
On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N)
Ingo Wald† Vlastimil Havran�

†SCI Institute, University of Utah �Czech Technical University in Prague

ABSTRACT

Though a large variety of efficiency structures for ray tracing exist,
kd-trees today seem to slowly become the method of choice. In par-
ticular, kd-trees built with cost estimation functions such as a sur-
face area heuristic (SAH) seem to be important for reaching high
performance. Unfortunately, most algorithms for building such
trees have a time complexity of O(N log2 N), or even O(N2).
In this paper, we analyze the state of the art in building good kd-
trees for ray tracing, and eventually propose an algorithm that builds
SAH kd-trees in O(N log N), the theoretical lower bound.

1 INTRODUCTION

Over the last two decades, ray tracing has become a mature field,
and a large variety of different acceleration schemes been proposed,
including Octrees, Bounding Volume Hierarchies (BVHs), different
variants of grids, kd-trees, etc (see, e.g., [2, 6]).

Though all these techniques have their merits, kd-trees recently
seem to establish themselves as the most widely used technique. In
particular since the appearance of fast – and kd-tree-based – coher-
ent packet tracing [30, 26] and frustum traversal [17] kd-trees are
increasingly believed to be the “best known method” for fast ray
tracing [20]. Both concepts become particularly interesting if the
kd-tree is built to minimize the number of traversal and intersection
steps, which today is usually done using a heuristic cost estimate,
the Surface Area Heuristic (SAH) [13]. Kd-trees have recently re-
ceived lots of attention, and today are well understood in building
them to be efficient, in traversing them quickly, and even in how to
optimize low-level implementation and memory layout.

So far however, research on using kd-trees in ray tracing has al-
most exclusively concentrated on traversing them quickly, as well
as on building them to be efficient, i.e., such that they minimize
the expected number of intersections and traversal steps during ren-
dering. The related question – the cost and complexity of building
them – has been widely ignored. Construction time has historically
been insignificant compared to rendering time, and was mostly ig-
nored. However, this lack of fast construction algorithms now be-
comes a problem, as in particular good kd-trees take considerable
time to build, and often have a time complexity of O(N log2 N)
or even O(N2). Despite growing CPU performance, this becomes
problematic given the current trend towards more and more realistic
– and more complex – scenes.

1.1 Contributions
In this paper, we focus on three contributions:

1. A comprehensive recap of building good kd-trees using a Sur-
face Area Heuristic. We will not introduce any new tech-
niques, but combine the often scattered knowledge on kd-tree
construction in a coherent, concise and consistent form.

2. A discussion of three schemes for building SAH-optimized
kd-trees, and an analysis of their computational complexity.

3. A algorithm that builds an SAH kd-tree in O(N log N), the
asymptotic lower bound for building kd-trees.

Our emphasis is on building highly efficient kd-trees in a robust
and asymptotically efficient way. We do not attempt fast rebuilds
for interactive applications ([4, 21, 28, 12, 25]. . .), but instead
focus on the algorithmic aspects only, and ignore any low-level
optimizations—though our implementation is reasonably efficient,
in case of doubt we use high-level, templated, and highly parame-
terizable code.

2 BUILDING KD-TREES FOR RAY TRACING

Before discussing the details of our O(N log N) construction algo-
rithm, we will first summarize the state of the art in building good
kd-trees. This provides the background for the rest of the paper, and
will introduce the concepts and terminology used later on.

In the following, we will consider a scene S made up of N tri-
angles. A kd-tree over S is a binary tree that recursively subdi-
vides the space covered by S: The root corresponds to the axis-
aligned bounding box (AABB) of S; interior nodes represent planes
pk,ξ(x) : xk = ξ that recursively subdivide space perpendicular to
the coordinate axis; leaf nodes store references to all the triangles
overlapping the corresponding voxel. Essentially, all kd-tree con-
struction schemes follow the same recursive scheme:

Algorithm 1 Recursive KD-tree build
function RecBuild(triangles T , voxel V) returns node

if Terminate(T,V) then
return new leaf node(T)

p = FindP lane(T, V) {Find a “good” plane p to split V }
(VL, VR) = Split V with p
TL = {t ∈ T |(t ∩ VL) 6= ∅
TR = {t ∈ T |(t ∩ VR) 6= ∅
return new node(p, RecBuild(TL, VL), RecBuild(TR, VR))

function BuildKDTree(triangles[] T) returns root node
V = B(T) {start with full scene}
return RecBuild(T ,V)

Obviously, the structure of a given kd-tree – i.e., where exactly
the planes are placed, and when voxels are created – directly in-
fluences how many traversal steps and triangle intersections the ray
tracer has to perform. With today’s fast ray tracers, the difference
between a “good” and a naı̈vely built kd-tree is often a factor of
two or more [26]. For the recently proposed hierarchical traversal
schemes, well built kd-trees are even reported to be up to (quote)
“several times faster than a mediocre kd-tree” (see [20]).

2.1 Naı̈ve, “spatial median” KD-Trees

Eventually, all the intelligence in a kd-tree construction scheme lies
in where to place the splitting plane p, and in determining when
to stop the recursion. One of the most trivial - and thus, quite often
used - methods for building kd-trees is the so called “spatial median
splitting”, in which the dimension pk is chosen in round robin fash-
ion, and the plane is positioned at the spatial median of the voxel,

pk = D(V) mod 3 and pξ =
1

2
(Vmin,pk + Vmax,pk),

where D(V) is the current subdivision depth.

Usually, subdivision is performed until either the number of tri-
angles falls below a certain threshold KminTris, or until the subdi-
vision depth exceeds a certain maximum depth KmaxDepth:

Terminate(T, V) = |T | ≤ KtriTarget ∨D(V) ≥ KmaxDepth.

3 THE SURFACE AREA HEURISTIC (SAH)

Spatial median splitting is quite simplistic, and an abundance of
heuristic, ad-hoc techniques to build better kd-trees is available
(see, e.g., [6, 5]. In particular techniques that maximize “empty
space” – preferably close to the root of the tree – seem to be most
successful. Nevertheless, applying these techniques in practice is
often problematic: First, they require scene-specific “magic con-
stants” to work well; second, in many situations different heuristics
disagree on what to do, and choosing the right one is non-trivial.

To remedy this, several researchers [3, 13] [22, 6] have inves-
tigated the factors that influence the performance of hierarchical
spatial subdivision, and have derived a more profound approach,
the surface area heuristic (SAH). Essentially, the SAH considers
the geometry of splitting a voxel V with plane p – i.e., the resulting
child voxel VL and VR, as well as the numbers NL and NR over-
lapping these two, respectively – and estimates the expected cost of
traversing the such-split voxel. Therefore, the SAH makes several
assumptions:

(i) That rays are uniformly distributed, infinite lines; i.e., that
they are uniformly distributed, and neither start, nor terminate,
nor get blocked inside a voxel.

(ii) That the cost for both a traversal step and for a triangle inter-
section are known, and are KT and KI , respectively.

(iii) That the cost of intersecting N triangles is roughly NKI , i.e.,
directly linear in the number of triangles1.

Using these assumptions then allows for expressing the cost of a
given configuration: For uniform distributed lines and convex vox-
els, geometric probability theory [18] tells us that for a ray known
to hit a voxel V the conditional probability P of also hitting a sub-
voxel Vsub ⊂ V is

P[Vsub|V] =
SA(Vsub)

SA(V)
, (1)

where SA(V) is the surface area of V . The expected cost CV (p)
for a given plane p then is one traversal step, plus the expected cost
of intersecting the two children,

CV (p) = KT + P[Vl|V]C(Vl) + P[Vr|V]C(Vr). (2)

3.1 Local Greedy SAH Heuristic

Expanding (2), the cost of a complete tree T is

C(T) =
X

n∈nodes

SA(Vn)

SA(VS)
KT +

X
l∈leaves

SA(Vl)

SA(VS)
KI , (3)

where VS is the AABB of the complete scene S. The best kd-tree T
for a scene S would be the one for which equation 3 is minimal. The
number of possible trees, however, rapidly grows with scene size,
and finding the globally optimal tree today is considered infeasible
except for trivial scenes.

1In theory, adding a constant to simulate the setup cost for traversing the
leaf (i.e., a leaf cost of 1KT +NKI) should be more accurate, but—at least
in our experiments—in practice is worse, probably because it punishes “flat
cells” at the sides, which are often favorable in architectural scenes.

Instead of a globally optimal solution, one therefore uses a “lo-
cally greedy approximation”, where the cost of subdividing V with
p is computed as if both resulting children would be made leaves,

CV (p) ≈ KT + P[VL|V]|TL|KI + P[VR|V]|TR|KI (4)

= KT +KI

„
SA(VL)

SA(V)
|TL|+

SA(VR)

SA(V)
|TR|

«
. (5)

This is a gross simplification, and tends to overestimate the correct
cost, as TL and TR are likely to be further subdivided, and will
thus have lower cost than assumed. Nevertheless, in practice this
approximation works well, and – though many theoretically better
approximation have been tried – so far no consistently better ap-
proximation could be found.

3.2 Automatic Termination Criterion

Apart from a method for estimating the cost of any potential split
p, the SAH also provides an elegant and stable way of determining
when to stop subdivision: As the cost of leaf can be well modeled
as CasLeaf = KI |T |, further subdivision does not pay off if even
the best split is more costly then not splitting at all, i.e.,

Terminate(V, T) =

(
true ; minp CV (p) > KI |T |
false ; otherwise

(6)

This local approximation can easily get stuck in a local minimum:
As the local greedy SAH overestimates CV (p), it might stop sub-
division even if the correct cost would have indicated further sub-
division. In particular, the local approximation can lead to prema-
ture termination for voxels that require splitting off flat cells on the
sides: many scenes (in particular, architectural ones) contain geom-
etry in the form of axis-aligned boxes (a light fixture, a table leg or
table top, . . .), in which case the sides have to be “shaved off” until
the empty interior is exposed. For wrongly chosen parameters, or
when using cost functions different from the ones we use (in par-
ticular, ones in which a constant cost is added to the leaf estimate),
the recursion can terminated prematurely. Though this pre-mature
exit could also be avoided in a hardcoded way—e.g., only perform-
ing the automatic termination test for non-flat cells—we propose to
follow our formulas, in which case no premature exit will happen.

3.3 Modifications and Extensions

In practice, most of the assumptions used in deriving equation 5
are at least questionable: Rays will usually not pass unoccluded
through populated voxels; the ray density will usually not be uni-
form; the cost of the left and right half should not be linear (but
rather logarithmic), both leaf, left, and right half should have a con-
stant factor simulating the traversal step; memory, cache, or CPU-
specific effects (SIMD) are gravely neglected; etc.

Nevertheless, in practice the basic SAH as explained above—
local greedy plane selection, linear leaf cost estimate, and automatic
termination criterion—often works best, and only few modifica-
tions are known to consistently yield better improvements. Among
those, the most common is to favor splits that cut off empty space
by biasing the cost function; if either NL or NR gets zero, the ex-
pected cost of the split is reduced by a constant factor. I.e., the
expected costs get multiplied by

λ(p) =

(
80% ; |TL| = 0 ∨ |TR| = 0

1 ; otherwise
(7)

If the ray tracer supports “termination objects” [6, 17], a similar bias
can also be used for those cases where the split plane is entirely cov-
ered by triangles, which however works almost exclusively for cer-
tain architectural scenes. To keep the automatic termination crite-
rion from getting stuck in a local minimum, it has also been reported

to help if subdivision is continued for a certain number of steps even
though the termination criterion would advise not to [6, 16]. This,
however, has proven to be quite hard to master for general scenes.
Finally, instead of only using the cost-based termination criterion
some implementations additionally use the maximum depth crite-
rion, usually to reduce memory usage.

3.4 Split Candidates and Perfect Splits

So far, we have defined the actual procedure for estimating the cost
of p once NL, NR, VL and VR are known. As there are infinitely
many potential planes p, one needs a more constructive approach:
For any pair of planes (p0, p1) between which NL and NR do not
change, C(p) is linear in the position xp of p. Thus, C(p) can have
its minima only at those - finitely many - planes where NL and NR

change [6]. As we are only interested in these minima, we will in
the following refer to these planes as “split candidates”.

One simple choice of split candidates is to use the 6 planes defin-
ing the triangle’s AABB B(t). Though this is easiest to code and
fastest to build, it is also inaccurate, as it may sort triangles into vox-
els that the triangle itself does not actually overlap. The intuitive fix
of performing some a-posterior triangle-voxel overlap test does not
work, either: For small voxels it frequently happens that the voxel
is completely enclosed in B(t), and thus no split candidate could be
found at all. The accurate way of determining the candidate planes
thus is to first clip the triangle t to the voxel V , and use the sides
of the clipped triangle’s AABB B(t ∩ V) (also see [9, 6]). As this
is significantly more accurate then the AABB, the candidates such
produced are also often called “perfect splits” (in [7], this technique
is reported to give an average speedup of 9–35%). During clipping,
special care has to be taken to correctly handle special cases like
“flat” (i.e., zero-volume) cells, or cases where numerical inaccura-
cies may occur (e.g., for cells that are very thin compared to the
size of the triangle). For example, we must make sure not to “clip
away” triangles lying in a flat cell. Note that such cases are not rare
exceptions, but are in fact encouraged by the SAH, as they often
produce minimal expected cost.

3.5 Accurate Determination of NL and NR

To compute equation 5, for each potential split p we have to com-
pute the number of triangles NL and NR for VL and VR, respec-
tively. Here as well, a careful implementation is required. For
example, an axis-aligned triangle in the middle of a voxel should
result in two splits, generating two empty voxels and one flat,
nonempty cell. This in fact is the perfect solution, but requires spe-
cial care to handle correctly during both build and traversal. For flat
cells, we must make sure not to miss any triangles that are lying ex-
actly in the flat cell, but must make sure that non-parallel triangles
just touching or penetrating it will get culled (as in the latter case
t ∩ p has zero area, and cannot yield an intersection).

Quite generally, determining NL and NR via a standard triangle-
voxel overlap test may result in sorting triangles into a voxel even
if they overlap in only a line or a point, and triangles lying in in the
plane p may be sorted into both halves. Both cases are not actually
wrong, but inefficient. Thus, the most exact solution requires to
actually split T into three sets, TL, TR, TP , the triangles having
non-zero overlap for VL \ p, VR \ p, and p,

TL = {t ∈ T |Area(t ∩ (VL \ p)) > 0} (8)
TR = {t ∈ T |Area(t ∩ (VR \ p)) > 0} (9)
TP = {t ∈ T |Area(t ∩ p) > 0}, (10)

where VL \ p is the part of the voxel VL that does not lie on p
(p forms one of VL’s sides). Once these sets are known, we can
evaluate eq. 5 twice – once putting TP with TL, and once with TR

– and select the one with lowest cost (see Algorithm 2).

Algorithm 2 Final cost heuristic for a given configuration.
function C(PL, PR, NL, NR) returns (CV (p))

return λ(p)(KT +KI(PLNL + PRNR))

function SAH(p,V ,NL,NR,NP) returns (Cp, pside)
(VL, VR) = SplitBox(V, p)

PL = SA(VL)
SA(V)

; PR = SA(VR)
SA(V)

cp→L = C(PL, PR, NL + Np, NR)
cp→R = C(PL, PR, NL, NR + NP)
if cp→l < cp→l then

return (cp→L,LEFT)
else

return (cp→R,RIGHT)

4 ON BUILDING SAH-BASED KD-TREES

In the preceding sections, we have defined the surface area heuris-
tic, including what split candidates to evaluate, how to compute NL,
NR, NP , and CV , and how to greedily chose the plane. In this sec-
tion, we present three different algorithms to build a tree using this
heuristic, and will analyze their performance. All three algorithms
build the same trees, and differ only in their efficiency in doing that.

All construction schemes will make use of recursion, so we will
need some assumptions on how that recursion behaves. In absence
of any more explicit knowledge, we will use the – quite gross – as-
sumptions that subdividing N triangles yields two lists of roughly
the size N

2
, and that recursion proceeds until N = 1. As an exam-

ple, let us first consider the original median-split kd-tree: The cost
T (N) for building a tree over N = |T | triangles requires O(N)
operations for sorting T into TL and TR, plus the cost for recur-
sively building the two children, 2T (N

2
). Expansion yields

T (N) = N + 2T (
N

2
) = · · · =

log NX
i=1

2i N

2i
= N log N.

Note that due to its relation to sorting, O(N log N) is also the the-
oretical lower bounds for kd-tree construction.

4.1 Naı̈ve O(N2) Plane Selection

For spatial medial splitting, determining the split plane is trivial,
and costs O(1). For a SAH-based kd-tree however, finding the split
plane is significantly more complex, as each voxel V can contain up
to 6N potential split candidates. For each of these we have to de-
termine NL, NR, and NP . In its most trivial form, this can be done
by iterating over each triangle t, determining all its split candidates
Ct, and – for each – determine NL, NR, and NP by computing TL,
TR, and TP according to Section 3.5 (see Algorithm 3).

Classifying N triangles costs O(N), which, for |C| ∈ O(N)
potential split planes amounts to a cost of O(N2) in each partition-
ing step. During recursion, this O(N2) partitioning cost sums to

T (N) = N2 + 2T (
N

2
) =

logNX
i=1

2i

„
N

2i

«2

= N2
X

2−i ∈ O(N2).

4.2 O(N log2 N) Construction

Nevertheless, O(N2) algorithms are usually impractical except for
trivially small N . Fortunately, however, algorithms for building the
same tree in O(N log2 N) are also available, and widely known
(see, e.g., [14, 23], the latter even including source code). Though
this algorithm is sufficiently described in these publications, we will

Algorithm 3 Algorithm for naı̈ve O(N2) plane selection

function PerfectSplits(t, V) returns {p0, p1, ...}
B = Clip t to V {consider “perfect” splits}
return

S
k=1..3((k, Bmin,k) ∪ (k, Bmax,k))

function Classify(T, VL,VR,p) returns (TL, TR, TP)
Tl = Tr = Tp = ∅
for all t ∈ T

if t lies in plane p ∧Area(p ∩ V) > 0 then
TP = TP ∪ t

else
if Area(t ∩ (VL \ p)) > 0 then TL = TL ∪ t
if Area(t ∩ (VR \ p)) > 0 then TR = TR ∪ t

function Naı̈veSAH::Partition(T, V) returns (p,Tl,Tr)
for all t ∈ T

(Ĉ, p̂side) = (∞, ∅) {search for best node:}
for all p ∈ PerfectSplits(t, V)

(VL, VR) = split V with p
(TL, TR, TP) = Classify(T, VL, VR, p)
(C, pside) = SAH(V, p, |TL|, |TR|, |TP |)
if C < Ĉ then

(Ĉ, p̂side) = (C, pside)
(Tl, Tr, Tp) = Classify(T, Vl, Vr, p)
if (p̂side = LEFT) then

return (p̂, Tl ∪ Tp, Tr)
else

return (p̂, Tl, Tr ∪ Tp)

also derive it here in detail. Our final O(N log N) will be derived
from this O(N log2 N) algorithm, and will share much of the no-
tation, assumptions, and explanations. it can thus be best explained
side by side with the O(N log2 N) algorithm.

Since the O(N2) cost of the naı̈ve variant is mainly due to the
cost of computing NL, NR, and NP , improving upon the complex-
ity requires to compute these values more efficiently. As mentioned
before, these values only change at the split candidate planes. For
each such plane p = (pk, pξ), there is a certain number of triangles
starting, ending, or lying in that plane, respectively. In the follow-
ing, we will call these numbers p+, p−, and p|, respectively.

Let us consider that these p+, p−, and p| are known for all p.
Let us further consider only one fixed k, and assume that all p’s
are sorted in ascending order with respect to pk. Then, all NL,
NR, and NP can be computed incrementally by “sweeping” the
potential split plane over all possible plane positions pi: For the
first plane p0, by definition no planes will be to the left of p0, p

|
0

triangles will lie on p0, and all others to the right of it, i.e.,

N
(0)
l = 0 N (0)

p = p
|
0 N (0)

r = N − p
|
0.

From pi−1 to pi, NL, NR, and NP will change as follows:

1. The new NP will be p
|
i; these p

|
i triangles will no longer be in

VR. The triangles on plane p
|
i−1 will now be in VL

2. Those triangles having started at pi−1 now overlap VL.
3. Those triangles ending at pi will no longer overlap VR.

For NL, NR, and NP , this yields three simple update rules:

N
(i)
L = N

(i−1)
L + p

|
i−1 + p+

i−1 (11)

N
(i)
R = N

(i−1)
R − p

|
i − p−i (12)

N
(i)
P = p

|
i−1 (13)

To implement this incremental update scheme, for each pi we need
to know p+

i , p−i , and p
|
i. First, we fix a dimension k. For this k, we

iterate over all triangles t, generate t’s perfect splits (by computing
B = B(t ∩ V), see Section 3.4), and store the “events” that would
happen if a plane is swept over t: If the triangle is perpendicular to
k, it generates a “planar event” (t, Bk,min, |), otherwise it generates
a “start event” (t, Bk,min, +) and a “end event” (t, Bk,max,−).
Each event e = (et, eξ, etype) consists of a reference to the triangle
having generated it, the position eξ of the plane, and a flag etype

specifying whether t starts, ends, or is planar at that plane.
Once all events for all triangles are generated, we sort the event

list E by ascending plane position, and such that for equal plane po-
sition end events precede planar events, which precede start events.
For two events a and b this yields the ordering

a <E b =

(
true ; (ax < bx) ∨ (ax = bx ∧ τ(a) < τ(b))

false ; otherwise,

where τ(etype) is 0 for end events, 1 for planar events, and 2 for
start events, respectively.

When iterating over this <E-sorted E, by construction we first
visit all events concerning p0, then all those concerning p1, etc. Fur-
thermore, for a given sequence of pi-related events we first visit all
ending events, then all planar events, and finally all starting events.
Thus, p+

i , p
|
i, and p

|
i can be determined simply by counting how

many events for the same type and plane one has encountered. Now,
all that has to be done is to run this algorithm for every dimension
k, and keep track of the best split found, p̂ (see Algorithm 4).

Algorithm 4 Incremental sweep to find p̂.
function PlaneSweep::FindPlane(T, V) returns best p̂

(Ĉ, p̂) = (∞, ∅) {initialize search for best node}
{consider all K dimensions in turn:}
for k = 1..3
{first, compute sorted event list:}
eventlist E = ∅
for all t ∈ T

B = ClipTriangleToBox(t, V)
if B is planar then

E = E ∪ (t, Bmin,k, |)
else

E = E ∪ (t, Bmin,k, +) ∪ (t, Bmax,k,−)
sort(E,<E) {sort all planes according to <E}

{iteratively “sweep” plane over all split candidates:}
Nl = 0, Np = 0, Nr = |T | { start with all tris on the right}
for i = 0; i < |E|;

p = Ei,p, p+ = p− = p| = 0
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = −

inc p−; inc i
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = |

inc p|; inc i
while i < |E| ∧ Ei,ξ = pξ ∧ Ei,type = +

inc p+; inc i
{now, found next plane p with p+,p− and p|...}
{move plane onto p}
NP = p|, NR–=p|, NR–=p−

(C, pside) = SAH(V, p, NL, NR, NP)
if C < p̂C then

(Ĉ, p̂, p̂side) = (C, p, pside)

NL+=p+, NL+=p|, NP = 0 {move plane over p}
return (p̂, p̂side)

This algorithm initializes N0
L,N0

R, and N0
P differently from the way

explained above. This is due to some slight optimization in when

the plane is evaluated and in when the variables are updated. This
optimization allows for not having to keep track of the previous
plane’s parameters, but otherwise proceeds exactly as explained
above. Thought he explanation above is more intuitive, the code
is cleaner with these optimizations applied.

As mentioned before, we have tagged each event with the ID
of the triangle that it belongs to. This is not actually required for
finding the best plane, but allows for using a modified “Classify”
code that splits T into TL, TP , and TR after the best split has been
found: A triangle that ends “before” p̂ must be in TL only, and
similar arguments hold for Tr and Tp. Thus, once the best plane p̂
is found, we iterate once more over E to classify the triangles.

4.2.1 Complexity Analysis

The inner loop of the plane sweep algorithm performs |P | ∈ O(N)
calls to SAH(. . .), and performs |E| ∈ O(N) operations for com-
puting the p+,p−, and p| values. There are also O(N) clipping op-
erations, and running the loop for all three dimensions just adds a
constant factor as well. Similarly, the classification step after p̂ has
been found (omitted above) also cost O(N). Thus, the complexity
is dominated by the cost for sorting, which is O(N log N). The
accumulated cost during recursion then becomes

T (N) = N log N + 2T (
N

2
) = · · · = N

log NX
i=1

log
N

2i
.

Since N = 2log N , this can be further simplified to

T (N) = N

log NX
i=1

log
N

2i
= N

log NX
i=1

log 2log N−i = N

log NX
i=1

i

= N
log N(log N + 1)

2
∈ O(N log2 N).

The resulting O(N log2 N) complexity is a significant improve-
ment over the naı̈ve algorithm’s O(N2) complexity, but is still sig-
nificantly higher than the lower bound of O(N log N).

4.3 O(NlogN) Build using Sort-free Sweeping

In the the previous section’s plane sweep algorithm, the main cost
factor in each partitioning no longer is the number of plane evalu-
ations, but the O(N log N) cost for sorting. If that sorting could
be avoided, the entire partitioning could be performed in O(N),
yielding a recursive cost of only O(N log N).

Obviously, this per-partition sorting could be avoided if we could
devise an algorithm that would sort the event list only once at the
beginning, and later on perform the partitioning in a way that the
sort order is maintained during both plane selection and partition-
ing. To do this, two problems have to be solved: First, we have to
take the sorting out of the inner loop of the “FindPlane” algorithm,
and make it work on a single, pre-sorted list. Second, we have to
devise a means of generating the two children’s sorted event lists
from the current node’s event list without re-sorting.

As neither can be achieved as long as we sort individually for
each k, we first generate one event list containing all events from all
dimensions. This obviously requires to additionally tag each event
with the dimension k that it corresponds to. As we now consider all
dimensions in one loop, we keep a separate copy of NL, NR, and
NP for each dimension, N

(k)
L , N

(k)
R , and N

(k)
P . Then, each e =

(eξ, ek, etype, eID) only affects the N ’s of its associated dimension
ek, and none other. For these three values, the same incremental
operations are performed as in Section 4.2.

Like in the previous Section, we need to quickly determine the
number of end (p−), in-plane (p|), and start (p+) events for a given

split p = (pk, pξ). Thus, as primary sorting criterion, we again pick
the plane position pξ. Note that this is independent of dimension
pk, so planes of different dimensions are stored in an interleaved
fashion. For those events with same pξ, we want to have them
stored such that events with the same dimension (and thus, the same
actual plane) lie together. For each of these consecutive events for
the same plane, we then again use the same sort order as above: End
events first, then planar events, then start events. Assuming that the
input set is already sorted, the modified plane finding algorithm is
essentially a variant of algorithm 4, in which the three iterations
over k have been merged into one (see Algorithm 5).

Algorithm 5 Finding the best plane in O(N).
pre: E is <E-sorted
function Partition::FindPlane(N , V , E) returns p̂

for all k ∈ K
{start: all tris will be right side only, for each k}
NL,k = 0, NP,k = 0, NR,k = N

{now, iterate over all plane candidates}
for i = 0; i < |E|;

p = (Ei,p, Ei,k); p+=p−=p|=0
while i < |E| ∧ Ei,k = pk ∧ Ei,ξ = pξ ∧ Ei,τ = −

inc p−; inc i
while i < |E| ∧ Ei,k = pk ∧ Ei,ξ = pξ ∧ Ei,τ = |

inc p|; inc i
while i < |E| ∧ Ei,k = pk ∧ Ei,ξ = pξ ∧ Ei,τ = +

inc p+; inc i
{now, found the next plane p with p+,p− and p|...}
NP,k = p|, NR,k–=p|, NR,k–=p−

(C, pside) = SAH(V, p, Nl, Nr, Np)

if C < Ĉ then
(Ĉ, p̂, p̂side) = (C, p, pside)

NL+=p+, NL+=p|, NP = 0
return p̂

4.3.1 Splicing and Merging to Maintain Sort Order

As this partitioning depends on a pre-sorted event list E, we now
have to find a way of – given E and p̂ – computing the EL and ER

(for VL and VR) without having to sort those explicitly. Though
we obviously have to sort the list once at the beginning, during
recursion we cannot afford the sorting, thus now – after each p̂ is
found – have to perform the actual classification and building of the
two children’s sub-lists EL and ER without performing any sorting.

Fortunately, however, we can make several observations:

• We can iterate over T and E several times and still stay in
O(N), if the number of iterations is a constant.

• Classifying all triangles to be in TL and/or TR can be done in
O(N) (see Algorithm 6).

• Since E is sorted, any sub-list of E will be sorted as well.

• Two sorted lists of length O(N) can be merged to a new
sorted list in O(N) using a single mergesort iteration.

• Triangles that are completely on one side of the plane will
have the same events as in the current node (see Figure 1a).

• Triangles overlapping p generate events for both EL and ER.
These triangles have to be re-clipped (see Figure 1), and thus
generate new splits that have not been in E.

• For reasonable scenes [1], there will be (at most) O(
√

N) tri-
angles overlapping p.

With these observations, we can now devise an algorithm for build-
ing the sorted EL and ER lists.

Step 1: Classification: After p̂ is found, for each triangle
we first have to determine whether it belongs to TL, TR, or both
(by now, we know where to put TP). For a triangle t to be
in TL only, it must either end left of or on the split plane (i.e.,
∃e = (t, p̂k, eξ,−) : eξ ≤ p̂ξ)); or it is planar and lies left of
the plane (i.e., ∃e = (t, p̂k, eξ, |) : eξ < p̂ξ), or the triangle is
in TP (∃e = (t, p̂k, p̂ξ, |)), and p̂side = LEFT . For the right
side, the criteria are symmetric; triangles fulfilling neither of these
conditions must be on both sides. This leads to a simple classifica-
tion algorithm: We first conservatively mark each triangle as being
on both sides, then iterate once over all events, and – if that event
matches any of the classification criteria above – mark its associated
triangle to be only on the respective side only (see algorithm 6).

Algorithm 6 Given E and p̂, classify triangles to be either left of,
right of, or overlapping p̂ in a single sweep over E.

function ClassifyLeftRightBoth(T, E, p̂)
for all t ∈ T

tside = Both;
for all e ∈ E

if etype = − ∧ ek = p̂k ∧ eξ ≤ p̂ξ then
t[et]side = LeftOnly

else if etype = + ∧ ek = p̂k ∧ eξ ≥ p̂ξ then
t[et]side = RightOnly

else if etype = | ∧ ek = p̂k then
if (eξ < p̂ξ ∨ (eξ = p̂ξ ∧ p̂side = LEFT)) then

t[et]side = LeftOnly
if (eξ > p̂ξ ∨ (eξ = p̂ξ ∧ p̂side = RIGHT)) then

t[et]side = RightOnly

Step 2: Splicing E into ELO and ERO: Triangles that do
not overlap p̂ contribute their events to their own side, and none to
the other. Having already classified all triangles, we iterate over E
again, and “splice” it by putting all events corresponding to a “left
only” triangle into ELO , and all those for “right only” triangles into
ERO; events for “both sides” triangles get discarded. Both ELO

and ERO are sub-lists of E, and thus automatically <E-sorted.

Step 3: Generating new events EBL and EBR for trian-
gles overlapping p: Those triangles that do overlap p̂ con-
tribute (new) events to both sides. We generate these by clipping
t to VL and VR, respectively (also see Figure 1), and put the gen-
erated events to EBL and EBR, respectively. Since the clipping
generates new events in unknown order, neither of these is sorted.

Step 4: Merging the four strains: The events for EL and ER

are now each scattered over two separate lists, ELO and EBL for
EL, and ERO and EBR for ER, respectively. These now have to
be merged to EL and ER. To do this, we first sort EBL and EBR.
Assuming that only O(

√
N) triangles overlap p̂, sorting these

two lists will cost O(|ELO| log |ELO|) = O(
√

N log
√

N) ⊂
O(
√

N ×
√

N) = O(N). Since now all ELO , ERO , EBL, and
EBR are sorted, we can easily merge them to EL and ER in O(N).
Both EL and ER are now sorted, and recursion can proceed. Before
recursing, all temporary event lists, and in particular the input event

Figure 1: Triangles completely to one side of a splitting plane will
maintain exactly the same set of events as without the split plane,
all of which belong exclusively to the side the triangle is in. Trian-
gles straddling the splitting plane have to be re-clipped to both sides,
generating new potential split events for each side.

list, can be freed. Freeing that memory explicitly before recursing is
often overlooked, but can greatly reduce the overall memory needs
of the algorithm, in particular for complex models.

4.3.2 Complexity Analysis

Before we can call the recursive partitioning for the first time,
we first have to build and sort the initial event list. This costs
O(N log N), but has to be performed only once.

During recursion, in the algorithm just outlined all steps - finding
the best plane, classifying triangles, splicing, new event generation,
and list merging – are in the order of O(N). Thus, even though
there are several passes over T and E each, the total complexity of
one partitioning is still O(N), yielding a total complexity of

T (N) = N + 2T (
N

2
) = · · · = N log N.

This is once again the desired complexity of O(N log N), the same
complexity as a Kaplan-style build, and the theoretical lower bound.

5 EXPERIMENTS AND RESULTS

So far, we have only considered the theoretical aspects of the differ-
ent build strategies, and have ignored all implementational aspects.
In this section, we are going to evaluate an actual implementation of
the proposed algorithms; in particular, we are going to use the im-
plementation used in the OpenRT realtime ray tracing system [26].
As the naı̈ve O(N2)-build method becomes prohibitively expen-
sive even for rather simple scenes (even the 802-triangle shirley
6 scene can take several minutes to build), we evaluate only the
O(N log2 N) and the O(N log N) methods.

As the implementation is used in an industrial application [10],
both variants are coded in high-level C++ code and focus on
production-quality robust and correctness standards. Thus, the code
is poorly optimized, if at all: it uses templates, makes heavy use
of STL data structures, and is highly parameterizable, to allow for
setting all kinds of parameters via config files and command-line
parameters, and for switching between different variants of the var-
ious formulae (for example, one can also specify non-linear leaf
cost estimates, etc). All parameters have been set to the default
values, which correspond to the exposition above.

If this flexibility were sacrificed by a highly optimized vari-
ant that would hard-code the default case significantly lower build
times would surely be possible. Even so, such optimizations only
change the implementation constants, but not the algorithms scala-
bility in model complexity. As such, the respective O(N log2 N)-
vs-O(N log N) comparisons, the (statistical) quality of the kd-
trees, and the scalability in model complexity are sill valid.

For the comparisons between the O(N log2 N) and
O(N log N) algorithms, we have spend considerable care to
make sure that both algorithms produce (nearly) the same kd-trees.
Though both algorithms test the same planes, they do this in
different order; this, together with the limited accuracy of floating
point computations sometimes leads to both algorithms choosing a
(slightly) different split. Overall, however, the trees computed by
the two algorithms are nearly identical.

5.1 Test scenes

For our experiments, we have chosen to take test scenes from dif-
ferent domains. On one side, we have chosen typical standalone
models like the Bunny (69k triangles), Armadillo (346k), Dragon
(863k), Buddha (1.07m), Blade (1.76m), and ThaiStatue (10M)
models from the Stanford Scanning Repository. Except for trian-
gle count, these models are all very similar: all are scanned models,
all have nearly equally-sized and mostly well-shaped triangles, and

all are tesselations of smooth surfaces with sphere-like topology.
The reason for including these models is that they are well-suited
for scalability experiments, as they can be up- and downsampled in
a meaningful way.

To get meaningful results on scalability with geometric com-
plexity, we have to run our algorithms on models that have the
same shape, structure, and surface complexity, but different trian-
gle counts. This requires the same shape to be available in mul-
tiple tesselation densities, which we achieve by either downsam-
pling via mesh-simplification (using the q-slim mesh simplifica-
tion package), or via upsampling (via subdividing random triangles
into four parts each). This process however works only for mod-
els that have roughly uniform tesselation to start with, as otherwise
the mesh simplification software would simplify certain scene parts
more than others, and thereby change the model structure.

Though good for resampling, the scanned models are well repre-
sentative for scenes more commonly used in a ray tracer, like archi-
tectural models, or engineering data. Therefore, we have also added
several freely available models that are commonly used in today’s
ray tracing papers: the ERW6 scene (802 triangles), the conference
room (280k), soda hall (2.4m), and the power plant (12.5m).

5.2 Generated kd-tree statistics and build times

To facilitate easy and exact reproduction of our results, Table 1
gives some statistical properties of the kd-trees generated by our
implementation. In particular, Table 1 reports for each model the
total number of nodes, leaves, and non-empty leaves, as well as ex-
pected number of inner-node traversal steps, leaf visits, and triangle
intersections. The expected number of traversals (ET), leaf-visits
(EL), and triangle intersections (EI) can be computed with the sur-
face area metaphor explained for equation 3, yielding

ET = E[#traversal steps] =
X

n∈nodes

SA(Vn)

SA(VS)
,

EL = E[#leaves visited] =
X

n∈leaves

SA(Vn)

SA(VS)
, and

EI = E[#tris intersected] =
X

n∈leaves

Nn
SA(Vn)

SA(VS)
,

where Vn is the spatial region associated to a kd-tree node n,
and Nn is the number of triangles in a give leaf node n. Both
O(N log N) and O(N log2 N) produce (roughly) the same trees,
so the data in Table 1 applies to both implementations.

model tris NL NNE NAT ET EL EI C(T)

bunny 69k 338k 159k 2.57 52.3 14.7 7.1 926
armad. 346k 457k 201k 2.33 49.6 13.9 4.5 833
dragon 863k 1.39m 627k 2.56 76.5 20.8 8.4 1316
buddha 1.07m 1.85m 848k 2.61 82.7 22.4 9.7 1436
blade 1.76m 1.98m 926k 2.06 101.1 27.6 9.8 1713
thai 10m 36m 17m 2.80 74.4 20.3 7.7 1270
erw6 802 3.8k 2.7k 1.85 13.8 4.48 3.7 280
conf 280k 1.15m 679k 3.17 39.4 10.7 10.4 799
soda 2.4m 9.5m 6.3m 2.53 68.4 18.3 12.4 1275
PP 12.5m 41.8m 27m 2.89 28.3 7.97 7.5 574

Table 1: Statistical data for the generated kd-trees, for the origi-
nal resolution of each model: The number of leaf nodes NL, non-
empty leaf nodes NNE , the average number NAT of triangles
per non-emtpy leaf, the expected number of inner-node traversals
ET = E[#travsteps], leaf visits EL = E[#leavesvisited], and ray-
triangle intersections EI = E[#trisintersected], for a random ray,
where E[X] denotes the expected value of event X. C(T) is the
expected cost according to equation 3 (KT = 15 and KI = 20).

5.3 Build time over model size

Our theoretical analysis has made two assumptions about the be-
haviour of the algorithm(s): The number of stragglers in each par-
tition step is small (in the order of O(

√
N)), and the recursion

splits each list into two equally-sized halves. To demonstrate that
these assumptions in practice seem to apply—and to show how the
algorithms scale in the number of primitives—we have followed
the above-mentioned way of re-sampling the scanned models to
a smooth scale of resolutions: using either up- or downsampling,
we have generated 100 resolutions of each of the scanned models,
from 40k triangles of the smallest resolution, to 4m triangles of
the largest, in 40k steps. To abstract from secondary influences like
memory performance, cache effects, and implementation constants,
for each of these resolutions we have measured the total number of
plane evaluations, which is a purely statistical measure. The results
of these measurements is shown in Figure 2; as the difference in
complexity stems from the O(N log2 N) variant’s additional sort-
ing in each recursion step, this number is the same for both variants.

1.2G

1G

800M

600M

400M

200M

4M3M2M1M

#
S
A
H
-
e
v
a
l
u
a
t
i
o
n
s

i
n

k
d
-
t
r
e
e

b
u
i
l
d

model size (in #triangles)

armadillo
buddha
dragon
blade
bunny

Figure 2: The number of evaluations of the “SAH” function for various
resolutions of our example models.

For all tested models Figure 2 shows a noticeable peak for the
down-sampled models, at around half the original size. Though
we first suspected an error in implementation or analysis, this peak
is, in fact, due to the simplification process used to generate the
sub-sampled models: while the original meshes contain roughly
equally sized and fat triangles, the simplification process creates
more “slivery” triangles that have a higher chance of overlapping
the split plane and generate more events.

Except for this effect, Figure 2 shows a nearly linear scaling in
scene size. Though in fact rising with O(N log N), for as large N
the impact of the log term is hardly noticeable: From 40k to 4m, the
log N factor contributes for a mere factor of log 4m

log 40k
= 22

15.5
≈ 1.5,

wheras the linear term makes up for two orders of magnitude.
For comparisons, it would also have made sense to depict the

number of plane evaluations for the naı̈ve O(N2) build. These
however became infeasible even to compute for models with N
in the range of four million; extrapolation would be possible, but
would require a logarithmic scale (on which both graphs would
look awkward), since for N = 4m the difference between N2 and
N log N is more than five orders of magnitude.

5.4 Absolute build times

While Figure 2 has concentrated on a purely statistical measure,
Table 2 then reports the absolute time for building the trees. As
can be seen, the O(N log N) variant is consistently faster than the
O(N log2 N) variant, and outperforms it by a factor of 2 − −3.5.
Somewhat surprisingly, this ratio does not vary significantly for the
various models, and in particular seems hardly increase with model
complexity, if at all. One reason for that is that the two algorithms’
complexities differ by a factor of log N , which we have already

observed to have a near-constant influence for such large models:
Though because of that factor the speedup should rise with model
complexity, even from the 69k bunny to the 10M thai statue the
expected increase in speedup is a mere log2 10M

log2 69k
≈ 2

3
16 ≈ 1.5).

In addition, both algorithms operate on huge amounts of data, and
can therefore be expected to be memory bounds—not compute
bound—which somewhat cancels any computational gains. Nev-
ertheless the theoretically better algorithm manages to still consis-
tently outperform the O(N log2 N) variant, even though it touches
was expected to have the higher implementation constants.

model tris build time speedup
N log2 N N log N

bunny 69k 6.7s 3.2s 2.1×
armadillo 346k 16s 5s 3.2×
dragon 863k 46s 16s 2.9×
buddha 1.07m 61s 21s 3×
blade 1.76m 74s 21s 3.5×
thai 10m 1,120s 430s 2.6×
erw6 804 60ms 30ms 2×
conf 282k 30.5s 15.0s 2×
soda 2.2m 228s 104s 2.2×
PP 12.7m 1,436s 559s 2.6×

Table 2: Absolute build times for the O(N log N) and O(N log2 N)
variants, for various test models. As expected, the O(N log N) vari-
ant consistently outperforms the O(N log2 N) one by at least 2×,
and up to 3×. Though we had expected this speedup to increase
with model complexity, the logarithmic factor becomes nearly a con-
stant for as large N as used in these experiments.

5.5 Relative cost of individual operations

To better understand where the two algorithms spend their time,
we have also measured the time spent in the individual phases
of the algorithms. In particular, for the O(N log N) variant we
have measured the time spent in the initialization (including ini-
tial even list generation and intial event list sorting), as well as in
the recursion, which splits into split evaluation (iterating over the
event list, and evaluating the potential splits), re-clipping and re-
sorting the straddlers, triangle classification, and list splicing and
merging (out implementation interleaves both operations). For the

bunny buddha thai conf powerplant
O(N log N) algorithm

init time (17) (328) (3610) (75) (5.2k)
evt-gen < 1 9 93 3 111
evt-sort 14 290 3.2k 64 4.7k

rec.build (375) (2349) (50k) (1741) (65k)
spliteval 84 542 11.6k 316 9.9k
classify 18 142 2.5k 78 3k
stragglers 126 386 13k 706 22k
list-ops 116 1111 19k 524 25k

total (395) (2692) (54k) (1825) (71k)
O(N log2 N) algorithm

evt-gen 209 1045 27k 1001 36k
evt-sort 278 3839 60k 1381 79k
spliteval 71 427 8k 218 7.8k
classify 163 1176 21k 584 27k
total (790) (6856) (125k) (3434) (159k)

Table 3: Time spent in the different phases of the two algorithms (in
Linux timer “jiffies” of 10ms each). evt-gen: initial event list gener-
ation (including clipping if required); evt-sort: initial sorting; splite-
val: split evaluation; classify: triangle classification; stragglers: re-
clipping and re-sorting of stragglers; list-ops: list splicing and merg-
ing. Data is given for bunny, buddha, thaistatue, conference, and
powerplant. (Total higher than Table 2 due to measuring overhead).

O(N log2 N) variant, the runtime splits into event generation (in-
cluding clipping), sorting, split evaluation (list iteration and plane
evaluation), and classification (including generation of the two tri-
angle ID lists for recursion). The results of these measurements—
for various of our test scenes—are given in Table 3. As can be see
from this Table, the O(N log N) variant spends most of its time in
list-operations (where it is most likely bandwidth-bound), while for
the O(N log2 N) re-sorting alone usually costs more than what it
costs the O(N log N) variant to build the entire tree.

6 SUMMARY AND DISCUSSION

In this paper, we have surveyed and summarized today’s knowledge
on building good kd-trees for ray tracing. We then have described—
and analyzed—three different algorithms for building such trees: A
naı̈ve O(N2) build, a more efficient O(N log2 N) algorithm, and
a variant with asymptotically optimal O(N log N) complexity.

None of these algorithms are completely new: In fact, the O(N2)
and O(N log2 N) algorithms are well known [14, 23], and even
quite similar O(N log N) schemes have been used before: For ex-
ample, for point data and range queries, similar O(N log N) al-
gorithms are already known, both in computational geometry (see,
e.g., Vaidya [24]), and also in photon mapping (see, e.g. [29]). Even
in ray tracing, the O(N log N) algorithm is known to at least a
few researchers for quite some time. For example, it already is
at least hinted at in [6]. Nevertheless, this knowledge is not well
documented, and so far has been known to but few experts in the
field. Similarly, most of the details of how to actually build the
three—what to consider and what to avoid—are all documented
somewhere in various conferences, journals, and technical reports,
but often in widely scattered form, using differnt notations and dif-
ferent benchmarks, and therefore again is known as lore among a
selected group of experts only. As such, the main contribution of
this paper is less in presenting any completely new algorithms, but
rather in condensing the lore and knowledge in building good kd-
trees, and in presenting, analyzing, and evaluating it in one concise,
easily publication that is easily accessible to researchers interested
in ray tracing. For example, the fact that the O(N log N) variant
outperform the O(N log2 N) one by (only) a factor of 2−−3 over
a wide range of models may not present a significant algorithmic
achievement, but knowing the options may pose in important piece
of knowledge for a future ray tracing system’s architect.

Apart from its direct application to building kd-trees, we believe
the knowledge presented in this paper to be an important foundation
for similar research also in non-directly related research, such as
building good bounding volume hierarchies (to which the SAH also
applies [28]), building such BVHs in an efficient manner, or in how
to evaluate the cost of a ray-tracing data structure, and how to best
cluster objects with a ray-tracing based cost function (see, e.g., [4]).

One issue worth mentioning is that the theoretical complexity
outlined above strongly depends on the assumption of having a
“well behaved” scene as one is likely to encounter in practice (see,
e.g., [1]), as it is clearly possible to devise cases for which the
above assumption of having—on average—less than O(

√
N) tri-

angles overlapping the plane will be violated. Similarly, the com-
plexity analysis depends on the assumption that the complexity of
sorting is O(N log N), which is not necessarily true for our setting
of bounded and “mostly sorted” sets of numbers. For these cases,
radix sort-like algorithms exist that achieve asymptotically linear
complexity [11, 19]. A binning strategy can also help in reducing
the number of planes to be sorted [16]. If the sorting could be done
in near-linear time, then even the theoretically O(N log2 N) algo-
rithm from Section 4.2 would show O(N log N) behavior.

Finally, in all our experiments we have seen that the influence of
the log N term for as large N as interesting for relevant applications

is but weak, and nearly a constant. Thus, in practice the relative
performance of these two algorithms will mostly depend on their
“constants”, i.e., on how well they can be implemented.

Even at asymptotic optimal complexity, the cost for building kd-
trees with these methods is still quite high, and certainly far from
real-time except for trivially simple models. With the recent inter-
est in ray tracing dynamic scenes, interest currently shifts to other
data structure, like BVHs, or grids. Compared to kd-trees, these
data structures have easier build- and update mechanisms that usu-
ally operate in O(N). However, if the build time for realistic model
sizes in practice is nearly linear in model complexity, then kd-trees
can still be a viable option for future dynamic ray tracing systems,
in particular if build time can be reduced by faster build methods
and/or on-demand construction of the kd-tree [21]. In addition,
much higher build performance can be achieved if certain compro-
mises in the kd-tree’s quality are being allowed: while we have
only considered methods for building trees according to the best
known quality standards, much higher performance can be achieved
if, e.g., perfect splits are ignored, and if the cost function is sampled
sparsely instead of finding the best local split (see, e.g., [15, 8]).

Summarily, we have shown that a viable algorithm with
O(N log N) complexity exists, and that this algorithm is both sim-
ple, stable, and elegant. The presented algorithm is already being
used in a production renderer, and since its introduction there has
impressed through its robustness, in particular for numerically chal-
lenging cases for which several of its preceding, ad-hoc implemen-
tations had failed. The algorithm has been used extensively in many
different scenes, including as large scenes as the 350 million trian-
gle Boeing data set, for which an O(N2) approach is infeasible.

A specially optimized implementation of the presented algo-
rithm – and which, amongst others, ignores perfect splits and only
operates on the AABBs – is now also being used in a two-level ap-
proach to dynamic scenes [27] in the OpenRT system [26]. Though
not originally designed for real-time rebuilds, at least for several
hundred to a few thousand objects the O(N log N) SAH algorithm
allows interactive rebuilds, while at the same time enabling superior
ray tracing performance than its (non-SAH based) predecessor.

Acknowledgements
The authors would like to thank Alexander Reshetov for the insight-
ful discussions about the kd-tree optimizations and construction
methods used in the Intel System, and for sharing his actual con-
struction code in the past. Carsten Benthin has provided help and
support in implementation, bug-fixing, and experimentation, and
has also coded several high-performance variants of this algorithm.
Peter Shirley and Solomon Boulos have provided invaluable help in
discussing special cases, geometric probability, cost estimates, and
complexity issues. Also, we would like to thank Martin Devera for
early discussions and implementations of kd-tree construction algo-
rithms. This research work has been partially supported by MŠMT
under research program MSM 6840770014, as well by the U.S. De-
partment of Energy through grant W-7405-ENG-48.

REFERENCES

[1] Mark T. de Berg, Matthew J. Katz, A. Frank van der Stappen, and
J. Vleugels. Realistic Input Models for Geometric Algorithms. Algo-
rithmica, 34(1):8197, 2002.

[2] Andrew Glassner. An Introduction to Ray Tracing. Morgan Kauf-
mann, 1989. ISBN 0-12286-160-4.

[3] Jeffrey Goldsmith and John Salmon. Automatic Creation of Object
Hierarchies for Ray Tracing. IEEE Computer Graphics and Applica-
tions, 7(5):14–20, 1987.

[4] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel,
and Philipp Slusallek. Ray Tracing Animated Scenes using Motion
Decomposition. In Proceedings of Eurographics, 2006. (to appear).

[5] Eric Haines, editor. Ray Tracing News, 1987–2005.
http://www.acm.org/tog/resources/RTNews/html/.

[6] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University in Prague, 2001.

[7] Vlastimil Havran and Jirı́ Bittner. On Improving Kd Tree for Ray
Shooting. In Proceedings of WSCG, pages 209–216, 2002.

[8] Warren Hunt, Gordon Stoll, and William Mark. Fast kd-tree Construc-
tion with an Adaptive Error-Bounded Heuristic. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing, 2006.

[9] James T. Hurley, Alexander Kapustin, Alexander Reshetov, and
Alexei Soupikov. Fast ray tracing for modern general purpose CPU.
In Proceedings of GraphiCon, 2002.

[10] inView 1.4 Product Description. http://www.intrace.com/.
[11] Donald E. Knuth. The Art of Computer Programming, Volumes 1-3.

Addison-Wesley, 1998.
[12] Christian Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh

Manocha. RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs. In Proceedings of the 2006 IEEE Symposium on Inter-
active Ray Tracing, 2006.

[13] J. David MacDonald and Kellogg S. Booth. Heuristics for ray tracing
using space subdivision. Visual Computer, 6(6):153–65, 1990.

[14] Matt Pharr and Greg Humphreys. Physically Based Rendering : From
Theory to Implementation. Morgan Kaufman, 2004.

[15] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp
Slusallek. Experiences with Streaming Construction of SAH KD-
Trees. In Proceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, 2006.

[16] Alexander Reshetov. On building good KD-Trees in the Intel Multi-
Level Ray Tracing System. personal communication, 2005.

[17] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level
Ray Tracing Algorithm. ACM Transaction on Graphics, 24(3):1176–
1185, 2005. (Proceedings of ACM SIGGRAPH 2005).

[18] Luis Santalo. Integral Geometry and Geometric Probability. Cam-
bridge University Press, 2002. ISBN: 0521523443.

[19] Robert Sedgewick. Algorithms in C++, Parts 1-4: Fundamentals,
Data Structure, Sorting, Searching. Addison Wesley, 1998. (3rd Ed.).

[20] Gordon Stoll. Part II: Achieving Real Time - Optimization Tech-
niques. In SIGGRAPH 2005 Course on Interactive Ray Tracing, 2005.

[21] Gordon Stoll, William R. Mark, Peter Djeu, Rui Wang, and Ikrima
Elhassan. Razor: An Architecture for Dynamic Multiresolution Ray
Tracing. Technical Report 06-21, University of Texas at Austin Dep.
of Comp. Science, 2006.

[22] K. R. Subramanian. A Search Structure based on K-d Trees for Ef-
ficient Ray Tracing. PhD thesis, The University of Texas at Austin,
December 1990.

[23] Laászló Szécsi. An Effective Implementation of the kd-Tree. In
Jeff Lander, editor, Graphics Programming Methods, pages 315–326.
Charles River Media, 2003.

[24] Pravin M. Vaidya. An O(N log N) Algorithm for the All-Nearest-
Neighbors Problem. Discrete and Computational Geometry, (4):101–
115, 1989.

[25] Carsten Wächter and Alexander Keller. Instant Ray Tracing: The
Bounding Interval Hierarchy. In Proceedings of the 17th Eurographics
Symposium on Rendering, 2006.

[26] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[27] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Inter-
active Ray Tracing of Dynamic Scenes. In Proceedings of the IEEE
Symposium on Parallel and Large-Data Visualization and Graphics
(PVG), 2003.

[28] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies. ACM
Transactions on Graphics, (conditionally accepted), 2006. Available
as SCI Institute, University of Utah Tech.Rep. UUSCI-2006-023.

[29] Ingo Wald, Johannes Günther, and Philipp Slusallek. Balancing Con-
sidered Harmful – Faster Photon Mapping using the Voxel Volume
Heuristic. Computer Graphics Forum, 22(3):595–603, 2004.

[30] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.
Interactive Rendering with Coherent Ray Tracing. Computer Graph-
ics Forum, 20(3):153–164, 2001. (Proceedings of Eurographics).

