
Realtime Ray Tracing for Advanced Visualization

in the Aerospace Industry

Andreas Dietrich∗∗∗∗ Ingo Wald���� Holger Schmidt◊

Kristian Sons◊ Philipp Slusallek∗∗∗∗

Abstract

One of the most pervasive problems in large-scale engineering projects is the dif-

ficulty in realistically visualizing models for evaluating the design and its visual

appearance. The prohibitively high investment of using physical mockups has led

to pre-assembly being performed almost entirely digital. Unfortunately, the vast

complexity of full CAD datasets and the required realism can not be handled by

available high-end graphics hardware. In this article we present a ray tracing

based software system running on a scalable shared-memory architecture that al-

lows for interactive high-quality visualization and evaluation of huge CAD mod-

els. Special features like cutting planes, model interrogation, sophisticated shad-

ing, lighting simulation previews, and collaborative remote visualization are also

supported. The capabilities of our framework will be demonstrated using several

practical examples from the collaborative design review of a Boeing 777 plus

lighting visualization and evaluation of industrial design concepts from EADS.

1 Introduction

One of the most pervasive problems in large-scale engineering projects is the dif-

ficulty in properly fitting all individual parts together. The prohibitively high in-

∗

 Computer Graphics Group, Saarland University, {dietrich, slusallek}@cs.uni-sb.de
� SCI Institute, University of Utah, wald@sci.utah.edu
◊
 EADS Corporate Research, {Holger.Schmidt, Kristian.Sons}@eads.net

Seite 2 Dietrich, Wald, Schmidt, Sons, Slusallek

vestment of using physical mockups has led to pre-assembly being performed al-

most entirely digital. Unfortunately, the vast complexity of full CAD datasets and

the required realism can not be handled by available high-end graphics hardware.

In this article we present a ray tracing based software system running on a scal-

able shared-memory architecture, which allows for interactive high-quality visu-

alization and evaluation of huge CAD models.

For real-time display of highly complex models, ray tracing provides a highly in-

teresting alternative. Ray tracing algorithms [Glassner 1989] closely model physi-

cal light transport by shooting rays into the virtual scene. This allows for accu-

rately simulating the visual appearance and global optical effects including

shadows, reflections, and others. By employing spatial index structures, ray-object

intersections can be found efficiently, resulting in a logarithmic time complexity

with respect to scene size. Additionally, because of the algorithm's output sensitiv-

ity, only data that is actually visible is eventually accessed.

Since the colors of different pixels can be calculated independently of each other,

ray tracing offers an extremely high degree of parallelism. By assigning different

pixels to different processing units, it is therefore possible to reach even real-time

performance. This was first shown by Muuss [Muuss 1995] and Parker et al.

[Parker 1999], who demonstrated interactive ray tracing using massively parallel

shared-memory supercomputers. More recently Wald et al. [Wald 2003, Wald

2004a] have shown that interactive frame rates can also be achieved on clusters of

low-cost commodity PCs. Although the use of PC clusters enables linear scaling

in performance, memory scalability still remains a problem. Because every cluster

node might potentially need to access the complete model, the scene database has

to be replicated on each PC. For complex industrial CAD models of dozens or

hundreds of gigabytes in size, this is not feasible. Special PC-based out-of-core

variants for ray tracing massively complex models exist as well [Wald 2004b], but

cannot yet deliver the performance and quality demanded by industrial application

scenarios.

In this paper we present a ray tracing based interactive visualization system suited

for the realistic display and design evaluation of extremely large CAD models

without approximations, simplifications, or rendering artifacts. By efficiently

combining a highly optimized ray tracing engine with a shared-memory multi-

processor architecture, it is possible to do real-time walkthroughs in large-scale

highly detailed scenes, which is demonstrated at the example of a complete Boe-

ing 777, consisting of more than 350 million individual polygons. Additionally,

our system incorporates several features required for design review, such as dis-

tance measurement between arbitrary points, interactive identification and move-

ment of individual model components, and sophisticated shading (including soft

shadows, massive textures, and highlights) that may be programmed by the user.

Realtime Ray Tracing in the Aerospace Industry Seite 3

With the help of the OpenGL Vizserver frame buffer streaming system or similar

products, there is even the possibility to do the compute intensive image genera-

tion on a centralized visualization server, while the walkthrough can be controlled

from lightweight remote clients, even over wide-area Internet connections.

The remainder of the paper is structured as follows: Section 2 starts with a brief

overview over some existing massive model walkthrough systems. Section 3 will

then provide some insight into our ray tracing software, the underlying shared-

memory multiprocessor architecture, and the remote visualization features of the

system. We demonstrate two capabilities and features in two application scenar-

ios: The visualization of an entire Boeing 777 aircraft in Section 4 and high-

quality visualization of aircraft cabins and helicopters at EADS in Section 5. We

conclude and discuss future extensions in Section 6.

2 Related Work

Due to its practical relevance, the problem of realistically visualizing massively

complex models has received a lot of attention, which we will briefly discuss.

2.1 Rasterization Based Systems

The UNC GigaWalk system [Baxter2002] runs on an SGI Onyx workstation (300

MHz MIPS R12000 CPUs, 16 GByte RAM) with Infinite Reality graphics, and

makes use of two rasterization pipes and three processes running in parallel on in-

dividual CPUs. The visible geometry of each frame is treated as potential occlud-

ers for successive frames. Using occlusion culling based on these occluders in

combination with a Hierarchical Z-Buffer [Greene 1993] the system is reported to

render scenes with up to 82 million triangles at 11-50 frames per second.

Another recently proposed framework is iWalk [Correa 2003]. It can handle mod-

els consisting of up to 13 million triangles at 9 frames per second on a single com-

modity PC (2.8 GHz Intel Pentium 4 CPU, 512 MByte RAM) with an NVIDIA

Quadro 980 XGL card. However, the system relies on approximated visibility,

and uses an object-space algorithm [Klosowski 2000] to estimate a potentially

visible geometry set, which can result in visible polygons being omitted.

In contrast to the above mentioned applications that are primarily meant for visu-

alization only, the Boeing FlyThru [Arbarbanel 1996] system, a proprietary in-

house application originally conceived for the 777 twin-engine airliner program

(see Section 4) comprises a great number of features aiding collaborative CAD.

Apart from displaying thousands of parts at one time, it facilitates detection of

motion anomalies and interference between structures, interactive design reviews

across a network, modeling, kinematics, and remote control by other applications.

Seite 4 Dietrich, Wald, Schmidt, Sons, Slusallek

Unfortunately, no detailed information about its interactive rendering capabilities

is available. It can, however, not display the full 777 dataset at real-time rates

without geometric simplifications [Kasik 2005].

None of these systems provides realistically complex shading or global lighting

effects like shadows or accurate reflections necessary for faithfully evaluating a

virtual model as possible with current physical mockups.

2.2 Ray Tracing Based Systems

Ray tracing technology efficiently supports interactive visualization of large non-

simplified datasets. The OpenRT real-time ray tracing engine [Wald 2003, Wald

2004a] has been shown to be capable of handling scenes with up to several mil-

lion triangles in real-time. On a setup of 24 commodity dual-processor PCs (AMD

AthlonMP 1800+ CPUs, 512 MByte RAM) this system has been reported to

achieve up to 23 frames per second. Additionally, it incorporates physically cor-

rect and global lighting simulations [Benthin 2003] and features interactive

placement of geometric parts. It relies, however, on the fact that each cluster node

can keep the complete scene in main memory.

Wald et al. [Wald 2001] have also presented an out-of-core rendering variant of

the OpenRT system that combines explicit memory management, demand-loading

of missing parts, and computation reordering. While this system has been shown

to render scenes that are much larger than main memory it can only handle scenes

where only a small fraction of data has to be loaded between successive frames,

and does not easily scale to scenes of a more realistic complexity.

In a more recent publication [Wald 2004b] it was demonstrated that even on a sin-

gle desktop PC (dual 1.8 GHz AMD Opteron 246, 6 GByte RAM), out-of-core

ray tracing can be used for interactively visualizing a complete Boeing 777 CAD

dataset containing more than 350 million individual surface polygons. Even in-

cluding the calculation of pixel-accurate shadows and highlights, the system rea-

ches up to 5 frames per second. Due to the out-of-core nature of the approach,

model parts are only loaded on demand, and ― as not all missing data can be

loaded within the same frame ― an approximation scheme has to be employed to

represent data not loaded yet. This frequently leads to rendering artifacts that are

not tolerable for practical applications. Additionally, the framework does not eas-

ily parallelize due to the need to synchronize all memory operations on all client

machines, and thus cannot deliver sufficient performance.
1

1
 Design reviews are usually considered to require 10-20 frames per second.

Realtime Ray Tracing in the Aerospace Industry Seite 5

3 Visualization System Outline

The presented rendering architecture basically builds on the system of Wald et al.

[Wald 2004b] with OpenRT as ray tracing core. The rendering artifacts introduced

through the out-of-core mechanism required on a PC platform made this system

not applicable for practical applications. In contrast, the eventual end users of our

visualization system explicitly demanded display of an entire complex dataset at

any time, without any kind of approximations, demand-loading stalls, or rendering

artifacts.

To meet these demands, it was decided to port the initial system to a scalable

shared-memory multiprocessor architecture, and thereby couple the performance

scalability of the OpenRT system with the memory scalability of this platform.

3.1 Hardware Architecture

Our early experiments were conducted on an SGI Altix 350 mid-range server

[SGI Altix 2004] composed of 8 dual-processor nodes. Each of the nodes is

equipped with two Intel Itanium 2 CPUs clocked at 1.4 GHz, and contains 4

GByte local memory. In this setup, the memory banks of the nodes form a system-

wide 32 GByte large, shared-memory address space. A fast interconnect provides

a low-latency, high-bandwidth interconnect between the distinct nodes, gaining

peak transfer rates of up to 6.4 GByte per second. As this is completely transpar-

ent to the application, each CPU can directly access every desired part of the

model in the global memory space. The geometric database is actually distributed

over the nodes' physical memory banks without any replication of data.

Similar shared memory systems based on commodity PC technology have

recently become available including multi-processor AMD Opteron servers with

up to 8 dual-core processor (16 CPUs) and up to 128 GB of memory connected by

fast Hypertransport links.

3.2 OpenRT

The OpenRT real-time ray tracing core [Wald 2004a] serves as a high-

performance rendering back-end for our 3D CAD browser application. It supports

physically correct lighting simulation, plug-and-play shading by means of dy-

namically loaded shader libraries (i.e. custom programs that perform the actual

light propagation calculations), and handling of dynamic and complex 3D envi-

ronments.

Highly optimized code and distributing computation among several CPUs work-

ing in parallel allows the OpenRT engine to reach interactive and even real-time

Seite 6 Dietrich, Wald, Schmidt, Sons, Slusallek

frame rates. In this client-server approach a single master process centrally man-

ages a number of client processes: The image is decomposed into a number of dis-

joint regions that are asynchronously assigned as tasks to the clients on demand.

After a client has finished computation of an assigned image-tile, it sends back the

respective pixel color values to the master, which composes them into the result-

ing image. Although, the system has been specifically designed to run on a cluster

of PCs, the setup on the shared-memory systems is practically the same. All client

processes are started on the same machine as the master process, while the operat-

ing system takes care of distributing the processes among the available CPUs.

Memory management of large CAD databases can be done in a very straightfor-

ward manner. Since the shared memory systems provide enough RAM to keep the

full model in memory, the whole dataset (including all spatial index structures) it

simply mapped from disk into the global address space, using Linux memory

mapping facilities. This can be independently done by each client process because

the operating system takes care that no part is paged into physical memory more

than once. Although OpenRT incorporates a memory management subsystem that

can deal with scenes larger than main memory in an out-of-core fashion (see

[Wald 2004b] for details), this is not required here.

3.3 Remote Visualization

For the purpose of collaborative design reviews, the system can also act as a cen-

tralized visual server for multiple clients in geographically diverse locations. To

this end the system make use of the OpenGL Vizserver [Vizserver 2004] or simi-

lar technology: A frame rendered on the visualization server is captured and the

compressed pixel data is sent to the clients over standard local as well as wide-

area networks. Each client then decompresses the pixel stream, displays the un-

compressed image, and directs back all user interaction to the server. As only the

final image is transmitted, the clients themselves do not need any high-

performance graphics capabilities at all, and can thus be lightweight clients such

as desktop PCs or laptops.

Although a simple video streaming approach could have been more efficient,

especially since we do not require support for hardware accelerated rendering, we

opted for the Vizerserver because it provides a stable, mature, and widely used in-

dustrial remote visualization framework.

4 Application: Design Review of a Complete Airplane

One of the main objectives we targeted was the interactive walkthrough of a fully-

detailed 3D model of a Boeing 777 twin-engine airplane. There should not only be

Realtime Ray Tracing in the Aerospace Industry Seite 7

the possibility to directly render every single part of the original CAD data with-

out any kind of geometric simplification, visual approximation, or artifacts. The

system should also be suited for engineering design review sessions.

4.1 The Boeing 777 Model

The Boeing 777 model used in our experiments results from a direct export of the

original construction CAD data out of the CATIA CAD/CAM system. Although

some components are missing, the model already consists of more than 350 mil-

lion individual surface triangles. Organized in over 13,000 compressed files, all

components, including cables, screws, valves etc., have been modeled at ex-

tremely high accuracy. Without any additional spatial index structures, the raw

model requires more than 12 GByte of hard disk space. Because the polygons

were provided without any mesh connectivity information (i.e. coming as a “soup

of triangles''), and with all vertices being randomly displaced to prevent data theft,

the model is difficult to handle for surface simplification algorithms found in most

large model rendering systems.

4.2 Visualization Workflow

For the purpose of efficient model access during ray traversal calculations, spatial

index structures are needed in addition to the geometric triangular surface infor-

mation. In a first step, the original files are decompressed, parsed, and trans-

formed into an unordered triangle stream. This stream gets then sorted into a k-d

tree [Bentley 1975], which is stored in binary form. Like the ray tracing engine,

the preprocessing tool chain can make use of multiple processors. Thus, it is able

to preprocess the entire data in a parallel manner during less than 2 hours.

Including all additional index data, the resulting binary data files cover roughly 20

GByte of hard disk space. Since the files fit completely into main memory, they

can then be copied into a RAM disk, from where they are directly mapped into

main memory. This enables the ray tracing engine to virtually start in an instant,

and to provide the first images after less than 10 seconds.

Upon startup of the 3D browser application all the binary files are mapped into the

global shared memory space and are therefore immediately visible in the address

space of each client process. A user can now freely browse the fully-detailed

model without having to wait for data being fetched from disk and without en-

countering visual artifacts caused by not yet loaded data.

Seite 8 Dietrich, Wald, Schmidt, Sons, Slusallek

4.3 Design Review Functionality

The prime requisite for our system to be useful for design reviews is to deliver

high-quality real-time rendering performance. In particular, these goals were

specified by the users as: (i) The system should achieve at least 10 frames per sec-

ond at a resolution of 640 x 480 pixels, even for complex views and during inter-

action. (ii) It should not generate any visual artifacts during rendering – especially

it should not generate any approximate views (as done in [Wald2004b]). (iii) It

should have maximum startup times of only a few seconds. Using the afore-

mentioned visualization system, where the distributed ray tracing engine delivers

real-time performance, and the global shared memory system allows for keeping

the entire model data in main memory, these demands can be fulfilled.

Figure 1: Interactively measuring the diameter of a Boeing 777.

Apart from the capability of interactively displaying arbitrary parts of the Boeing

777 model, our visualization framework offers a number of additional functions

required for collaborative CAD evaluation.

A very important feature that eases fitting together a model's components, is the

ability to measure the exact distance between arbitrary points in the dataset. The

user simply has to click at two different points in the browser window. By shoot-

Realtime Ray Tracing in the Aerospace Industry Seite 9

ing rays from the projection center through the respective pixels into the scene,

the ray tracer can easily find the distance between the visible surface points and

the observer. The application can optionally insert a line object into the scene that

helps visualizing the connection between the two points in question. The distance

value is also shown besides the line (see Figure 1). Because this line object (actu-

ally a slim box) behaves like any other geometric object, it too can cast shadows

that provide important visual cues on the exact location of that measuring line.

By applying the same technique, i.e. firing a ray through the pixel the mouse

pointer is currently hovering above, not only the distance to a surface point can be

determined. Because the ray tracing core can provide the front-end application

with an identification of the object being hit by the ray, arbitrary information re-

garding this part can be looked up and displayed (see Figure 2). Little application-

specific code (except for display) was required for that feature, as the usually

complex picking-operation could easily be realized by using the ray tracer.

Figure 2: All components can be pixel-accurately identified by simply moving the

mouse pointer over them.

Seite 10 Dietrich, Wald, Schmidt, Sons, Slusallek

4.4 Cutting Planes

One of the advanced features of the ray tracing core is its ability to instantly cut

away large parts of a model by specifying a number of freely orientable clipping

planes. This works most efficiently for a ray tracer since it simply has to clip

rays, whereas rasterization techniques need to clip all potentially visible polygons.

Although inserting a cutting plane can completely change the set of visible trian-

gles, this is not a problem at all for our system: Since all scene data completely re-

sides in memory, even such a drastic change of the visible set does not introduce

any loading cost.

Figure 3: An interactively placed axis-aligned cutting plane slicing the airplane

in half. The resulting cross-section view gives a much better insight into the

model's overall structure. Multiple freely orientable cutting planes can be placed

interactively by the user.

Cutting planes are particularly useful for structural analysis. For example, they

easily allow for producing cross-sectional views (see Figure 3) that may, for ex-

ample, serve as technical illustrations. Note that these cutting planes do not simply

cut away the geometry, but can be configured to only affect viewing rays, there-

Realtime Ray Tracing in the Aerospace Industry Seite 11

fore making it possible to look into the airplane without influencing e.g. the

shadow computations inside.

Figure 4: Soft shadow effects in the cockpit providing a better impression of the

relative placement of components.

Due to accurate simulation of physical light transport, sophisticated shading and

lighting (e.g. pixel-accurate shadows, highlights, or reflections off of curved sur-

faces) can easily be incorporated in a plug-and-play fashion. In particular for

complex geometry, the projection of 3D data onto a 2D display often incurs an

undesired loss of depth impression. In that case, shadows often significantly help

in the perception of the relative position of objects. Especially soft shadows help

in judging the distance between shadow caster and receiver. Figure 4 shows the

impact of rendering soft shadows that can significantly enhance the impression of

shape and depth (see also Figure 1).

5 Application: Advanced Visualization at EADS

A similar project evaluating realtime ray tracing is under ways also at the EADS

corporate research center (CRC) as part of several internally and externally funded

Seite 12 Dietrich, Wald, Schmidt, Sons, Slusallek

research projects in the context of virtual and augmented reality. EADS was par-

ticularly interested in the transfer and evaluation of new technologies for use

within different corporate EADS departments. The main focus for realtime ray

tracing is its use for design reviews using high-quality visualizations of large data

sets. In addition realtime ray tracing has been integrated with a tracking system

and split-screen approach for stereo display. For a number of different internal

purposes the ray tracing system has also been extended by advanced shaders. Two

example applications from this use at EADS are discussed below.

Figure 5: Low resolution geometric model with results from high-quality lighting

simulation. More than 600 MB of texture memory are required to visualize these

results interactively.

5.1 Visualization of Lighting Scenarios in an Aircraft Cabin

Significant research results already existed for the simulation of static lighting

scenarios. However, previous rendering technologies posed several problems in-

cluding the low performance for large data sets (beyond 10 million polygons) and

the limited texture memory on traditional graphics cards. The results from the

lighting simulation are represented in large textures, which require extremely high

resolution that increases with the model complexity and the accuracy of the re-

Realtime Ray Tracing in the Aerospace Industry Seite 13

sults. Even for scenes with a low geometric complexity (see Figure 5) the required

amount of texture memory easily exceeds 600 MB and more.

A software based realtime ray tracing system is not restricted by the limited tex-

ture memory on a graphics card as it can directly use the textures in main mem-

ory. It is also not necessary to use texture compression with its danger of introduc-

ing artifacts. In addition ray tracing allows for combining the diffuse results from

lighting simulations with other optical effects, such as mirror reflections in win-

dows, metallic surfaces, or other specular objects of arbitrary shape. Ray tracing

guarantees an accurate visualization while allowing simple and highly flexible re-

alization of nearly arbitrary lighting models.

This ongoing project of combining the results of a static lighting simulation with

realtime ray tracing is targeted to be used later by engineers, designers, and cus-

tomers for evaluating the simulated lighting situation in different cabins directly

in a high-performance virtual reality visualization environment.

5.2 Visualization of Different Paint Designs on a Helicopter

Helicopter often require a customer specific design that needs to be visualized

with optimal image quality and high geometric accuracy based on a large number

of polygons to capture the smoothly curved surfaces. Again detailed textures are

used to capture the design (see Figure 5) and realtime ray tracing provides the

physically realistic appearance including omnipresent reflections for external

views. The system is tightly integrated with the CAD system, retaining during

data export all the geometric details including even individual screws on the exte-

rior (see lower right image in Figure 6).

Custom shaders are used to capture the special paint and glass surfaces accurately

for achieving the necessary realism. These shaders are combined with high-

dynamic-range environment textures in order to integrate the helicopter smoothly

into the surrounding scene. This combination of appearance simulations with

high-quality reflections of the environment greatly improves the visual quality of

VR presentations including stereo projection and tracked head-mounted displays.

The targeted use within EADS is the evaluation of paint designs as well as the de-

tection of error when applying the designs. The visualization quality allows for

virtually presenting the design to a customer in a highly realistic environment

even before the helicopter is physically built. As shown in Figure 6 the visual

quality of the interactive VR presentation is far beyond that achieved with tradi-

tional rasterization based rendering technology.

Seite 14 Dietrich, Wald, Schmidt, Sons, Slusallek

Figure 6: Different paint design for a helicopter visualized interactively with real-

time ray tracing. The highly specular material results in significant reflections

that need to be taken into account during the design. The close up shows the

physically accurate reflection evens on curved surfaces.

6 Conclusions and Future Work

In this paper we have shown that the combination of a shared-memory multiproc-

essor architecture and a high-performance ray tracing implementation can be effi-

ciently used for highly realistic real-time visualizations of highly detailed, large-

scale industrial CAD databases. We have demonstrated that even a complete

model of an aircraft or helicopter can be handled without approximation, simplifi-

cation, or rendering artifacts. Our system supports several features important for

virtual design review sessions, like distance measurement, identification, and in-

teractive placement of individual model components, and sophisticated shading.

The proposed system is currently being evaluated at EADS, Boeing, and other

companies on how it can best be integrated into the digital design workflow of

large-scale engineering projects, even more complex than those presented here.

One possible direction of further research is to enhance the current setup into a

“visualization service” similar to the grid computing philosophy. For example,

instead of using one fixed visualization server, it would be possible to transpar-

Realtime Ray Tracing in the Aerospace Industry Seite 15

ently provide a visualization service onto which the clients could connect without

even knowing which machine they are communicating with.

Another field is the investigation of real-time global lighting simulation algo-

rithms that build on the current architecture. In particular commodity multi-core

and multi-processor systems with shared memory architectures will provide the

compute performance necessary for interactive global illumination even in ex-

tremely complex datasets.

Recently, dedicated hardware for realtime ray tracing has also been developed

[Woop 2005]. This Ray Processing Unit (RPU) promises to provide the same

level of integration and hardware accelerated performance as current graphics

chips while offering all the benefits of realtime ray tracing.

7 Acknowledgments

This project was supported by a large number of people. In particular, we would

like to thank Boeing, and Dave Kasik in particular, for providing the 777 airliner

dataset, for funding the project, and for supplying valuable information on practi-

cal needs of end users. The hardware for this project, the remote visualization

setup, as well as help in numerous instances was provided by Silicon Graphics,

Inc. Hardware for an Opteron-based SHM system was provided by AMD. Fi-

nally, we would like to thank Krzysztof Kobus, Kai Renner, Gerd Marmitt, and

inTrace GmbH.

Disclaimer: Images and source 3D data provided by and used with permission of

the Boeing Company and EADS Corporate Research.

8 References

[Arbabanel 1996] Robert M. Arbabanel, Eric Brechner, and William McNeely. FlyThru the

Boeing 777. In ACM SIGGRAPH, Visual Proceedings, 1996.

[Baxter 2002] William V. Baxter III, Avneesh Sud, Naga K Govindaraju, and Dinesh

Manocha. GigaWalk: Interactive Walkthrough of Complex Environments. In

Rendering Techniques 2002, 203–214, 2002. (Proceedings of the 13th Euro-

graphics Workshop on Rendering).

[Benthin 2003] Carsten Benthin, Ingo Wald, and Philipp Slusallek. A Scalable Approach to

Interactive Global Illumination. Computer Graphics Forum, 22(3):621–630,

2003. (Proceedings of Eurographics).

[Bentley 1975] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Communications of the ACM, 18(9):509–517, 1975.

[Correia 2003] Wagner T. Correia, James T. Klosowski, and Claudio T. Silva. Visibility-

Based Prefetching for Interactive Out-Of-Core Rendering. In Proceedings of

Parallel Graphics and Visualization (PGV), 1–8, 2003.

Seite 16 Dietrich, Wald, Schmidt, Sons, Slusallek

[Glassner 1989] Andrew Glassner. An Introduction to Ray Tracing. Morgan Kaufmann, 1989.

[Green 1993] Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-Buffer Visibil-

ity. In Computer Graphics (Proceedings of ACM SIGGRAPH), 231–238,

1993.

[Kasik 2005] David J. Kasik. Boeing Company. Personal Communication, 2005.

[Klosowski 2000] James T. Klosowski and Claudio T. Silva. The Prioritized-Layered Projec-

tion Algorithm for Visible Set Estimation. In IEEE Transaction on Visualiza-

tion and Computer Graphics, 108–123, 2000.

[Muus 1995] Michael J. Muuss. Towards Real-Time Ray-Tracing of Combinatorial Solid

Geometric Models. In Proceedings of BRL-CAD Symposium ’95, 1995.

[Parker 1999] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike

Sloan. Interactive Ray Tracing. In Proceedings of Interactive 3D Graphics,

pages 119–126, 1999.

[SGI Altix 2004] Silicon Graphics, Inc. SGI Altix 350 Server. http://www.sgi.com/products/-

servers/alitx/350, 2004.

[VizServer 2004] Silicon Graphics, Inc. SGI OpenGL Vizserver http://www.sgi.com/products/

software/vizserver, 2004.

[Wald 2001] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive Distributed

Ray Tracing of Highly Complex Models. In Rendering Techniques 2001,

pages 274–285, 2001. (Proceedings of the 12th Eurographics Workshop on

Rendering).

 [Wald 2003] Ingo Wald, Carsten Benthin, Andreas Dietrich, and Philipp Slusallek. Inter-

active Ray Tracing on Commodity PC Clusters – State of the Art and Practi-

cal Applications. In Euro-Par 2003. Parallel Processing, 9th International

Euro-Par Conference, 2003. Proceedings, volume 2790 of Lecture Notes in

Computer Science, 499–508. Springer, 2003.

 [Wald 2004a] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD

thesis, Computer Graphics Group, Saarland University, 2004. Available at

http://www.mpi-sb.mpg.de/~wald/PhD/.

 [Wald 2004b] Ingo Wald, Andreas Dietrich, and Philipp Slusallek. An Interactive Out-of-

Core Rendering Framework for Visualizing Massively Complex Models. In

Rendering Techniques 2004, Proceedings of the Eurographics Symposium on

Rendering, pages 81–92, 2004.

[Woop 2005] Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: A Programmable

Ray Processing Unit for Realtime Ray Tracing. SIGGRAPH 2005, 2005.

