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Figure 1: Visualizing particle-based simulation data with efficient ray tracing. We describe several optimizations that tailor the coherent grid traversal algorithm
for efficient and effective visualization of complex particle-based simulation datasets. Our approach renders images of datasets with millions of particles at highly
interactive rates and also provides run time control of several advanced visualization features, including time-varying data, color mapping, illumination effects
from soft shadows, and parameter range culling. The interactive performance of our approach compares favorably with other systems that represent the current
state-of-the-art in particle visualization.

ABSTRACT

We investigate the use of interactive ray tracing for visualizing
particle-based simulation data, and present an algorithmic enhance-
ment called the sphere-center method that exploits the properties
of these datasets to provide interactive performance and reduce
storage requirements. This new algorithm for fast packet-based
ray tracing of multi-level grids enables interactive visualization of
datasets with millions of particles and incorporates advanced fea-
tures like soft shadows. The size and complexity of typical parti-
cle datasets make efficient rendering a difficult task, but a variety
of techniques are employed to achieve interactive performance for
large, time-varying datasets. We compare the performance of our
approach with two recent particle visualization systems: one based
on an optimized single ray grid traversal algorithm, the other on
programmable graphics hardware. This comparison demonstrates
that the new algorithm offers an attractive alternative for interactive
particle visualization.

1 INTRODUCTION

Over the past decade, ray tracing has become a viable option for vi-
sualizing a wide variety of scientific datasets, including those pro-
duced by particle-based simulation methods. These methods are
commonly used to simulate complex phenomena in several sci-
entific domains. Using particle techniques, computational scien-
tists model such phenomena as a system of discrete particles that
obey certain laws and possess certain properties. These methods
are particularly attractive because they can be used to solve time-
dependent problems on scales from the atomic to the cosmological.
Frequently, millions of particles are required to capture the behavior
of a system accurately, leading to very large, very complex datasets.

We are motivated by the need to visualize data from a particu-
lar particle simulation technique called the material point method
(MPM) [21, 22]. MPM is gaining popularity among computational
scientists for problems with high deformations and complex ge-
ometries such as those depicted in Figure 1. Effective visualization
of particle-based simulation data will communicate subtle changes

in the three-dimensional structure, spatial organization, and quali-
tative trends within the simulation as it evolves, as well as enable
easier navigation and exploration of the data through interactivity.

Unfortunately, the size and complexity of typical particle
datasets make interactive visualization a difficult task. Particle val-
ues can be projected to a three-dimensional grid, and the trans-
formed data can then be visualized using standard techniques such
as direct volume rendering [13] and isosurface rendering [14].
Grid-based representations of the data are suitable for some, but
not all, particle visualization tasks, however. For example, the need
to simultaneously visualize both the large- and small-scale features
within the data often make grid-based representations problematic.
Additionally, interpolation may hide features or problems present
in the original particle data, while interpolation and isosurface ex-
traction can be very time-consuming, particularly for large datasets.

Particles can also be represented directly by simple, iconic
shapes called glyphs. For many applications, a sphere or an ellip-
soid is a natural representation of an individual particle. Combin-
ing this approach with programmable graphics hardware, particle
data can be visualized directly by rendering either highly tessellated
spheres or high quality spherical impostors (textured billboards).
Unfortunately, tessellating millions of particles often results in too
many triangles to be rendered at interactive rates, while implement-
ing advanced lighting features such as soft shadows with impostor-
based geometry is non-trivial.

In this paper, we investigate the use of interactive ray tracing
for visualizing large, time-varying particle datasets. We present an
efficient algorithm using fast packet-based ray tracing and multi-
level grids. Currently, there are three acceleration structures that
support packet-based ray tracing: multi-level kd-trees [20], bound-
ing volume hierarchies (BVHs) [27], and multi-level grids [28].
We explore the latter for three reasons: First, the radii of particles
within these datasets are typically uniform in size or fall within a
well-defined range, and grids typically perform well for uniformly
sized primitives. Second, the particles are typically either uni-
formly distributed throughout the environment or densely packed
with large regions of empty space between them. While hierar-
chical data structures like kd-trees or BVHs often provide superior
performance for scenes with varying primitive density, a grid can
skip empty space as fast as these structures by using a macrocell
hierarchy [17]. For densely packed regions, however, grids can be
advantageous and often provide the best performance. As a result,
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multi-level grids are competitive with, if not superior to, a kd-tree
or BVH for our application. Third, because of their fast rebuild
times [9], grids easily handle time-varying data and offer the poten-
tial for computational steering within integrated problem solving
environments. We introduce optimizations that exploit the prop-
erties of particle-based simulation data to tailor the coherent grid
traversal algorithm [28] for particle datasets, achieving both im-
proved performance and reduced storage requirements.

2 BACKGROUND AND RELATED WORK

Our approach to particle visualization builds upon existing tech-
niques in interactive ray tracing; we briefly review the relevant re-
search related to our approach.

Particle Visualization. Investigators use particle visualization to
assist efforts in data analysis and feature detection, as well as in
debugging ill-behaved solutions. As such, interactivity plays an
important role in the particle visualization process.

Two recent systems represent the current state-of-the-art in inter-
active particle visualization. On the one hand, interactive ray trac-
ing on tightly-coupled supercomputing platforms is used to visual-
ize large particle datasets at interactive rates [2]. Unfortunately, the
hardware costs of such a system are often prohibitive and impede
accessibility. At the other extreme, programmable graphics hard-
ware brings interactive visualization of large, time-varying particle
datasets to the desktop [6]. Though such hardware is widely acces-
sible, interactive performance is limited by the fill rates of current
GPUs, and advanced visualization features such as soft shadows are
difficult to implement with impostor-based rendering. In this paper,
we present an efficient algorithm for ray tracing large, time-varying
particle datasets at interactive rates. This approach not only satisfies
the requirements of effective particle visualization, but is more ac-
cessible than previous systems that require expensive hardware and
easily incorporates advanced features that are difficult to implement
using current graphics hardware.

Interactive Ray Tracing. Though the first interactive ray tracers
utilized multi-level grids [16, 17, 18], algorithmic developments for
traversal schemes based on kd-trees [20, 26] have significantly im-
proved the performance of these structures. Packet-based ray trac-
ing [26] creates groups of spatially coherent rays that are simulta-
neously traced through a kd-tree: each ray in the packet performs
each traversal operation in lock-step. This packet-based approach
enables effective use of SIMD instructions on modern CPUs, in-
creases the computational density of the code, and amortizes the
cost of memory accesses across multiple rays. Packet tracing
has also lead to a new frustum based traversal algorithm for kd-
trees [20] in which a bounding frustum guides the traversal of ray
packets. The cost of a traversal step is thus independent of the num-
ber of rays bounded by the frustum and encourages large ray pack-
ets to achieve lower per-ray cost. This frustum based technique has
recently been extended to bounding volume hierarchies [27] and
multi-level grids [28], both of which support dynamic scenes.

Coherent Grid Traversal. For particle-based data visualization,
we extend the coherent grid traversal (CGT) algorithm [28] to effi-
ciently visualize large numbers of particles represented by spherical
glyphs. We summarize the original algorithm here.

In CGT, ray packets are traversed through the grid by considering
vertical slices rather than individual cells. Multiple cells in each
slice are traversed by all of the rays in a packet, and each ray is
tested against all of the objects within a given cell. Although this
approach implies that some rays will traverse cells they would not
have otherwise considered, the packet is traced as a coherent whole
in each step, and no splitting or merging operations are required.
The illustration in Figure 2 demonstrates this behavior.

Figure 2: Packet traversal in a grid. In coherent grid traversal, rays step
along vertical slices in the major traversal direction. Rays traverse the grid
as a coherent whole, so no splitting or merging operations are required (left).
The bounding frustum overlaps the same cells as the individual rays, and
this frustum can be used to guide ray traversal (right).

Rays are first transformed into the canonical grid coordinates, so
the location of any three-dimensional point p within the grid is de-
termined simply by truncating its position (represented by floating
point values) to the integer coordinates of the cell in which it lies.
The dominant component of the first ray in the packet becomes the
major traversal axis, ~K, and the orthogonal directions are called ~U
and~V . The cells overlapped by a ray packet are determined by step-
ping along ~K. Each step k divides the grid into a two-dimensional
plane of cells, and a rectangular subset of this slice contains all of
the cells touched by the rays in the packet. This subset is deter-
mined by finding the extremal values in ~U and ~V over all rays in
the packet, and simply truncating these values yields the u and v
extents of all cells in slice k that are overlapped by at least one ray
in the packet.

Rather than iterate over all of the rays in each step, however, a
frustum is determined by simply computing the four planes bound-
ing the ray packet in ~U and ~V , as well as the near and far planes in
~K. This bounding frustum will overlap the same cells as the rays
(see Figure 2). Using these plane equations, the bounding frustum
is intersected with the bounding box of the entire grid; a non-empty
interval indicates that the grid should be traversed, and the extremal
coordinates of the overlap determine the first and last slice along ~K
that are traversed.

Due to the linearity of the plane equations, the grid is traversed
by incrementing the bounding box of the current slice by a constant
vector, the elements of which give the slopes of the bounding planes
in the grid coordinate space. Assuming four-component SIMD op-
erations, the incremental traversal step requires a single SIMD ad-
dition. Similarly, the truncation of the four values expressing the
extents in ~U and ~V to the corresponding grid coordinates requires
just a single SIMD float-to-int conversion. Thus, the entire process
of computing the cells overlapped in the next slice requires only
two SIMD operations.

3 MOTIVATION

Interactivity is an important requirement of many scientific visu-
alization applications, including particle visualization. Interactive
visualization of simulation data typically serves one of three pur-
poses: data analysis, code development, or generation of presen-
tation and publication quality images. First, an interactive visu-
alization process enables users to identify and explore the salient
features of their data more effectively. For example, it is possible
to correlate specific events in a given simulation with the behavior
of each element in the simulation as it evolves. By determining vi-
sually exactly when these events occur, it is possible to recognize
what relationship they have to the behavior of the system. Such ob-
servations enable specific insights like those described by Barden-
hagen et al. [1]. Second, the ability to debug ill-behaved solutions is
an obvious, but important, consequence of highly accessible inter-
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active visualization. For example, recognition of incorrect particle
behavior has led to important advances in MPM algorithms such as
the modification described by Guilkey et al. [8]. Finally, interactive
visualization makes generation of high quality animations and still
images for presentation or publication fast and straightforward. An
interactive environment allows a user to quickly identify optimal
views in which each image or frame of an animation will convey
the most pertinent information.

Interactivity in the context of particle visualization encompasses
a wide range of activities. For example, interactive viewing and
lighting enable investigators to identify and interrogate specific fea-
tures within the data more easily. Interactivity also provides impor-
tant visual cues from relative motion [24, 25] and environmental
frame of reference [29], while advanced features such as parame-
ter range culling and color mapping provide opportunities for addi-
tional insights. Parameter range culling allows investigators to iso-
late particles with properties that lie within some range of values,
and color mapping offers an effective way to communicate perti-
nent information beyond the spatial organization of objects within
complex datasets [23]. Using the modified CGT algorithm we de-
scribe in Section 4, each of these activities is under the full control
of a user at run time and can be changed at interactive rates.

In addition to these advanced visualization features, important
perceptual cues from non-local shading effects are easily integrated
into our algorithm because it is based on ray tracing. For exam-
ple, shadows are a well-studied visual cue that provide important
information about shape and relative position [15, 29]. Unfortu-
nately, hard shadows produced by point light sources often intro-
duce discontinuities in the shading patterns on a surface that can be
mistakenly interpreted as discontinuities in the underlying data. To
combat this issue, we use soft shadows from area light sources. Soft
shadows typically exhibit a smooth transition from shadowed to un-
shadowed regions, are less likely to be misinterpreted, and provide
additional visual cues about the relative position of objects in com-
plex datasets. Using our approach, users are able to control both
the size and position of the light source, as well as the number of
shadow rays, interactively. Recent research has also shown that vi-
sual cues from advanced shading models such as physically based
diffuse interreflection can also be beneficial in the context of par-
ticle visualization [7]. Although these features have not yet been
implemented in this system, they are, in principle, easily integrated
as well.

Finally, fast grid construction algorithms such as those described
by Ize et al. [9] accommodate the time-varying nature of particle-
based simulation data in a straightforward manner. These datasets
are quite large, containing many millions of particles across tens
or hundreds of time steps. With our approach, the user can easily
cycle through all of the time steps at run time because a grid can
be rebuilt on-the-fly whenever necessary. This process accommo-
dates the changing structure of the data as the simulation evolves,
enabling interaction with millions of particles across the entire sim-
ulation. Moreover, because scientists can interact with the whole
dataset, a clear understanding of the physical state of each particle,
as well as its relationship to the full computational domain, can be
achieved.

4 COHERENT GRID TRAVERSAL FOR PARTICLE DATA

Our approach to particle visualization is inspired by the CGT algo-
rithm. We use fast packet-based ray tracing and multi-level grids
to achieve interactive performance for large, time-varying particle
datasets. Frustum based traversal achieves lower per-ray cost by
amortizing traversal operations over multiple rays in a packet, and
the algorithm is well-suited to SIMD implementation. Further, ad-
vanced visualization features such as soft shadows are integrated
easily because these features can be implemented naturally in a ray

tracing framework. We thus extend the original CGT algorithm
to efficiently and effectively visualize large, time-varying particle
datasets by exploiting the properties of particle-based simulation
data to improve performance and reduce storage requirements.

4.1 The Sphere-Center Method

The coherent grid traversal algorithm discussed in Section 2 can
be optimized for glyph-based particle visualization by leveraging
the fact that all primitives are spheres. Typically, the radii of par-
ticles within these datasets are of roughly equal size or fall within
a well-defined range. As a result, several observations permit op-
timizations over and above those employed by the original CGT
algorithm. First, a sphere S with center C and radius r is symmet-
ric, so determining whether S overlaps a frustum F is analogous to
testing whether C is in the r-neighborhood of F . In particular, we
can test whether the distance from C to any of the bounding planes
of F is less than r. Second, testing whether the distance from C
to the planes of F is less than r is the same as testing whether C
is inside another frustum Fr that has been enlarged by r. Thus, if
we traverse the grid using an enlarged frustum, we only need to
intersect those spheres whose center lies inside that frustum, and
therefore only have to store each sphere at exactly one location: the
cell in which its center is located.

Using the enlarged frustum Fr for traversal requires a priori
knowledge of r, a value that (potentially) varies with each sphere.
However, for our application, the radii are either uniform or lie
within some small range, so the maximum radius rmax across all
particles can be used to generate the enlarged frustum. We call this
approach the sphere-center method.

Constructing the Enlarged Frustum. The enlarged frustum Fr
is determined as follows. Consider a bounding plane defined by
u = u0 + kdU . We require the distance, s, to add to u0 such that
the shifted plane includes the centers of all potentially intersecting
spheres with radii less than or equal to rmax.

Without loss of generality, we reduce the problem to two dimen-
sions, as in Figure 3, so that the direction vector of the normal to
the bounding plane is 〈−dU,1〉 and the vector corresponding to the
shift distance is 〈0,s〉. By scalar projection, we see that:

rmax =
〈−dU,1〉 · 〈0,s〉
|〈−dU,1〉| .

Algebraically expanding and solving this equation for s gives the
required distance, s = rmax

√
1+dU2. To properly account for po-

tential intersections, the distance s must be added to u0 for the max-
imum bounding plane and subtracted for the minimum plane. Thus,
the shifted frustum can be computed in just five SIMD operations:
three additions, two multiplies, and a single square root. Finally,
the near and far planes of the frustum must be shifted by rmax in the
−~K and ~K directions, respectively.

Discussion. The sphere-center approach alleviates many of the
problems traditionally associated with grids. Discretization implies
that some primitives will overlap multiple grids cells, and this be-
havior can lead to many problems.

First, data must be duplicated in each cell the primitive overlaps
or, alternatively, references to the primitive data must be stored in
these cells. The former approach can lead to a significant amount of
redundant data, while the latter approach implies that spatially local
primitives do not necessarily exhibit locality of reference; that is,
primitives close to each other in the three-dimensional space of the
scene may be separated by many bytes in address space. Although
a preprocessing phase can be used to place spatially local primitives
nearby in address space as well [4], this approach is not well-suited
to acceleration structures that are built on-the-fly during rendering.
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Figure 3: Shifting the bounding planes. We observe that testing whether a
sphere of radius r intersects a bounding frustum (red) is equivalent to testing
whether a frustum enlarged by rmax (blue) contains the center of the sphere.

Second, primitives that overlap many cells are problematic be-
cause rays will perform redundant intersections with these primi-
tives as they traverse the grid. The original CGT algorithm uses a
mailbox structure [11] to avoid these redundant intersections. Using
mailboxes, primitives are tagged with a unique ray (packet) identi-
fier, or the ray (packet) stores the identifiers of the last n primitives it
has encountered. Intersection tests can be skipped when these iden-
tifiers match. Mailboxes do not typically improve performance for
grids when intersection tests are inexpensive, as in the case of tri-
angles or spheres, and it may actually reduce performance if avoid-
ing primitive intersections does not outweigh the cost of querying
and updating the mailbox. However, in a frustum based traversal
scheme like CGT, many more redundant intersection tests are po-
tentially required, and the overhead of managing the mailbox be-
comes less significant because this cost is amortized over multiple
rays in a packet. Nevertheless, mailboxes require additional opera-
tions and storage, regardless of the effects of amortization.

The sphere-center method alleviates all of these problems. Data
duplication is never required because the primitives are stored di-
rectly in the grid and the center of each sphere is guaranteed to
lie in exactly one cell. As a consequence, locality of reference for
spatially local primitives is improved without an explicit sorting or
reorganization process. The sphere-center method also obviates the
need for mailboxes: spheres are stored in exactly one grid cell, and
will be intersected no more than once during traversal.

Some issues with the sphere-center method deserve mention.
First, the maximum radius rmax is required to build the grid cor-
rectly and to adjust the bounding frustum during traversal. This
value is determined once during initialization and then cached for
later use during subsequent build and traversal steps. Second, ad-
justing the bounding frustum during traversal requires additional
operations. However, using the SIMD instruction sets of modern
CPUs, we can reduce the required operations to just five, which
leads to efficient shifting. Finally, the improvement in performance
is heavily dependent on the nature of the data itself. The great-
est improvements in performance are noted when the spheres ex-
hibit nearly uniform radii. However, if the radii span a wide range
of values (for example, several orders of magnitude), the benefits
gained by storing each sphere in exactly one grid cell may be out-
weighed by intersecting many more spheres than would otherwise
be required. Frustum culling, discussed in Section 4.3, typically
mitigates this behavior quite effectively.

4.2 Grid Organization and Construction

The organization and design of our multi-level grid follows that of
a typical hierarchical structure. Primitives are stored at the finest

level of the grid, the resolution of which is determined such that
the number of cells is a multiple of the total number of particles N,
denoted by λ. Cubically shaped cells minimize surface area with
respect to volume, and thus reduce the expected cost of traversal,
so the resolution of the grid is given by:

Nx = dx
3

√
λN
V

,Ny = dy
3

√
λN
V

,Nz = dz
3

√
λN
V

,

where ~d is the diagonal and V the volume of the grid.
Once the grid resolution has been determined, the data associ-

ated with each particle are inserted directly into the appropriate grid
cells. To facilitate efficient insertion, culling, and ray/sphere in-
tersection tests, these values are stored in two consecutive 16-byte
aligned SIMD registers, as illustrated in Figure 4. The position and
radius are stored in the first register, while up to four scalar proper-
ties from the simulation (v0, v1, v2, and v3) are stored in the second.

Figure 4: Data layout for the modified CGT algorithm. The data associ-
ated with each sphere are stored in two consecutive 16-byte aligned SIMD
registers. This layout facilitates efficient insertion, culling, and ray/sphere
intersection tests by leveraging the SIMD extensions on modern CPUs.

To facilitate a more efficient traversal, the grid is organized hi-
erarchically. Hierarchical grids typically divide densely populated
regions of space more finely than empty regions. There are several
ways to accomplish this task [3, 10, 12, 17], and we leverage the
macrocell hierarchy described by Parker et al. [17]. Each level in
this hierarchy imposes a coarser grid over the previous level, and
each macrocell corresponds to an M×M×M block of cells in the
underlying level. We use a simple two-level hierarchy: one level of
macrocells imposed on top of the actual grid.

To support parameter range culling, the macrocell hierarchy dif-
fers from the one used in the original CGT algorithm and more
closely resembles one used in interactive volume visualization ap-
plications [17]. In particular, a macrocell must store the minimum
and maximum values of each data variable across all of the par-
ticles it contains, rather than a simple Boolean flag indicating an
empty or non-empty condition. The data for an individual particle
consists of its position, radius, and up to four additional properties
(see Figure 4), requiring that each macrocell store the minimum and
maximum value for eight parameters.

We use the sort-middle construction algorithm described by
Ize et al. [9] to quickly rebuild the grid in each frame (if neces-
sary). In this approach, the construction-related tasks correspond-
ing to disjoint sections of the grid are statically distributed among
all of the threads in the system. The sort-middle insertion essen-
tially performs a coarse parallel bucket sort of the particles by their
cell locations, and each thread inserts the particles in its set of buck-
ets into the appropriate grid cells. The regions corresponding to
each bucket are disjoint, so each thread inserts its particles into dif-
ferent parts of the grid. Write conflicts are thus avoided, and mu-
texes or other synchronization primitives are not necessary.

4.3 Additional Modifications

Mailboxes and fast SIMD frustum culling are critical components
of the original CGT algorithm. Mailboxes prevent redundant inter-
sections with a primitive that spans multiple grid cells, while culling
operations often allow constant cost rejection of primitives. In ad-
dition, these operations are typically much faster than ray/primitive
intersection tests, the cost of which is linear in the number of rays
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in each packet. Although the sphere-center method prevents re-
dundant intersection tests and alleviates the need for mailboxes,
two modifications based on frustum culling further improve per-
formance and add flexibility to the data analysis process. We also
add the ability to render images with soft shadows to enhance the
perception of complex particle datasets.

SIMD Sphere/Frustum Culling. There are two sources of poten-
tially unnecessary intersection tests with our approach. First, a
sphere may lie within a cell through which the enlarged frustum
passes, but the sphere does not overlap either the enlarged nor the
original frustum. Second, the radius of a given sphere may be
smaller than the maximum radius rmax used to compute the enlarged
frustum, again implying overlap when there is actually no overlap.
These situations are illustrated in Figure 5. We use frustum culling
to efficiently reject non-overlapping spheres in the first case.

The original CGT algorithm employs SIMD shaft culling [5] to
prevent unnecessary intersection tests by quickly discarding trian-
gles that lie outside the current bounding frustum. In this case, tri-
angles are culled if all four corner rays of the current frustum miss
the triangle on the same edge.

Unfortunately, the SIMD shaft culling technique relies on prim-
itives that posses planar edges, a property which spheres do not
exhibit; as a result, this fast culling technique is not appropriate
for our application. However, a much simpler test can be used to
quickly cull spheres and avoid unnecessary intersection tests: if the
distance from the center of a given sphere to any of the planes of
the bounding frustum is greater than the radius of the sphere, the
rays bounded by the frustum cannot intersect the sphere.

Our current implementation of this test uses the shifted bounding
planes that are a by-product of the sphere-center method. If the cen-
ter of the sphere is not contained by the enlarged frustum Fr, then
none of the rays in the packet bounded by the original frustum can
intersect the sphere and it can be culled. Using the enlarged frus-
tum may seem superfluous because exactly that frustum was used
to locate the cells with spheres that are potentially intersected by
the rays; however, spheres that do not actually overlap Fr may be
included because of discretization artifacts. In this case, an inter-
section test is required only if the center of the sphere lies within the
enlarged bounding frustum. We note, however, that this approach
does not cull spheres with radii less than rmax that are contained by
Fr, but that do not overlap the original frustum (see Figure 5).

Figure 5: Avoiding unnecessary ray/sphere intersection tests. A sphere may
lie within a cell through which the enlarged frustum passes, but the sphere
does not overlap either the original or the enlarged frustum (left). SIMD
sphere/frustum culling detects this situation and discards the spheres. A
sphere whose radius is less than rmax may also lie in a cell through which the
enlarged frustum passes, but the sphere may not overlap the original frustum
(right). Our current culling algorithm does not handle this case, however.

Parameter Range Culling. In addition to its position and radius,
up to four values representing properties from the simulation can
be stored with each particle. To gain additional insight into the
behavior of a simulation, investigators may isolate particles with
parameters that take on a particular value or that lie within some
range of values, as shown in Figure 6. We cull particles whose
range of values do not overlap the currently valid range, thereby
avoiding unnecessary intersection tests.

Figure 6: Parameter range culling with particle datasets. Using parameter
range culling, particles representing the bone and internal tissues within the
BulletTorso dataset (top) and only those representing the alloy container in
the Thunder dataset (bottom) have been isolated. Parameter range culling
puts the range of valid parameter values used during visualization under
the full control of the user at run time, and these values can be changed
interactively.

First, parameter range culling is applied to large groups of parti-
cles via the macrocell hierarchy. In this case, macrocells no longer
store a simple Boolean flag indicating the empty/non-empty condi-
tion, but rather they store the minimum and maximum values for
each data variable across all of the particles they contain. These ex-
trema are then used during traversal to determine whether or not any
spheres within a macrocell will potentially produce a valid inter-
section. If the macrocell range does not overlap the user-specified
range, it can be skipped and all of the particles it contains are culled.
For culling particles based on eight parameters, this check requires
only eight SIMD operations: four comparisons, two Boolean and
operations, and two masking operations. The cost of these opera-
tions becomes trivial when amortized over the number of particles
contained within a typical macrocell, and is significantly less than
the ray/sphere intersection tests that would otherwise be required
for each of the particles within a macrocell.

When the values of at least one particle lie within the currently
valid range, the macrocell cannot be skipped even though many of
the particles may not be in range. To guarantee correctness, pa-
rameter range culling must also be applied at the level of individual
particles. We ensure that each particle lies within the currently valid
range before actually performing the intersection test. If any of the
values lie outside the user-specified range, the intersection test can
be skipped and the particle is culled. As with macrocell culling,
this process requires eight SIMD operations per sphere: four com-
parisons, two Boolean and operations, and two masking operations.

Soft Shadows. As discussed in Section 3, soft shadows from area
light sources provide important visual cues about the relative posi-
tion of objects in complex datasets. Soft shadows are preferable
to hard shadows because the smooth transition from shadowed to
unshadowed regions is less likely to be misinterpreted as a discon-
tinuity in the underlying data. Although shadows and other global
effects are difficult to implement in systems based on rasterization,
these effects are easily integrated into our approach because it is
based on ray tracing.
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Cylinder JP8 Bullet Thunder Foam BulletTorso
# particles 212980 815345 2.1 M 2.8 M 7.2 M 34.9 M
Data size 6.50 MB 21.77 MB 47.75 MB 86.33 MB 136.52 MB 1.04 GB
Frame rate 100.20 fps 99.88 fps 126.93 fps 40.86 fps 14.34 fps 18.31 fps

Table 1: Particle datasets used to evaluate the modified CGT approach. These datasets exhibit a wide variety of sizes and geometric complexity, and each
represents a single time step of the full simulation. We evaluate a working implementation of our modified CGT algorithm using the viewpoints and time steps
shown above, but the system can render the full time-varying datasets as well. The frame rates reported in this table were achieved by rendering 1024× 1024
images using 16 threads of the test machine, 8×8 ray packets, and simple Lambertian shading. (Performance with soft shadows is reported below.)

In particular, packets of coherent shadow rays can be generated
by connecting the hit point corresponding to a given primary ray
with some number of samples on an area light source [26]. By
constructing shadows rays in this manner, secondary ray packets
share a common origin and can traverse a grid using the modified
CGT algorithm in a manner identical to that used for primary ray
packets. Using this approach, both the number of shadow rays and
the size of the light source can be interactively controlled by the
user and permits performance-for-quality trade-offs.

5 RESULTS

We evaluate the performance of the modified CGT algorithm us-
ing several particle datasets of varying sizes and complexity with
a working implementation. The pertinent characteristics of these
datasets and the viewpoints used during testing are given in Ta-
ble 1. We first discuss the impact of the various parameters and
optimizations in the modified CGT algorithm, and then compare
the performance of our approach with other state-of-the-art parti-
cle visualization systems. Unless stated otherwise, the results were
gathered by rendering 1024×1024 images using a 16 core Opteron
machine with 2.4 GHz processors and 64 GB of physical memory.

Impact of Grid and Packet Resolution. Like the original CGT
algorithm, the performance of our approach is governed by four
parameters: grid resolution, macrocell resolution, ray packet size,
and image resolution. As described in Section 4.2, the grid resolu-
tion is determined using λ, a parameter that relates the number of
cells in the grid to the total number of particles. Unlike the origi-
nal CGT algorithm, in which most scenes were largely insensitive
to the value of λ, the performance of the modified algorithm varies
widely with different values of λ, which is a result of the extremely
large number of particles in the test datasets. After testing several
values in the range [0.2,5], it is clear that λ = 1 provides the best
performance for all of the datasets we use. Further testing shows
that a macrocell resolution of 6× 6× 6 yields reasonable perfor-
mance for these datasets. Though tuning the parameters for each
dataset may yield slight performance gains, we use these parameter
values for all of our tests.

Ray packet size has a significant impact on interactive perfor-
mance. For a given packet size, the cost of a traversal step is con-
stant while the cost of intersecting the cells in a given slice increases
with the number of cells the frustum overlaps. The frustum bound-
ing a small ray packet will overlap fewer cells than that of a larger
packet, but large packets amortize the costs over more rays, so there
is an obvious trade-off between packet size and performance.

Table 2 gives the frame rates achieved when rendering each of
the test datasets with a single rendering thread using various packet
sizes. The number of particles in these datasets ranges from a few
hundred thousand to tens of millions, so the resulting grids are often
several hundred cells in each dimension. As a result, 4×4 and 8×8

packets typically provide the best performance by amortizing the
traversal cost over a larger number of rays. Unless stated otherwise,
we use 8×8 ray packets for the remainder of our tests.

Dataset 2×2 4×4 8×8 16×16
Cylinder 3.99 6.94 7.29 4.32
JP8 2.78 5.92 8.10 5.93
Bullet 4.26 8.04 9.42 6.41
Thunder 2.96 3.80 2.95 1.32
Foam 1.37 1.65 0.98 0.25
BulletTorso 1.42 1.83 1.32 0.43

Table 2: Impact of primary ray packet size. Frame rates achieved using a
single thread on the test machine for various packet sizes. In general, 4× 4
and 8×8 packets provide the best performance for the datasets tested.

Impact of Image Resolution. In addition to grid resolution (and
thus the number of particles), the optimal packet size is also in-
fluenced by the image resolution: high resolution images result in
higher ray density and permit larger packet sizes. As noted, a res-
olution of 1024×1024 pixels is used as the default value for these
experiments, which is suitable for current displays. However, the
aliasing problem, which is particularly acute for the large numbers
of particles and complex geometries typical of particle-based simu-
lation data, pushes the demand for oversampling—or, equivalently,
larger image resolutions—forward.

Ray tracing cost is typically linear in the number of pixels, but
because higher resolution images allow larger ray packets, the mod-
ified CGT algorithm scales sublinearly with image resolution, as
demonstrated by the data in Table 3.

10242 20482

Dataset 4×4 8×8 8×8 16×16 Ratio
Cylinder 6.83 7.25 2.95 2.32 0.41
JP8 5.84 8.06 3.04 2.91 0.38
Bullet 8.01 9.37 3.32 2.97 0.35
Thunder 3.56 2.79 1.74 0.98 0.49
Foam 1.57 0.95 0.74 0.31 0.47
BulletTorso 1.79 1.30 0.90 0.46 0.50

Table 3: Impact of image resolution. Frame rates achieved using a single
thread on the test machine for various packet sizes and image resolutions.
The modified CGT algorithm scales sublinearly with image resolution.

Impact of the Sphere-Center Method. The sphere-center
method introduced in Section 4.1 overcomes many problems asso-
ciated with grids and improves interactive rendering performance.
In this method, each particle is stored in exactly one grid cell so data
is not duplicated, locality of reference is improved, and schemes
to prevent redundant intersection tests become unnecessary. How-
ever, it is not immediately clear that traversing the enlarged frus-
tum required by the sphere-center method would not simply cancel
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these benefits or actually degrade performance. As the data in Ta-
ble 4 demonstrates, however, frame rates improve by a factor of
1.02–1.27 over a standard grid that stores references to the particle
data in (possibly) many cells. The operations required to compute
the enlarged frustum can be implemented very efficiently using the
SIMD extensions of modern CPUs, so the cost of these additional
operations is subsumed by the benefits of storing each primitive in
exactly one cell.

Dataset Standard Sphere-Center Speed-up
Cylinder 6.58 7.29 1.11
JP8 7.91 8.10 1.02
Bullet 9.21 9.42 1.02
Thunder 2.37 2.95 1.24
Foam 0.81 0.98 1.21
BulletTorso 1.04 1.32 1.27

Table 4: Impact of the sphere-center method. Frame rates achieved using
a single thread for standard and sphere-center grids. Though originally de-
signed for reducing the storage overhead and simplifying data access, the
overall performance improves by a factor of 1.02–1.27.

This method also reduces the memory footprint of our appli-
cation. Primitive data is stored directly in the finest level of the
grid, and is neither duplicated nor referenced by pointers. For ex-
ample, the BulletTorso dataset, which consists of nearly 35 mil-
lion particles and consumes just over 1 GB of storage, results in a
420×198×432 grid. The average particle overlaps 16.19 grid cells
in this case, and a standard grid implementation that stores parti-
cle identifiers (as 4-byte integers) in each cell adds an additional
2.11 GB. However, using the sphere-center method, only 1.04 GB
of storage is required: 32 bytes (8 data values × 4-byte floating
point numbers) for each of 34.9 M spheres.

Similarly, the sphere-center method also improves grid construc-
tion times because potentially expensive primitive/cell or bounding
box/cell overlap tests are no longer required. Spheres are placed in
exactly one cell by simply truncating the floating point values ex-
pressing their centers in the grid coordinate space to integers. This
conversion requires only one SIMD operation on modern CPUs.
As an example, total grid construction time using a single thread
on the test machine for the JP8 dataset improves from 1407.27 ms
to 510.96 ms, which represents a factor of about 2.75 overall. In
particular, the time required by the insertion phase is 797.71 ms for
the standard grid, but it is reduced by a factor of 3.07 to 260.13 ms
using the sphere-center method.

Impact of Frustum and Parameter Range Culling. Efficient
frustum culling plays an important role in the original CGT algo-
rithm, and the same holds true for our modified algorithm. Uni-
form grids do not adapt to the local variations in primitive density
as well as structures like kd-trees or BVHs. As a result, more prim-
itive intersection tests are required during traversal of a grid than
for other structures. Frustum culling cancels this behavior and re-
duces the number of ray/primitive intersection tests actually per-
formed, as demonstrated by the results in Table 5. The efficient
SIMD sphere/frustum culling procedure described in Section 4.3
reduces the number of ray/sphere intersection tests performed to
38–81% of the total potential tests required for the test datasets, im-
proving interactive performance by a factor of 1.17–1.68 as shown
in Table 6.

As described in Section 4.3, parameter range culling is applied
at the level of both the macrocells and the individual particles. The
results in Table 7, which correspond to the images in Figure 6,
indicate that this ability adds some additional overhead, but effi-
cient SIMD implementation of the range checking decreases per-
formance by only a factor of 1.38–2.28 over preprocessed versions
of the data. Some of this performance difference can be attributed to
the slight difference in the grid bounds (with smaller bounds lead-

Dataset Potential tests # skipped Culled
Cylinder 219470 135722 61.84%
JP8 284990 231832 81.34%
Bullet 161938 108858 67.22%
Thunder 593191 346076 58.34%
Foam 2120452 1179271 55.61%
BulletTorso 925835 355538 38.40%

Table 5: Culling statistics for SIMD sphere/frustum culling. Number of poten-
tial ray/sphere intersection tests and the number of tests skipped by frustum
culling. Efficient SIMD frustum culling significantly reduces the number of
ray/sphere intersection tests required during grid traversal.

Dataset No culling Culling Speed-up
Cylinder 71.04 99.16 1.40
JP8 59.13 99.79 1.68
Bullet 87.20 123.37 1.41
Thunder 29.22 40.78 1.40
Foam 9.64 14.21 1.47
BulletTorso 15.69 18.31 1.17

Table 6: Impact of SIMD sphere/frustum culling. Frame rates achieved using
16 threads on the test machine with and without frustum culling. Interactive
performance improves by a factor of 1.17–1.68 for the test datasets.

ing to fewer packet traversals), but the 16 SIMD operations im-
plementing macrocell and particle range checking also adds some
computational overhead. Nevertheless, this feature provides addi-
tional flexibility during the data analysis process, a benefit which
clearly outweighs the relative impact on interactive performance.

Dataset % total PR cull PR cull Pre-crop
(no mcells)

Thunder 43.00 14.23 43.06 59.55
BulletTorso 34.17 3.17 11.18 25.49

Table 7: Impact of parameter range culling. Frame rates achieved using 16
threads on the test machine for on-the-fly parameter range culling (with and
without macrocell culling) and preprocessed data. Parameter range culling
adds some additional overhead, but interactive performance degrades only
slightly when compared to preprocessed datasets composed of the same
particles.

Impact of Soft Shadows. To this point, we have only consid-
ered simple ray casting and local shading; non-local effects such as
shadows have not been considered. However, using the approach
described in Section 4.3, packets of coherent shadow rays can be
generated for each primary ray and then traced through the scene
using the modified CGT algorithm.

Although interactive performance with soft shadows depends
heavily on the coherence exhibited by secondary ray packets, the
impact is sublinear in the number of rays traced, as demonstrated
by the data in Table 8. Interactive performance varies widely for the
datasets and lighting configurations tested, with the impact ranging
from a factor of 2.42 (for the fastest 2× 2 packets) to as much as
19.35 (for the slowest 8×8 packets).

The flexibility of an interactive visualization environment puts
these parameters under the full control of the user at run time,
allowing trade-offs between image quality and interactive perfor-
mance. For example, Figure 7 shows the results of using 2× 2,
4×4, and 8×8 shadow rays per primary ray. Quality can be traded
for performance by simply using fewer shadow rays or disabling
shadows altogether.

Comparison with Other Approaches. Finally, we compare the
performance of our approach with two recent systems that repre-
sent the current state-of-the-art in interactive particle visualization.
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Dataset No shadows 2×2 4×4 8×8
Cylinder 100.20 14.91 10.47 5.34
JP8 99.88 16.31 12.21 6.65
Bullet 126.93 19.55 13.69 6.56
Thunder 40.86 14.07 10.74 6.45
Foam 14.34 4.38 2.51 1.17
BulletTorso 18.30 7.39 6.09 3.82

Table 8: Impact of soft shadows. Frame rates achieved using 16 threads on
the test machine for various soft shadow settings. In these tests, the light
source area is rather large, at 5% of the area of the bounding box of the
scene.

No shadows 2×2

4×4 8×8
Figure 7: Rendering with soft shadows. Soft shadows from area light
sources provide important visual cues about the relative position of objects
in complex datasets. Shadows and other global effects are easily integrated
into an approach based on ray tracing such as the one described here.

The first is based on an optimized single ray grid traversal algo-
rithm in the Real-Time Ray Tracer [16], while the second leverages
programmable graphics hardware and software-based acceleration
techniques [6].

The results in Table 9 show that our modified CGT algorithm
compares favorably with these systems for the test datasets. The
benefits of packet-based traversal become evident when compared
to single ray traversal: interactive performance improves by a factor
of 1.35–14.48 for the test datasets. Though some of the improve-
ment results from our use of SIMD extensions that are not easily
employed in single ray scheme, such an implementation usually
provides an improvement of only a factor of 2–3; the remainder
is a result of the cost amortization and algorithmic improvements
inherent to a packet-based traversal method.

Surprisingly, our approach also outperforms the system based on
programmable graphics hardware. This system uses view-aligned,
textured billboards to represent each particle. Vertex and fragment
programs manipulate this data to provide a high-quality represen-
tation of each particle that is consistent with the results of an ap-
proach based on ray tracing. In addition, software-based accelera-
tion techniques (including basic frustum culling and more sophis-
ticated occlusion culling algorithms) are used to reduce the render-
ing workload in each frame. Nevertheless, and despite the fact that
our test machine actually provides less raw FLOPS than the Nvidia

GeForce 7800 GT used for testing, our approach outperforms this
system by a factor of about 5 to almost 50 for the datasets tested.

Dataset Our CGT RTRT GPU-based
Parker et al. [16] Gribble et al. [6]

Cylinder 100.20 12.60 5.78
JP8 99.88 6.90 17.40
Bullet 126.93 11.90 2.56
Thunder 40.86 14.90 8.10
Foam 14.33 6.40 2.04
BulletTorso 18.31 13.50 1.56

Table 9: Comparison of visualization methods. Frame rates achieved using
our modified CGT algorithm and two state-of-the-art interactive particle vi-
sualization systems. The benefits of packet-based traversal become evident
when compared to single ray traversal, and our approach also significantly
outperforms an approach leveraging programmable graphics hardware.

6 CONCLUSIONS AND FUTURE WORK

We have presented an approach to particle-based data visualiza-
tion based on optimizations to the coherent grid traversal algorithm.
Our modified algorithm employs fast ray tracing methods for multi-
level grids, including ray packets, frustum based traversal, frustum
culling, and SIMD extensions. We have also introduced the sphere-
center method, which exploits the properties of particle-based sim-
ulation data to improve the performance of coherent grid traversal
and reduce storage requirements. The sphere-center method attacks
some classic problems associated with grids, namely duplicate data
or no locality of reference, and redundant ray/primitive intersec-
tion tests. In addition, the rebuild process is made more efficient
with this method by replacing primitive or bounding box overlap
tests with a simple float-to-int truncation. Optimizations based on
efficient sphere/frustum culling further improve the interactive per-
formance of the modified CGT algorithm.

We have evaluated the performance of our approach using a sys-
tem with sixteen 2.4 GHz Opteron cores (8 Opteron 880 dual-core
CPUs). The theoretical peak available on this machine is less than
155 GFLOPS, which is an order of magnitude less than the terascale
performance of, for example, the ATI X1900 graphics processing
unit [19]. While it is only a matter of time before compute power of
this magnitude is available for ray tracing, the evaluation of our al-
gorithm shows highly interactive frame rates on reasonably priced
multi-core platforms (a system with compute power similar to the
test machine would cost less than $35,000 at the time of this writ-
ing). In addition, our approach compares favorably with two recent
systems that represent the current state-of-the-art in particle visual-
ization. A previous approach based on interactive ray tracing [2] re-
quire tightly-coupled supercomputing platforms, and although this
approach satisfies the requirements of effective particle visualiza-
tion, the associated hardware costs are prohibitive and impede ac-
cessibility. Systems using programmable graphics hardware [6]
also offer a way to visualize large, time-varying particle datasets
at interactive rates. This hardware is widely available, and a desk-
top system so equipped is considerably less expensive (roughly a
factor of 7) than the system used to evaluate our algorithm. How-
ever, GPU-based approaches are not easily extended to include vi-
sualization features like soft shadows or advanced shading models,
while an algorithm based on ray tracing can be extended to include
these features naturally. Already we achieve reasonably interac-
tive performance with a naive implementation of soft shadows, and
advanced shading models such as ambient occlusion or physically
based diffuse interreflection will become feasible with continued
improvements in both algorithmic design and CPU performance.
Moreover, as multi-core systems become more prevalent, the price-
performance ratio of a particle visualization system based on inter-
active ray tracing will only improve.
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Several areas require further attention. First, techniques similar
to the sphere-center method can be applied to other types of prim-
itives such as triangles, and exploring these methods is of interest.
In addition, the current implementation of soft shadows treats sec-
ondary rays in a manner identical to primary rays. Additional im-
provements in performance may result from optimizations specific
to secondary ray packets. Accelerating performance of secondary
rays is also important if the visual cues from advanced shading
models like ambient occlusion and physically based diffuse inter-
reflection are to be used during interactive rendering. Exploring
efficient methods to include these effects is of particular interest.
Finally, multi-modal visualization of particle and volumetric data,
such as a container (particle-based simulation) in a pool fire (com-
putational fluid dynamics simulation), would also be useful. Effi-
cient techniques for packet-based volume rendering are required to
combine this visualization modality with the particle visualization
method we have described.
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