to
the work by Appel [1], Whitted [21], and Cook et al. [2]. From
the very beginning, it was realized that in order to make ray trac-
ing practical, one has to employ certain acceleration data structures
such as grid, BVHs, or kd-trees that allow for reducing the number
of ray-triangle intersections. For a more complete picture on the
trade-offs for the varying data structures—in particular in the con-
text of animated scenes—we refer the reader to a recent survey on
this topic [20]; in this section, we will cover only those techniques
that are directly relevant to our technique.

2.1 BVHs for Animated Scenes

have been proposed independently by both Wald et al. [18] and
Lauterbach et al. [11]. Both of these systems relied on a BVH’s
ability to handle deforming models (i.e., those whose triangle count
and mesh connectivity do not change over time) by simply re-fitting
a BVH’s technique. That BVHs are amenable to refitting is well
known, and has previously been used extensively in both render-
ing [10] and collision detection [14, 15].

Since refitting only will eventually lead to performance degra-
dation if the primitives’ motion becomes too severe, several tech-
niques have been proposed that augment refitting with either pe-
riodic from-scratch rebuilding [11], asynchronous rebuilding [8],
or performing per-frame selective restructurings of an existing
BVH [22]. Eventually, however,all of these techniques still rely on
having a deformable scene with not-too-severe deformations; for
general, unrestricted support for dynamic scenes (including vary-
ing triangle counts and/or completely random motion), the ultimate
solution would be to fully rebuild from scratch every frame.

2.2 Surface Area Heuristic

Though there are different ways of building BVHs and kd-trees,
the best known method to maximize traversal efficiency for both
data structures is to use a top-down, greedy surface area heuristics
(SAH) build, in which the original scene is recursively partitioned
using a greedy strategy for minimizing expected traversal cost.

Kd-trees and BVHs have fundamentally different—and some-
what dual—meanings for what a “partition” is: a kd-tree recursively
partitions space into two non-overlapping halves, and a BVH recur-
sively partitions the set of primitives. That notwithstanding, the
theory behind a surface area heuristic is exactly the same for both
data structures: Given a set of N primitives contained in a sub-tree
that covers the 3D volume V , and assuming that sub-tree gets parti-
tioned into two halves L and R with number of triangles NL and NR,

and with associated volumes VL and VR, respectively, the expected
traversal cost for this sub-tree can be estimated as

Cost(V →{L,R}) = KT +KI(
SA(VL)

SA(V )
NL +

SA(VR)

SA(V )
NR),

where SA(()V ) is the surface area of V , and KT and KI are some
implementation-specific constants for the estimated cost of a traver-
sal step and a triangle intersection, respectively.

Using this cost estimate, a greedy SAH build evaluates vari-
ous possible partitions, selects the one with lowest expected cost,
and recurses. For a kd-tree node, a partition is defined by an axis-
aligned plane that partitions the sub-tree’s volume; given the plane,
the numbers NL and NR are defined implicitly for each plane (which
requires counting them). Since triangles can overlap the plane,
NL + NR usually is greater than N. As it can be shown that there
are only 6N reasonable split locations [5], testing all reasonable
splits is tractable, and efficient algorithms for this exist [19].

For a BVH, conversely, a “split” partitions the set of triangles
into two subsets (with NL + NR = N), and the volumes VL and VR

follow from that partitioning. As there are 2N − 2 possible parti-
tions, testing all of them is intractable, and existing SAH builds look
at partitioning the triangles using planes like in a kd-tree. Since
each triangle can be in only one of the sides even if it overlaps
that “split” plane, these methods typically take a single point on
the primitive (such as it’s bounding box’s centroid) to determine on
which side to put this primitive. Note that even though that plane
defines which side a triangle is on, it has no direct relationship the
the actual sub-tree volumes at all, and these can or can not overlap
the split plane.

2.3 Fast BVH Building

A reasonably fast, O(N logN) build scheme (which still is today’s
baseline in building good BVHs) has been proposed in [18]; how-
ever, though significantly faster in building than comparable high-
quality kd-tree builders [19], build times are clearly non-interactive.

Trading BVH quality for significantly faster builds has first been
proposed by Wächter et al [16]: using a spatial median split strat-
egy instead of an SAH-based build. Consequently, his builds are
much faster, but result in BVHs that are somewhat slower during
rendering (see below for actual numbers).

One particularly interesting feature of Wächter’s BIH build (that
we will employ to some extent below) is that like in a spatial
median-split kd-tree, his build strategy does not place the node
through the median of the current sub-tree’s actual spatial extent;
instead, he always subdivides like in a spatial subdivision: If the
root node (N,V ) is split by its center plane P, then the split for
the children is not based on the actual sub-tree bounds VL and VR,
but on the two voxels obtained by splitting V with P—the actual
bounds for each BVH node are obtained only at the very end, af-
ter both sub-trees have been split. Though the reasons for this are
not fully understood yet, this is not only faster but also seems to
produce slightly better trees than those built by splitting the actual
sub-tree bounds. With this build strategy, the split locations for a
node’s children no longer depend on the outcome of the node’s split
itself, and thus, one can perform several splits a-priory (essentially
resulting in a regular partitioning). One can then directly project
each primitive into it’s respective “bin” in a single pass, thus saving
most of the recursive partitioning steps.

This build strategy is extremely fast, but comes at the cost of
no longer using a surface area heuristic—i.e., at somewhat lower
performance during rendering.

2.4 Fast SAH Building for kd-trees

Even with theoretically optimal build algorithms, the cost for eval-
uating lots of split planes can be very high. As it was long con-
sidered to be infeasible in real time, anyway, fast building of SAH-



based data structures has not been fully investigated, yet. For kd-
trees, several researchers have recently looked into this problem,
and have proposed methods that strike a trade-off between build
time and BVH quality, by simplifying and approximating the SAH,
but keeping its principle ideas (see, e.g., the papers by Popov et
al. [12], Hunt et al. [7], and, more recently, Shevtsov et al. [13]).

In particular, these methods use the following concepts, most of
which we will use similarly: First, they ignore “perfect splits”—
i.e., the process of clipping triangles to the current voxel that has to
be split, in order to get tighter bounds—and only consider the trian-
gles’ axis-aligned bounding boxes (AABBs). Second, they do not
test all potential split planes, but only use K equidistantly spaced
planes. In a single pass; the triangles are then projected into the
K + 1 “bins” formed by these K planes. Thus, each bin counts the
number of triangles that overlap it, and the SAH can be evaluated
for the K planes that separate the bins by just knowing the triangle
counts of the bins. After computing the SAH for each of these K
planes, the best one is selected, and a second linear pass over all tri-
angles generates the actual list of triangle IDs for the left and right
sub-trees. Using that algorithm not only greatly reduces the number
of plane evaluations (K bin planes instead of O(N) triangle bounds
planes), it also avoids any sorting, and thus enables the splitting to
be done in two fast O(N) passes.

Though the basic concept remains the same for all of the three
papers mentioned above, several further optimizations and simplifi-
cations are possible: First, the cost function itself is simplified: KT

and KI

SA(V )
are common terms for all planes, and can be removed;

and SA(VL) and SA(VR) are linear in the plane position x(i), result-
ing in a simple NL ∗ (c0,L + c1,Lx)+ NR ∗ (c0,R + c1,Rx) (with pre-
computed constants C0,L,. . . ) Second, the search for a split plane
can be performed along the one axis where the bounding box is
widest, instead of considering all three axis in turn. Third, instead
of directly increasing all bin counters overlapped by a triangle, it is
possible to only mark the start and end bins for each triangle, and
compute all interior bins in a final pass over the binds. Fourth, in-
stead of projecting all triangles into the bins to determine the plane
one can also use a sub-set of triangles and “skip” other ones. And
fifth, one the number of triangles drops below the number of bin on
usually reverts to a full sweep.

Binning essentially is a discretization of the SAH cost func-
tion, and can obviously lead to missing the minimum; however,
all three publications have shown that surprisingly good kd-trees
can be achieved with relatively few bins (even with only 8 planes
in Hunt’s case!). Similarly, skipping seems to work quite well, if
at least a reasonably sized sub-set of triangles is used for plane se-
lection. As such, the biggest individual factor why binning-based
kd-trees are slower than the most advanced ones seems to be the
negligence of perfect splits.

In addition to these algorithmic changes, careful implementation
is required to achieve high performance. For example, the use of
SIMD instructions, careful data layout, and very careful memory
allocation schemes (typically using pre-allocated memory [13]) are
required. Using such carefully designed implementations on top
of various binning techniques, Popov et al. and Hunt et al. have
reported build rates of 150K resp. 300K triangles per second, which
allow roughly interactive builds at least for simple models.

Since modern CPUs are increasingly multi-core, parallelization
can further reduce build times. Even though they reported unsatis-
factory scalability, parallel binning was already proposed by Popov
et al. [12]. Shevtsov et al. [13], then proposed a two-pass technique
to improve scalability: In a first pass they split the input set of tri-
angles into sub-trees of equal size, at which stage they switch to the
thread working on different sub-trees in a load-balanced way. This
two-stage process provides good scalability (at least for the 4 CPUs
they used their experiments), but comes at the cost of not using a
SAH strategy in the upper level of the kd-tree. We will follow a

similar technique once we parallelize our approach.

More recently, Hunt et al. [6] have shown that when an additional
scene graph hierarchy is made available to the tree builder, signifi-
cant speedups can be obtained by exploiting this information in the
binning phase: instead of looking at all the triangles, one can derive
a coarse approximation of the geometry distribution from this hier-
archy and select the split based on that approximation. If the scene
graph hierarchy is reasonable, this was shown to achieve signifi-
cant cost reductions with almost no noticeable degradation of tree
quality. In particular when combined with both binning and lazy
construction, this build-from-hierarchy concept gets very powerful.
Since the actual build performance then depends on the number of
actually visible triangles, however, this technique is hard to com-
pare to the other techniques we have just mentioned.

3 FAST, BINNED BVH BUILDING

Summarizing the previous section, the use of approximate binning
techniques and parallelization have proven very effective in acceler-
ating the build process of SAH-based kd-trees. For BVHs, similarly
fast build algorithms have not been investigated, yet3.

This in fact is surprising, as all of the proposed techniques would
work similarly, while some of the problems in applying these tech-
niques to kd-trees do not apply to BVHs. In particular, a BVH
with axis-aligned bounding volumes—which is what we are inter-
ested in in this paper—will always use a triangle’s AABB; as no
triangle ever gets split by a plane, there is no concept of consid-
ering “perfect splits”. Since not considering perfect splits is one
of the biggest sources of lower performance for binned kd-trees,
not suffering from this problem bears the potential to use binning
techniques without significant reductions in build quality.

In addition to that, most BVH build strategies use a single point
to decide which side a primitive goes (see above). Thus binning is
even simpler than in a kd-tree, and a single bin has to be updated
for each primitive. We follow previous approaches in using the
centroid of each primitive’s AABB for this decision.

3.1 Bin setup

Like for kd-trees, we generate K bins of equal width. Since prim-
itives are binned with respect to their AABBs’ centroids, anyway,
we place our bins such that they uniformly subdivide the bounding
box around the centroids; resulting in a somewhat denser spacing
of the bins.than if those would cover the full sub-tree bounds. Each
of these K equally-sized spatial regions we call the domain of its
associated bin. Currently, we place bins only along axis in which
the centroids’ bounding box is widest. Though checking all three
axis in turn might yield even better results, binning only along the
dominant axis so far has produced quite reasonable results.

Given the K bins B1..BK , there are K−1 canonical ways of split-
ting the input set of triangles T into two halves TL, j = {B1..B j} and
TR, j = {B j+1..BK (for j = 1..K−1). Knowing the number of prim-
itive ni for each bin Bi, these K − 1 possible partitions then have
NL, j and NR, j triangles on the left and right side, respectively, with

NL, j = ∑
j
i=1 ni and NR, j = ∑

K
i= j+1 ni. Following previous work in

neglecting all constants and common terms in the cost function, the
cost for any partition j then is

Cost j = AL, jNL, j +AR, jNR, j.

While we know the N terms, the A terms require special atten-
tion. When binning each triangle only in the bin associated with
its centroid, triangles will often stick out of the respective bin’s do-
main, sometimes considerably so. Ignoring that effect by assuming
each bin’s triangles would cover exactly this bin’s domain—as is

3Concurrently to this paper, a similar build algorithm has been proposed

by Günther et al. [4].



done when assuming there is a linear relationship between bin po-
sition and surface area—would be a grave approximation. Thus, for
each bin we track not only the number ni of primitives that project
to it, but also the bounding box bbi (read: bin-bounds) of all those
primitives. We call this bbi the bounding box of bin i, but keep in
mind that it has no spatial relation to that bin’s domain at all—it can
be a subset, or a super-set, stick out of it, etc.

Once all the bin bounds are known AL, j = SA(
⋃ j

i=1 bbi) and

AR, j = SA(
⋃K

i= j+1 bbi) are the bounds of each partition’s halves,

without any approximation or discretization at all. Note that we
track the actual 3D bounds for each bin, not only their 1D projec-
tions to the binning axis. In particular, if one or both of the halves
for any given partition has a small spatial extent in the two axis
perpendicular to the binning axis, this will correctly be determined,
resulting in a lower cost estimate for this partition.

3.2 Initial setup

The way just described, our algorithm needs each triangle’s bound-
ing box tbi, as well as the centroid thereof, ci. We compute these
once in the beginning of our build, and can then completely ignore
the actual triangle geometry, which is no longer needed. In that
setup stage, we also compute the bounds for all triangles vb (read:
voxel bounds), as well as the bounds for all centroids, cb. To facili-
tate SSE operations throughout the code, we store the voxel bounds
and centroid bounds, as well as all triangle centroids and triangle
bounds, in a SIMD-friendly format of four 16-bytes aligned floats
per 3D position. Thus, the setup stage requires exactly 14 SSE
operations per triangle, including load/stores: three loads for the
triangle’s vertices, two SSE mins and maxes each for computing
the triangle’s bounds from those vertices; one min and max each
to grow the voxel bounds; one add and one “mul 0.5f” to compute
the centroid; another min and max each for growing the centroid
bounds; and finally, three SSE stores to write the triangle’s bounds
and centroid to memory.

3.3 Triangle-to-bin projection

The binning itself is also very efficient. Given a triangle’s centroid
ci, the bin number for that triangle is

binIDi =
K(1− ε)(ci,k − cbmin,k)

cbmax,k − cbmin,k
,

where c j is the centroid bounds, k is the binning axis, and K is the
number of bins. The “1− ε” is to ensure that centroids on exactly
the right bounds of cb still project to K −1, so no special handling
is required for this case. Obviously this (1− ε) multiplication also
slightly shifts all other bin domains, but since we never consider the
actual bin domains, anyway, this does not lead to any inaccuracies
or numerical issues at all.

Since all values except ci are constant, we can pre-compute these
terms, and compute the triangle’s bin as

binIDi = k1(ci,k − k0),

with k1 =
K(1−ε)

cbmax,k−cbmin,k
, and k0 = cbmin,k, followed by a float-to-int

truncation (non-SSE).

3.4 Bin updates

For each bin, we track the number of primitives ni as the bin bounds
bbi. Again, we store the bin bounds in SSE format, facilitating SSE
operations. Each bin is initialized to a “negative box” [+∞..−∞],
allowing to grow it to include a triangle’s AABB using one SSE
and one SSE max each without having to check whether the bin is
originally empty. Similarly we can later on merge the individual
bin bounds without having to check for emptiness, since “growing”
an AABB with a negative AABB using min/max operations does
not change the original box. Of course, we can use the same trick

of using only a subset of triangles for populating the bins that kd-
tree builders use. This can give a slight performance improvement
but introduces an additional parameter that has to be tuned to avoid
BVH deterioration; we therefore by default do not use this feature
even though it is implemented.

3.5 Plane evaluations

To evaluate the individual partitions’ cost as described above, we
have to determine NL,i, NR,i, AL,i, and AR,i. We compute these by
first doing a linear pass from the left, in which we incrementally
accumulate the bounds and number of triangles for the left half (ex-
ploiting the fact that NL,i = NL,i−1 + ni etc), and storing NL,i and
AL,i. Then, in a second pass we do the same from the right, and
evaluate the SAH for each plane. Because bins are initialized with
an empty box, if one of the sides does not contain any triangles, its
area gets negative; as such “empty” partitions are not allowed in a
BVH, anyway—and thus, have to be rejected, anyway—this does
not introduce a problem.

3.6 In-place ID list partitioning

Following the original DynBVH system [18], the BVH is stored
in two separate, continuous arrays—one for the nodes, and one for
triangle ID. Since a BVH for N triangles has exactly N triangle
references and at most 2N − 1 nodes, these can be pre-allocated,
and no memory has to be allocated during the build process at all.
Each inner node contains the bounding box, several internal flags,
and the position of its child node pair’s position inside the node
array. Leaf nodes contain an offset into the triangle ID array, plus
the number of triangles in that leaf. Thus, all of a leaf’s triangles
are stored in one continuous block.

With that data organization, building the BVH happens com-
pletely “in place” by re-arranging the triangle ID array—which gets
initialized to 0,1,2,. . . —into sequences of IDs that belong to the
same sub-tree: each partitioning operation operates on a sequence
of IDs in that sub-tree (which we bounds in STL-style by a begin
and end offset into the ID array), then determines the partition with
minimum expected cost as described above, and then re-orders the
sequence of triangle IDs in the [begin..end) range such that two new
sequences [begin..mid) and [mid..end) with the triangle IDs for the
left and right sub-tree are created.

Re-arranging the IDs essentially works exactly like a quicksort
partitioning step (with the minimum-cost partition ID working as a
pivot): one iterator sweeps the triangle ID list from the left (start-
ing with ’begin’), computes the bin ID for each triangle ID it en-
counters, and stops with the first triangle ID that belongs to the
right. Another iterator approaches from the right until one triangle
ID that belongs to the left is found; these IDs are then swapped, and
the process is repeated until the two iterators meet, at “mid”. Alter-
natively, one can also allocate a second array as temporary storage,
then block-copy all IDs in [begin..end) to that array, and copy them
back individually to the left resp right sides of the original array.

During the ID-list partitioning, we also track the triangle bounds
and centroid bounds for the left and right halves; one all this is done,
BVH construction then proceeds recursively for each of these se-
quences, using the respective triangle bounds and centroid bounds
that have just been computed.

3.7 Number of bins

So far, we have completely ignored the number of bins to be used.
Previous work on kd-trees has proposed up to 1024 bins [12], but
others have reported quite satisfactory results with as few as 8 bins.
As argued before our binning does not introduce any approxima-
tions to the area term or any other term at all; and the only negative
outcome of binning is that not all potential partitions are consid-
ered. Thus, our binning is arguable less inexact than kd-trees, so
we can expect reasonably good quality even with few bins. This



turns out to be true, and even as few as 4 bins produce quite reason-
able results. Using more bins can produce somewhat better quality
depending on the scene, but 16 bins seem to be very close to the
optimum, and adding more planes hardly improves quality, if at all.

To adapt the bin size to the number of triangles, we also tested
a scheme where we choose the number of bins adaptively via K =
4 + 2⌊

√
K⌋, but no appreciable quality difference over 16 bins is

found, except that fewer bins are used at the leaf level, which may
be faster. With only slightly more than 4 leaves at the leaf level,
there is also no need to branch to a accurate sweep version when a
certain threshold is reached—as usually done for kd-trees—so we
use binning throughout the build process.

3.8 Termination

As usual for SAH-based builds, we terminate the recursion until
either a) a certain threshold of triangles is reached (in our case,
usually 2 or 4), b) until the centroid bounds becomes too small (in
which case binning it would not make sense any more), or c) until
the estimated cost is higher than the estimated cost for making a
leaf. These are exactly the conditions used for non-binned builds,
so nothing special has to be done.

4 PARALLELIZATION

As Section 5 will show in more detail, in the way just described
the algorithm is already quite competitive with building a kd-tree.
However, modern CPUs are increasingly parallel, so parallelizing
the build is highly desirable. One often used way of doing this is to
have different threads work on different sub-trees; since sub-trees
are independent of each other (and no memory allocation or global
is required at all), this can be done with a minimum of inter-thread
synchronization. In fact, even access to the node array can be done
without synchronization at all: since we know that a sub-tree for a
given [begin..end) list of triangle IDs has exactly end − begin tri-
angles and requires at most 2(end−begin) nodes in the node array,
we can pre-allocate a subset of nodes for each sub-tree, allowing
each thread to allocate nodes without having to synchronize with
other threads at all.

Of course, the Achilles’ heel for this approach is that one has
to have enough independent sub-trees to work on, which is not the
case until a few partitions have been done. In particular, only one
sub-tree is available for the BVH’s root level, only two at the second
level, etc, resulting in bad scalability. To avoid that scalability bot-
tleneck, we have implemented two different strategies that should,
in theory, load-balance in every stage.

4.1 Mixed horizontal/vertical work sharing

Instead of a sharing the work “vertically” by having each thread
work on a different sub-tree of the BVH, one could also have mul-
tiple threads work on the same binning step, e.g., by working on
separate parts of the triangle array. We call this the “horizontal”
way of parallelization.

4.1.1 Setup

Before any actual partitions are performed, we first perform the
setup phase in parallel. Each of the T thread works on one T’th

of the triangles (with thread t working on triangles [ t∗N
T ..

(t+1)∗N
T )),

and computes each triangles bounding box and centroid as outlined
above. To avoid write conflicts to the global centroid bounds and
triangle bounds, each thread tracks its own global bounds, which
are then merged by thread 0 as soon as all threads have completed
their setup phase.

4.1.2 Horizontal splitting

For the splitting itself, we split the [being..end) interval into T
equally sized blocks (where T is the number of threads), and as-
sign one block to each thread. Load balancing on fixed-sized blocks

is possible, too, but requires additional synchronization, and is un-
likely to yield any improvements, so we stick with this static work
assignment. Since triangles from multiple threads might project to
the same bins, we have each thread have its own set of bins, and
merge those once all threads have finished binning. Each thread t
also determines its own NL,i,t and NR,i,t sums, which are needed in
the next stage.

Thread 0 then performs the two sweeps over the bins (which is
fast enough to not introduce a scalability bottleneck), and deter-
mines the best partition. It also computes a prefix sum over all the

threads’ individual NL,i/NR,i lists, resulting in N
(t)
L,i = ∑

t
i=0 NL,i,t and

N
(t)
R,i = ∑

t
i=0 NR,i,t .

Once these values are determined, all threads then perform the
second sweep over their blocks of triangle IDs, determine which
side the respective triangle ID belongs, and write it into the original
triangle ID list. The triangle ID list offset of the left resp right ID
sequence for any given thread is determined by above mentioned
Nt

L,i and Nt
L,i prefix sums, so all binning and writing of IDs can

again be performed in parallel, without any synchronization at all.

Upon finishing this horizontal list partitioning stage, thread 0 ini-
tializes the BVH node, and starts the recursion. Eventually, the en-
tire implementation is a sequence of code blocks that are separated
by barrier’s, no other synchronization primitives are required. Some
of these code blocks are executed only by thread 0 (such as merg-
ing the individual threads’ bounding boxes), but these are short and
fast; all of the time-consuming code blocks are executed in parallel,
which in theory should provide good load balancing.

4.1.3 Switching from horizontal to vertical

Horizontal parallelization works only high up in the tree, where the
number of triangles to be binned is far higher than the number of
threads. However, one can use horizontal parallelization for those
splits that have many triangles, and eventually switch to vertical
parallelization once the sub-trees get small. To do this, we start
with horizontal parallelization, and have it proceed until a given
threshold of triangles is reached; all such sub-trees are recorded in
an array (with their respective begin/end interval, triangle bounds,
and centroid bounds). Once all horizontal splits are performed, we
switch to vertical parallelization, and proceed for each sub-tree as
outlined in the previous section.

Since we cannot determine the number of sub-trees in advance,
we perform dynamic load balancing on these, using an atomic
counter that specifies the next sub-tree to be built. Even though
we load balance dynamically, the first implementation scaled im-
perfectly in that stage, since the sub-trees have different sizes, and
if the last sub-tree by chance is large, all other threads will run idle.
We solve this by sorting the sub-trees by descending size before
starting this process, which essentially resolves this problem.

In theory, the algorithm outlined above should scale near per-
fectly until specific hardware limitations—such as available mem-
ory bandwidth—are reached. However, on the specific hardware
we used (see below) the resulting scalability was much poorer than
expected, even though the machine showed near-perfect utiliza-
tion (“top” showing 780+% utilization on a 8-core architecture).
Though this indicates that we did indeed hit the memory bandwidth
wall, we also investigated a different build alternative that is similar
in spirit to parallel grid building [9], and BIH-style BVH building.

4.2 Grid-based binning

In the algorithm described in the previous section, the initial setup
phase and the final vertically parallelized sub-tree phases contain
almost no synchronization at all. Thus, any potential source of non-
scalable synchronization would be in the horizontal splitting phase.
To avoid that stage, we can also follow the same observation made



model #tris sweep binned BIH hybrid hybrid hybrid hybrid grid grid grid grid
#threads→ 1 1 1 1 2 4 8 1 2 4 8

fairy 174K 860 ms 83 ms 36 ms 98 ms 61 ms 42 ms 70 ms 87 ms 45 ms 30 ms 21 ms
100 % 93 % 77 % 98 % 98 % 98 % 98 % 95 % 95 % 95 % 93 %

conference 282K 1.32 s 139 ms 65 ms 167 ms 95 ms 63 ms 96 ms 151 ms 78 ms 44 ms 26 ms
100 % 91 % 82 % 91 % 91 % 91 % 91 % 88 % 88 % 88 % 86 %

exp. dragon252K 1.16 s 109 ms 44 ms 128 ms 74 ms 47 ms 70 ms 110 ms 57 ms 31 ms 20 ms
100 % 98 % 80 % 98 % 98 % 100 % 98 % 98 % 98 % 98 % 98 %

blade 1.5M 10.2 s 1.09 s 412 ms 1.16 s 615 ms 392 ms 294 ms 971 ms 491 ms 284 ms 152 ms
100 % 100 % 76 % 101 % 101 % 101 % 101 % 101 % 101 % 101 % 101 %

thai 10M 82 s 7.4 s 3.3 s 7.9 s 4.2 s 2.7 s 1.9 s 6.8 s 3.5 s 2.0 s 1.1 s
100 % 99 % 87 % 100 % 100 % 100 % 100 % 99 % 99 % 99 % 99 %

Table 1: Absolute build times (top row for each scene), and relative traversal performance (bottom row, excluding build time, relative to the sweep
build) for the various algorithms applied to four different scenes. The individual results are discussed in the text.

by Wächter et al. [16]: when repeatedly subdividing along the spa-
tial median, we can perform several splits s a priori, resulting in
a regular grid of 2sx × 2sy × 2sz voxels. We can then bin all trian-
gles into these 2sx+sy+sz bins, build the resulting 2sx+sy+sz sub-trees
in parallel, and simply re-fit the boxes for the top s levels of the
BVH to fit the respective sub-trees. The grid resolution can be cho-
sen manually, or such as to reach a certain number of sub-trees per
thread; we currently chose around 10 sub-trees per thread.

Since that binning is a single sweep over all triangles, it can be
parallelized trivially. We have each thread working on one T ’th
of the triangles, and give each thread its own grid of bins to avoid
write conflicts. During the binning, each thread directly writes its
triangle IDs into a dynamically sized array for each bin. Once all
threads have binned their triangles, thread 0 merges the bins, and
determines each sub-tree’s offset into the triangle ID array as out-
lined above, after which the threads copy their respective grid cells’
ID lists into the corresponding position in the triangle IDs array.

Again, all stages of the algorithm are parallelized, except a few
merge stages that only operate on a few, rather small, voxel grids.
Overall, this algorithm executes far fewer barrier operations than
the hybrid horizontal/vertical algorithm above, mostly because it
operates in a single pass, while the algorithm outlined above is
applied recursively. Like the linear BIH build, the algorithm also
avoid most of the top-level split operations, saving a significant
amount of operations. On the downside, however, it suffers from
the same issues as the linear BIH build: no SAH is used for the top
splits at all, potentially resulting in lower rendering performance.
In addition, teapot-in-a-stadium scenes may break the vertical sub-
tree building stage at the end, since such scenes could project most
of their triangles into the same bin. This does, actually, happen in
practice, requiring some manual parameter tuning to select the right
number of bins.

5 RESULTS

So far, we have intentionally omitted any performance results. We
have implemented our system on a 8 core, 2.6 GHz Clovertown
(Xeon X5355) system running inside a Dell Precision 630 box (us-
ing 8x2GB relatively slow 533MHz FBDIMM DDR2 SDRAM).
The machine is running Linux, and achieves near-perfect scalabil-
ity during rendering. The system we implemented our algorithms
in is a variant of the DynBVH system [18]. No asynchronous, lazy,
or on-demand builds are used, nor selective updating/restructuring,
nor is any additional information passed by the application. All data
structures are rebuilt from scratch for every frame, with the trian-
gles and vertices passed by the application as a “soup” of triangles.

Using the algorithms described above, we have three algo-
rithms we can compare: the single-threaded binning, the hy-
brid parallel binning, and the grid-based binning. All of those
algorithms are reasonably well optimized, even though the fo-
cus for the parallel algorithms has been on scalability, and even
though each algorithm received only about one day of program-
ming/debugging/optimization time.

To put those three algorithms into perspective, we compare them
to our “gold standard” SAH sweep build outlined in [18], as well to
a reasonably well optimized BIH-style build that was implemented
in that code base some time ago. Both sweep and BIH-style build
are single-threaded. All experiments are run with the same param-
eter settings, using the default parameters for the respective algo-
rithm; no per-scene parameter tweaking is being done.

5.1 Comparison of algorithms

We have run these different build methods on a variety of typical
ray tracing scenes: the Fairy Forest scene, the conference scene, the
Blade model, and the Thai statue. Among those, the Blade and Thai
statue are scanned models with relatively uniform, well-behaved
triangle distribution for which a median build can be expected to
yield good performance. The Fairy Forest has a somewhat more
complex structure, as has the conference room.

Table 1 shows, for all of these models and all of the above-
mentioned algorithms, the absolute build times (in milliseconds), as
well as the relative render performance compared to the gold stan-
dard sweep build. We have chosen absolute numbers for the build
times since those depend only on the model; and relative numbers
for the render performance since those depend on factors like what
shading is used, how many rays are traced, etc.

5.1.1 Deterioration in build quality

Regarding render performance, Table 1 shows that a spatial me-
dian BIH-build has is notably slower, in particular for models with
non-uniform triangle distributions like the conference model, where
render performance drops by roughly one third. However, it is also
by far the fastest in (single-threaded) building, outperforming even
our binned build by about 2−2.5×4.

The single-threaded binning yields render performance roughly
comparable to the sweep build, being slightly slower in the fairy and
conference scenes, but actually yielding higher render performance
for the Blade and Thai statue models. That binning can sometimes
yield higher performance than what we had declared as a “gold
standard” is due to the fact that the SAH itself is only a heuristic,
and the split with lowest estimated cost is not necessarily the glob-
ally best one. Eventually, when using enough bins, the binned build
converges to the same performance as achieved by the sweep build.

The hybrid build performs exactly the same partitions as the
single-threaded binning (just in parallel), and thus ends up with the
same render performance. The grid build uses spatial median sub-
division during the grid build phase, and thus achieves somewhat
worse quality near the BVH’s root, even though it is not as bad as
the BIH since it eventually reverts to an SAH in the sub-tree stage.
Note that a target of 5 sub-trees per thread forces several spatial
subdivisions even for a single build thread, so the single-threaded
grid performance is lower than the single-threaded binning.

4To a large degree, this is related to the fact that a BIH on average seems

to be much shallower than a SAH BIH, and that it has much less nodes.



5.1.2 Absolute build time

As mentioned before, for single-threaded builds the BIH is still the
fastest to build, which makes it interesting even in the face of its
adverse effect on render performance. The single-threaded binning
is about 2− 2.5× slower than the BIH build, but roughly one or-
der of magnitude faster than the sweep build, which makes it a nice
compromise between the BIH and the sweep builds. In particu-
lar, the single-threaded binning enables interactive from-scratch re-
builds for both the fairy and the conference room, at around 12
resp. 7 rebuilds per second. For the grid-based parallelization on 8
threads, these numbers rise to 38 resp. 48 rebuilds per second.

5.1.3 Comparison to kd-tree builds

These numbers also compare quite favorably to single-threaded kd-
tree builds, which Popov et al. and Hunt et al. reported at around
150,000 and 300,000 triangles per second. Even in a single thread,
our binned build achieves 1.35–2.3 million triangles per second
(1.35m for the Thai statue, 1.38m for the blade, 2m for the con-
ference, 2.1m for the fairy, and 2.3m for the dragon). This indicates
that our algorithm can build a BVH between 4 and 13 times faster
than similar techniques for a kd-tree, while not showing any appre-
ciable deterioration in render performance at all. For the grid-based
parallelization, we reach rates of 8.3m–12.6m triangles per second.

5.1.4 Scalability

For both the grid-based and the hybrid parallelization schemes,
scalability is far below expectations. Scalability is reasonably good
for 2 threads, and still acceptable for 4, but in all our experiments,
going from 4 to 8 threads gives rather low improvement overall,
sometimes even leading to a slowdown. As mentioned above, we
first suspected a bug in our hybrid algorithm, and implemented the
grid mostly as a reference solution. Though both algorithms re-
quired some careful tuning of the implementation to avoid scalabil-
ity bottlenecks (such as sorting the sub-trees by size), their current
implementations have only trivially short non-parallelized sections,
which cannot explain this behavior. Also, ’top’ shows almost full
CPU utilization for both algorithms, which indicates that all threads
are active.

Apart form actually doing more work–which is not the case–this
behavior can only be explained if the actual operations get more
costly; and since the cost of arithmetic operations is constant, it
can only mean that memory accesses get more costly due to cache
misses or insufficient bandwidth. A closer look reveals that this is
indeed the case even for a relatively small number of threads. In
fact, even the setup state—in which we compute but one bound-
ing box and centroid for each triangle—hits the memory wall very
quickly. The setup phase consumes roughly 20-25% of total build
time, and essentially stops scaling after around 4 threads.

On the positive side, this means that we can build a complete
BVH for only around 4× the cost of computing the triangle bounds,
and that no algorithm (including re-fitting) that computes each tri-
angle’s bounding box could be more than 4× faster than ours (at
least on that particular hardware).

Much better scalability for building data structures has been re-
ported by both Ize et al. [9] and Shevtsov et al. [13], but on different
hardware. In particular, Ize et al. use a NUMA architecture in which
each processor has its own dedicated memory (i.e., the individual
processors do not have to share bandwidth). It remains to be seen
whether our algorithm achieves better scalability on such a memory
architecture, but that has not been investigated, yet.

Even with unsatisfactory scalability, parallelization still gives
a huge benefit, allowing roughly 2× faster builds than a (single-
threaded) BIH build, and allowing quite interactive builds for all
models except the Thai statue, and achieving rates of up to 12.6
million triangles per second for the exploding dragon model, and
9.1 million for the Thai statue.

5.2 Combined system performance

In addition to just evaluating the build performance, we have also
integrated our parallel builder into the DynBVH architecture, and
evaluated the performance of the whole system. The system is fully
synchronous, meaning there is a stage in which the application com-
putes the triangles (via interpolating from predefined key-frames), a
build stage in which our algorithm is being used, a render stage with
tile-based dynamic load balancing, and a display stage in which the
image is displayed.

The render stage is dynamically load-balanced, and usually
scales very well. Updating the vertices and computing the trian-
gle records is also parallelized, though quite simplistically so with
a single openmp statement each. With our current graphics driver,
display is a bottleneck, and will not allow for more than 20–30
frames per second at 1024× 1024 pixels. For the build stage, we
use the grid-based parallel binning, on all eight threads.

To apply our system to a case where simple re-fitting would
absolutely not work, we have taken the same model that Yoon et
al. used in their selective restructuring [22], which they have gra-
ciously made available to us. This scene has around 252,000 trian-
gles that undergo quite severe motion (see Figure 1) as soon as the
dragon disintegrates after being hit by the bunny.

We render the model with simple diffuse shading and shadows
from one point light source. All triangles are animated on the fly
and all data structures are re-built from scratch. Doing so, we
achieve 11–15 frames per second including display (around 13–21
with display turned off) for the views seen in Figure 1. Performance
does drop by about a factor of two over the course of this animation;
however, this is solely due to the rendering stage getting slower be-

Figure 2: Combined system performance for some commonly used
dynamic ray tracing benchmarks on a dual 2.66 GHz Clovertown
(Xeon X5355) system with 8x2GB 533MHz memory. From top left
to bottom right: UNC balls (148K triangles, 20 frames/second); UNC
cloth simulation (92K, 24fps); UNC exploding dragon (252K, 14fps);
wood-doll (5K, 60+fps); hand (16K, 48fps); marbles (9K, 56fps);
toasters (11K, 36fps); Fairy Forest (174K, 11.5fps), and Bart-2x2
(part of the BART museum, replicated 2x2 times; 262K at 7.1fps).
Performance corresponds to rendering at 1024 × 1024 pixels with
frame buffer display turned off (i.e., no CPU-to-GPU pixel transfer),
but including smooth vertex interpolation, BVH building, computation
of triangle acceleration data, ray tracing, Phong shading, shadows (1
point light), and texturing (where applicable).



cause of the chaotic triangle distribution. Build time stays roughly
constant throughout the animation at around 20ms per build, irre-
spective of triangle distribution. Though no special tuning was per-
formed for this scene, these results seem quite competitive with the
ones presented by Yoon et al., even after accounting for the (severe)
difference in hardware horsepower. Though with as severe differ-
ences in hardware all comparisons are apples and oranges, anyway,
it seems that even after accounting for the faster hardware, we can
rebuild the full BVH from scratch in about the same it takes for
selectively restructuring it. However, a more detailed comparison
would be very interesting, in particular if parallelization and scala-
bility issues are taken into account.

Finally, we have also run our system on a variety of typical ray
tracing benchmarks (see Figure 2). Though all examples include
full animation, full rebuilds per frame, and at least reasonable shad-
ing (including Phong shading, shadows, and texturing), we achieve
quite interactive frame rates for all the models we tested.

5.3 Summary and Conclusion

In this paper, we have investigated how to build SAH-based BVHs
from scratch as quickly as possible, by employing the same tech-
niques that have proven so successful for kd-trees. While we do,
in many aspects, use exactly the same techniques, it turns out that
these seem to work at least as good for BVHs, and often even bet-
ter. Consequently, we achieve single-threaded from-scratch rebuild
rates (i.e., triangles per second) that are up to 10× higher than com-
parable rates published for kd-trees.

Compared to previous BVH build algorithms, we are still slower
than Wächter’s BIH-style build, but achieve higher rendering per-
formance; and at roughly the same render performance, we outper-
form sweep builds by roughly 10×.

We have also presented two different schemes for parallelizing
our algorithm, both of which should scale well in theory, but both
of which seem to hit the memory wall at around 3-4 threads. Con-
sequently, both schemes do not scale to more than 4 threads on
our current hardware setup, but they achieve an up to 4× speedup
over the single-threaded variants, eventually reaching rates of sev-
eral million triangles per second from-scratch rebuild performance.

Integrated into a complete ray tracer for animated scenes, our
parallel binned build algorithm allows for rendering even the ex-
ploding dragon scene at around 5-10 frames per second including
full rebuilds from scratch, ray tracing, shading, shadows, and dis-
play, which is quite competitive with previously published results.

In future work, we are most interested in investigating the scal-
ability of our algorithms on different memory architectures, and
comparing it to the parallel grid build by Ize et al. Coupling our
parallel binning with Hunt’s from-hierarchy strategy would also be
interesting, in particular when considering the parallel aspect.
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