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Figure 1: Scene with complete global illumination computed at 1 fps (640×480 on 16 dual-AthlonMP 1800+ PCs) while the book and glass
ball are moved by a user. Note the changing soft shadows, the caustics from the glass ball, the reflections in the window, and especially the
color bleeding effects on the walls due to indirect illumination.

Abstract

Interactive graphics has been limited to simple direct illumination
that commonly results in an artificial appearance. A more realistic
appearance by simulating global illumination effects has been too
costly to compute at interactive rates.

In this paper we describe a new Monte Carlo-based global illu-
mination algorithm. It achieves performance of up to 10 frames per
second while arbitrary changes to the scene may be applied inter-
actively. The performance is obtained through the effective use of
a fast, distributed ray-tracing engine as well as a new interleaved
sampling technique for parallel Monte Carlo simulation. A new
filtering step in combination with correlated sampling avoids the
disturbing noise artifacts common to Monte Carlo methods.
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1 Introduction

With the availability of fast and inexpensive graphics hardware, in-
teractive 3D graphics has become a mainstream feature of todays
desktop and even notebook computers. All these systems are based
on the rasterization pipeline. Recent hardware features such as
multi texturing, vertex programming, and pixel shaders [Lindholm
and Moreton 2001; NVIDIA 2001] have significantly increased the
realism achievable with this environment.

However, these interactive systems are still limited to simple di-
rect illumination from the light sources. With the pipeline rendering
model it is impossible to compute the interaction between objects
in the scene directly. Even simple shadows must be approximated
in separate rendering passes for each light source.

Commonly, more complex lighting effects are precomputed off-
line with existing global illumination algorithms. They are expen-
sive and slow, taking in the order of minutes to hours for a single
update. Obviously, this works only for static illumination in equally
static scenes and is insufficient for the highly dynamic environment
of interactive applications.

The importance of realistic illumination and global illumina-
tion effects becomes apparent if we consider the significant ef-
forts invested in lighting effects for the production of real and vir-
tual movies. They employ a large staff of specially trained light-
ing artists to create the required atmosphere and mood of a scene
through an appropriate illumination.

In real movie productions the artists have to work with the global
effects of real light sources, while lighting artists in virtual produc-
tions have to simulate any global effects with local lighting. Only
recently have global illumination algorithms been introduced in this
environment, mainly in order to reduce time and money by automat-
ing some of the lighting effects. Previously global illumination was
considered too inflexible and time consuming to be useful.

However, realistic lighting has a much wider range of appli-
cation. It is instrumental in achieving realistic images of virtual
objects, supporting the early design and prototyping phases in a
production pipeline. Realistic lighting is particularly important for
large, expensive projects as in the car and airplane industry but is
equally applicable for projects from architecture, interior design,
industrial design, and many others.

Algorithms for computing such realistic lighting often rely on
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ray tracing, which has long been well known for it high render-
ing times. Only but recently, research in faster and more efficient
ray-tracing has drastically changed the environment in which global
illumination operates. Even on commodity hardware, ray-tracing
has been accelerated by more than an order of magnitude [Wald
et al. 2001a; Wald et al. 2001b]. In addition, novel techniques al-
low for an efficient and scalable distribution of the computations
over a number of client machines.

Since ray-tracing is at the core of most global illumination al-
gorithms, one should suspect that global illumination algorithms
should equally benefit from these developments. However, it turns
out that fast ray-tracing implementations impose constraints that
are incompatible with most existing global illumination algorithms
(see Section 2.1).

1.1 Outline of the new Algorithm

In this paper we introduce a new, Monte Carlo global illumina-
tion algorithm that is specifically designed to work within the con-
straints of newly available distributed interactive ray tracers in order
to achieve interactive performance on a small cluster of PCs.

Our algorithm efficiently simulates direct and mostly-diffuse in-
terreflection as well as caustic effects, while allowing arbitrary and
interactive changes to the scene. It avoids noise artifacts that are
particularly visible and distracting in interactive applications.

Interactive performance is obtained through the effective use of
a fast, distributed ray-tracing engine for computing the transport of
light, as well as new interleaved sampling and filtering techniques
for parallel Monte Carlo simulations. The idea of instant radios-
ity [Keller 1997] is used to compute a small number of point light
sources by tracing particles from the light sources. Indirect illumi-
nation is then obtained by computing the direct illumination with
shadows from this set of point light sources.

In addition illumination via specular paths is computed by shoot-
ing caustic photons [Jensen 2001] towards specular surfaces, ex-
tending their paths until diffuse surfaces are hit and storing the hits
in a caustic photon map. All illumination from point light sources
and caustic photons are recomputed for every frame.

We distribute the computation over a number of machines with
a client/server approach by using interleaved sampling in the image
plane. Based on a fixed pattern, samples of an image tile are com-
puted by different machines with each machine using a different set
of point light sources and caustic photons.

Finally, we apply filtering on the master machine to combine the
results from neighboring pixels. This step is important for achiev-
ing sufficient image quality as it implicitly increases the number
of point lights and caustic photons used at each pixel. We currently
use a simple heuristic based on normals and distances for restricting
the filter to a useful neighborhood.

1.2 Structure of the Paper

We start in Section 2 with an overview of the fast ray-tracing sys-
tems that have recently become available. In particular we discuss
the constraints those systems impose on global illumination algo-
rithms. In Section 3 we review previous work specifically with re-
spect to these constraints. The details of the new global illumination
algorithm are then discussed in Section 4 before presenting results
in Section 5.

2 Fast Ray-Tracing

Ray-tracing is one of the oldest and most fundamental techniques
used in computer graphics [Appel 1968; Whitted 1980; Cook et al.
1984]. In its most basic form it is used for computing the visibility

along a ray or between two points. Most global illumination algo-
rithms use ray-tracing in their core procedures to determine visi-
bility or to compute the transport of light via particle propagation.
Often most of their computation time is actually spent inside the
ray-tracer.

Ray-tracing is also well-known for its long computation times.
It requires traversing a ray through a precomputed index structure
for locating geometry possibly intersecting the ray, computing the
actual intersections, and finally evaluating some shader code at the
intersection point. Each step involves significant computation and
most applications require tracing up to several million rays. Con-
sequently, those algorithms were limited to off-line computation,
taking minutes to hours for computing a single image or global il-
lumination solution.

Recently, ray-tracing has been optimized to deliver interactive
performance on certain platforms. Muuss [Muuss and Lorenzo
1995; Muuss 1995] and Parker et al. [Parker et al. 1999b; Parker
et al. 1999a; Parker et al. 1998] have shown that the inherent paral-
lelism of ray-tracing allows one to efficiently scale to many proces-
sors on large and expensive supercomputers with shared memory.
Exploiting the scalability of ray-tracing and combining it with low-
level optimizations allowed them to achieve interactive frame rates
for a full-featured ray-tracer, including shadows, reflections, differ-
ent shader models, and non-polygonal primitives such as NURBS,
isosurfaces, or CSG models.

Last year, Wald et al. [Wald et al. 2001a] have shown that in-
teractive ray-tracing performance can also be obtained on inexpen-
sive, off-the-shelf PCs. Their implementation is designed for good
cache performance using optimized intersection and traversal algo-
rithms and a careful layout and alignment of core data structures. A
redesign of the core algorithms also allowed them to exploit com-
monly available processor features like prefetching, explicit cache
management, and SIMD-instructions.

Together these techniques increased the performance of ray-
tracing by more than an order of magnitude compared to other soft-
ware ray-tracers [Wald et al. 2001a]. Because ray-tracing scales
logarithmically with scene complexity, ray-tracing on a single CPU
was able to even outperform the fastest graphics hardware for com-
plex models and moderate resolutions.

In a related publication it was shown that ray-tracing scales well
also in a distributed memory environment using commodity PCs
and networks [Wald et al. 2001b]. Distributed computing is imple-
mented in a client/server model and is mainly based on demand-
loading and caching of scene geometry on client machines, as well
as on load-balancing and hiding of network latencies through re-
ordering of computations. It achieves interactive rendering perfor-
mance even for scenes with tens of millions of triangles. Using
more processors also allows one to use more expensive rendering
techniques, such as reflections and shadows.

It is an obvious next step to use the fast ray-tracing engine to also
speed up the previously slow global illumination algorithms that
depend so heavily on ray-tracing. However, it turns out that this
is not as simple as it seems at first: Most of these algorithms are
incompatible with the requirements imposed by a fast ray-tracing
system.

2.1 Constraints and Requirements

There is a large number of constraints imposed on any potential
global illumination algorithm. In the following we briefly discuss
each of these constraints.

2.1.1 Computational Constraints

Complexity. It has been shown that interactive ray-tracing
can handle huge scenes with tens of millions of triangles effi-
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ciently [Wald et al. 2001b]. However, in most cases complex en-
vironments translate to complex illumination patterns that are sig-
nificantly more costly to compute. While pure ray-tracing scales
logarithmically with scene geometry, this is not the case for global
illumination computations in general. This limits the complexity of
scenes that we will be able to simulate interactively.

Performance. A target resolution of 640×480 pixels contains
roughly 300,000 pixels. Furthermore, we assume that a single client
processor can trace roughly 500,000 rays per second. Given a small
network of PCs with 30 processor, e.g. 15 dual processor machines,
we have a total theoretical budget of only 50 rays per pixel for esti-
mating the global illumination for an image.

Parallelization. Due to price and availability considerations, we
are targeting networks of inexpensive but fast PCs with standard
network components. Due to this highly parallel environment, the
global illumination algorithm must also run in parallel across a
number of client machines. Furthermore, the ray-tracer schedules
bundles of ray trees to be computed on each client. For best perfor-
mance, the algorithms should offer enough independent tasks and
these tasks should be organized similar to the ray scheduling pat-
tern.

Other Costs. The underlying engine significantly speeds up
ray-tracing compared to previous implementations. However, its
speedup is limited to this algorithm. Other costs in a global illu-
mination algorithms that have previously been dominated by ray-
tracing can easily become the new bottleneck.

Communication. Commodity network technology, such as
Fast-Ethernet or even Gigabit-Ethernet present significant hurdles
for distributed computing. Compared to shared-memory systems,
communication parameters differ by several orders of magnitude:
bandwidth is low, measured in megabytes versus gigabytes per sec-
ond, and latencies are high, measured in milliseconds versus frac-
tions of microseconds.

Thus, a good algorithm must keep its bandwidth requirements
within the limits of the network and must avoid introducing laten-
cies. In particular, it must minimize synchronization across the net-
work, which would result in costly round trip delays and in clients
running idle.

Global Data. Many existing global illumination algorithms
strongly depend on access to some global data structure. However,
access to global data must be minimized for distributed tasks as
it causes network delays and possible synchronization overhead to
protect updates to the data.

Access to global data is less problematic before and after tasks
are distributed to clients. In a client/server environment the global
data can be maintained by the master and is then streamed to and
from clients together with other task parameters.

Ideally, global data to be read by a client is transmitted to it with
the initial task parameters. The task then performs its computa-
tions on the client without further communication. Global data to
be written is then transmitted back to the master together with the
other results. One must still be careful to avoid network latencies
and bandwidth problems.

Amortization. Many existing algorithms perform lengthy pre-
computations before the first results are available. This processing
is then amortized over remaining computations. Unfortunately, this
strategy is inadequate for interactive applications, where the goal
is to provide immediate feedback to the user. Preprocessing must
be limited to a few milliseconds per frame. Furthermore, it must

also be amortized over at most a few frames, as it might otherwise
become obsolete due to interactive changes in the environment.

Accumulation. During interactive sessions many lighting pa-
rameters change constantly, making it difficult to accumulate and
reuse previous results. However, this technique can be used to im-
prove the quality of the global illumination solution in static situa-
tions.

Coherence. A fast ray-tracer depends significantly on coherent
sets of rays to make good use of caches and for an efficient use of
SIMD computations [Wald et al. 2001a]. An algorithm should send
rays in coherent batches to achieve best performance.

2.1.2 Quality Constraints

Illumination Effects. Given current technology, it seems unre-
alistic to expect perfect results at interactive rates, yet. Therefore
we focus on the major contributions of global illumination, such
as direct and indirect illumination by point and area light sources,
reflection and refraction, and direct caustics. Less attention is paid
to less important effects like glossy reflection or caustics of higher
order.

Display Quality. Operating at extremely low sampling rates, we
have to deal with the resulting sampling artifacts. While some of
these artifacts (e.g. high-frequency noise) are hardly perceivable in
still images, they may become noticeable and highly disturbing in
interactive environments. Therefore special care has to be taken of
temporal artifacts.

Interactivity. We define interactive performance to be at least 1
global illumination solution per second. Since higher rates are very
desirable, we are aiming for 4-5 frames per second.

3 Previous Work

The global illumination problem has been formularized by the ra-
diance equation [Kajiya 1986].

Using finite element methods, increasingly complex algorithms
have been developed to approximate the global solution of the radi-
ance equation. In diffuse environments, radiosity methods [Cohen
and Wallace 1993] were the first that allowed for interactive walk-
throughs, but required extensive preprocessing and thus were avail-
able only for static scenes. Accounting for interactive changes by
incremental updates [Drettakis and Sillion 1997; Granier and Dret-
takis 2001] forces expensive updates to global data structures and
is difficult to parallelize.

The use of rasterization hardware allows for interactive display
of finite element solutions. However, glossy and specular effects
can only be approximated or must be added by a separate ray trac-
ing pass [Stamminger et al. 2000]. Due to the underlying finite
element solution, these approaches are not available at interactive
rates.

Path tracing based algorithms [Cook et al. 1984; Kajiya 1986;
Chen et al. 1991; Veach and Guibas 1994; Veach and Guibas 1997]
correctly handle glossy and specular effects. The view dependency
requires to recompute the solution for every frame. The typical dis-
cretization artifacts of finite element methods are replaced by less
objectionable noise [Ramasubramanian et al. 1999], which how-
ever is difficult to handle over time. Reducing the noise to accept-
able levels usually is obtained by increasing the sampling rate and
results in frame rates that are far from interactive.

Walter et al. [Walter et al. 1999] achieved interactive frame rates
by reducing the number of pixels computed in every frame. Results
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from previous frames are reused through image-based reprojection.
It is most effective for costly, path tracing based algorithms. How-
ever, the approach results in significant rendering artifacts and is
difficult to parallelize.

Path tracing based approaches can be supplemented by photon
mapping [Jensen 2001]. This simple method of direct simulation
of light results in biased solutions, but allows to efficiently render
effects like caustics that may be difficult to generate with previous
algorithms. Direct visualization of the photon map usually results
in visible artifacts. A local smoothing or final gather pass can be
used for removing these artifacts but is prohibitively expensive due
to the large number of rays that must be traced.

Exploiting the local smoothness of the irradiance, an extrapo-
lation scheme [Ward and Heckbert 1992] has been developed that
considerably reduces the rendering time required by a local pass.
For a parallel implementation global synchronization and commu-
nication are necessary to provide each processor with the extrap-
olation samples. Far too many of the expensive samples are con-
centrated around corners as illustrated in [Jensen 2001, p. 143] and
the position of the samples is hardly predictable. This requires ei-
ther dense initial samples and consequently is expensive or results
in tremendous popping artifacts when changing geometry during
interaction.

Instant radiosity [Keller 1997] allows for interactive radiosity
without solution discretization: The lighting in a scene is approxi-
mated by point light sources generated by a quasi-random walk, and
rasterization hardware is used for shadow computation. Arbitrary
interactive changes to the environment were possible. However the
large number of rendering passes required for a single frame limited
interactivity to relatively simple environments.

4 Algorithm

This technical section introduces the new algorithm that meets the
constraints (see Section 2.1) that were imposed by a low cost clus-
ter of consumer PCs and overcomes the problems of previous work.
For brevity of presentation space we assume familiarity with the ra-
diance integral equation and refer to standard texts like e.g. [Cohen
and Wallace 1993].

Similar to distribution ray-tracing [Cook et al. 1984] for each
pixel an eye path is generated by a random walk. The scattered
radianceL(x,ω) (for the selected symbols see Figure 2) at the end-
pointx of the path in directionω is approximated by

L(x,ω)

= Le(x,ω)+
∫

S
V(y,x) fr (ωyx,x,ω)Lin(y,x)

cosθycosθx

|y−x|2
dA(y)

≈ Le(x,ω)+
M

∑
j=1

V(y j ,x) fr (ωy j x,x,ω)L j

cosθy j
cosθx

|y j −x|2

+
1

πr2

N

∑
j=1

Br (zj ,x) fr (ω j ,x,ω)Φ j ,

whereP := (y j ,L j )
M
j=1 is the set of point lights iny j with radi-

anceL j [Keller 1997] andC := (zj ,ω j ,Φ j )
N
j=1 is the set of caus-

tic photons that are incident from directionω j in zj with the flux
Φ j [Jensen 2001]. These sets have to be generated at least once
per frame by random walks of fixed maximum path length. After
this preprocessing step the scattered radiance is determined by only
visibility testsV(y j ,x) and photon queries, whereBr (zj ,x) is 1 if
|zj −x| ≤ r and 0 else.

In comparison to bidirectional path tracing [Veach and Guibas
1994] the first sum uses only one technique to generate path space

S scene surface
A area measure
L scattered radiance
Le emitted radiance
Lin incident radiance
fr bidirectional scattering distribution function
V(y,x) ∈ {0,1} mutual visibility ofy andx
θ angle between incident direction and normal
ωyx direction fromy to x

Figure 2: Selected Symbols.

samples. For the majority of all path space samples this technique
is best or at least sufficient to generate them. An exception are path
space samples with a small distance|y j − x| or which are belong-
ing to caustics. In order to avoid overmodulation the first group is
handled in a biased way by just clipping the distance to a minimal
value. Since samples of the second group cannot be generated by
this technique their contribution is approximated by the second sum
using photon mapping.

For each pixel only one eye path is generated allowing for higher
frame rates during interaction. The flickering of materials inher-
ent with random walk simulation is reduced by splitting the eye
path once at the first point of interaction with the scene. Then for
each component of the bidirectional scattering distribution function
a separate path is continued. Anti-aliasing is performed by accumu-
lating the images over time, progressively improving image quality
during times of no interaction.

In order to obtain interactive frame rates with the above algorith-
mic core on a cluster of PCs, the preprocessing must not block the
clients and avoid multiple computation of identical results as far as
possible, while further variance reduction is still needed to reduce
noise artifacts and increase efficiency. The necessary improvements
are discussed in the sequel.

4.1 Fast Caustics

Shooting a sufficient number of photons is affordable in an inter-
active application, since the random walk simulations require only
a small fraction of the total number of rays to be shot. However,
the original photon map algorithms [Jensen 2001] for storing and
querying photons are far too slow for interactive purposes: Re-
building the 3d-tree for the photon map for every frame does not
amortize, and the nearest neighbor queries are as costly as shooting
several rays.

Therefore photon mapping is applied only to visualize caustics,
where usually the photon density is rather high, and density estima-
tion is applied with a fixed filter radiusr. Assuming the photons
to be stored in a 3-dimensional regular grid of resolution 2r, only
8 voxels have to be looked up for a query. Since in practice only a
few voxels will actually be occupied by caustic photons, a simple
hashing scheme is used in order to avoid storing the complete grid.
The photons that are potentially in the query ball are found almost
instantaneously by 8 hash table lookups. Hashing and storing the
photons in the hash table is almost negligible as compared to 3d-
tree traversal and left-balancing of the 3d-tree as presented in the
original work.

4.2 Interleaved Sampling

Generating a different set of point lights for each pixel is too costly,
while using the same set causes aliasing artifacts (see Figure 3a).
The same arguments hold for the direct visualization of the caustic
photon map. In spite of the previous section’s improvements, com-
puting a sufficiently large photon map in parallel and merging the
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a) no interleaved sampling
no discontinuity buffer

b) 5×5 interleaved sampling
no discontinuity buffer

c) 5×5 interleaved sampling
3×3 discontinuity buffer

d) 5×5 interleaved sampling
5×5 discontinuity buffer

Figure 3: Interleaved sampling and the discontinuity buffer: All close-ups have been rendered with the same number of rays apart from
preprocessing. In a) only one set of point light sources and caustic photons is generated, while for b)-d) 25 independent such sets have been
interleaved. Choosing the filter size appropriate to the interleaving factor completely removes the structured noise artifacts.

results would block the clients before actually rendering the frame
and decrease the available network bandwidth.

However, generalizing interleaved sampling [Molnar 1991;
Keller and Heidrich 2001] allows one to control the ratio of pre-
processing cost and aliasing: Each pixel of a smalln×m grid is
assigned a different setPk of light points andCk of caustics pho-
tons (1≤ k≤ n ·m). Padding this prototype over the whole image
replaces aliasing artifacts by structured noise (see Figure 3b) while
only a small numbern·mof sets of light points and caustic photons
has to be generated. Since interleaved sampling achieves a much
better visual quality, the setsPk andCk can be chosen much smaller
thanP andC.

Each client computes the setsPk of point lights andCk of caus-
tics photons by itself. Parallel tasks are assigned such that a client
predominantly is processing tiles of equal identificationk in order
to allow for perfect cachingPk andCk. Due to interleaved sampling
synchronizing for global setsP andC (as opposed to [Christensen
2001]) is obsolete and in fact no network transfers are required.

4.3 The Discontinuity Buffer

The constraints of interactivity allow for only a small budget of
rays to be shot, resulting in setsPk andCk of moderate size. Conse-
quently the variance is rather high and has to be reduced in order to
remove the noise artifacts. Taking into account that the irradiance is
a piecewise smooth function the variance can be reduced efficiently
by the discontinuity buffer.

For each pixel the server buffers the reflectance function accu-
mulated up to the end point of the eye path, the distance to that
point, the normal in that point, and the incident irradiance. The ir-
radiance value consists of both the contribution by the point light
sourcesPk and the caustic photonsCk. Instead of just multiplying
irradiance and reflectance function, the irradiance of the 8 neigh-
boring pixels is considered, too: Local smoothness is detected by
thresholding the difference of distances and the scalar product of the
normals of the center pixel and each neighbor. If geometric conti-
nuity is detected, the irradiance of the neighboring pixel is added to
the center pixel’s irradiance. The final pixel color is determined by
multiplying the accumulated irradiance with the reflectance func-
tion divided by the number of total irradiances included.

In the locally smooth case this procedure implicitly increases the
irradiance sampling rate by a factor of 9, while at the same time re-
ducing its variance by the same factor. Note that no additional rays
have to be shot in order to obtain this huge reduction of noise, and
that a generalization to larger than 3× 3 filter kernels is straight-
forward. In the discontinuous case no smoothing is possible, how-
ever the remaining noise is superimposed on the discontinuities and
such less perceivable [Ramasubramanian et al. 1999]. Since only

the irradiance is blurred, texture details on the surface are perfectly
reconstructed. Using the accumulation buffer method [Haeberli and
Akeley 1990] in combination with the discontinuity buffer allows
for oversampling in a straightforward way.

Including the direct illumination calculations into the discontinu-
ity buffer averaging process, allows to drastically reduce the num-
ber of shadow rays to be shot, but slightly blurs the direct shadows.
Similar to the irradiance caching methods, the detection of geomet-
ric discontinuities can fail. Then the same blurring artifacts become
visible at e.g. slighty offset parallel planes.

Interleaved sampling and the discontinuity buffer perfectly com-
plement each other (see Figure 3d) but require the filtering to be
done on the server. In consequence an increased amount of data
has to be sent to the server, which of course is quantized and com-
pressed. Compared to irradiance caching the discontinuity buffer
samples the space much more evenly and avoids the typical flick-
ering artifacts encountered in dynamic scenes. In addition no com-
munication is required to broadcast irradiance samples during ren-
dering.

4.4 Minimal Randomization

The integrands in computer graphics are square-integrable, usually
of high dimension and containing unknown discontinuities. Con-
sequently the Monte Carlo method is appropriate for numerical in-
tegration. Since the pure Monte Carlo method is rather slow, we
apply the much more efficient randomized quasi-Monte Carlo in-
tegration [Owen 1998]. This method of integration saves around
30% of computation time as compared to stratified sampling [Kol-
lig and Keller 2001] and exposes much less variance, i.e. noise.
The principle consists of using the estimator

∫
(0,1)s

f (x)dx≈ 1
r

r

∑
i=1

1
n

n−1

∑
j=0

f (xi, j ),

where the samplesxi, j for fixed i are of low discrepancy (for defini-
tions see [Niederreiter 1992]) and for fixedj are independent sets
of random realizations. Low discrepancy guarantees a much bet-
ter uniform distribution of the samples than independent random
samples can obtain. This implies good stratification properties that
guarantee for faster convergence. On the other hand the indepen-
dence makes the estimator a real Monte Carlo estimate that is valid
for all square-integrable functions and in addition allows one to es-
timate the variance of the estimate.

The deterministic low discrepancy sequence of Sobol’ can be
generated in only a few lines of code [Press et al. 1992] in integer
arithmetic. The points are randomized by justXOR-ing them with
a random bit vector before floating point conversion [Friedel and
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Keller 2001]. Taking the firstn pointsa j of the Sobol’ sequence,r
independent random realizations for the above scheme are obtained
by xi, j := a j ⊕bi , wherebi arer independent random bit vectors.
Note that this randomization scheme preserves the good uniformity
properties of the points.

In fact choosing onlyr = 1 randomized instances is sufficient to
obtain a valid Monte Carlo estimator, whiler = 2 instances already
enable to estimate the error (see [Sobol’ 1994]). In consequence
variance and noise inherent with Monte Carlo methods can be al-
most avoided by this simple and minimal scheme of randomization.
Tabulating the Sobol’ sequence provides stratified sample genera-
tion at rates much faster than a pseudo-random number generator
can achieve in combination with stratified sampling.

In the algorithm each identificationk is assigned a subsequent
subsequence of one instance of a randomized low discrepancy se-
quence. These samples are used for generating the setsPk of point
light sources andCk of caustic photons. In case of geometric con-
tinuity the discontinuity buffer assembles the samples of neighbor-
ing pixels such joining different subsequences. Since these subse-
quences are part of the large sequence, the samples almost perfectly
complement each other resulting in a superior convergence. In or-
der to avoid the costly computation of high-dimensional low dis-
crepancy sequences, padded replications sampling is used [Kollig
and Keller 2001].

For the randomization each client needs an identical stream of
only a few pseudo-random numbers per frame, which are created
by the same pseudo-random number generator on each client. Thus
any parallelization problems inherent with pseudo-random number
generation are avoided and no communication is required during
rendering.

5 Results and Discussion

For our experiments we have used a cluster of dual processor ma-
chines each equipped with two AMD AthlonMP 1800+ CPUs and
512 MB of RAM. All machines are connected to a fully switched
100 Mbit Ethernet. In order to handle the amount of pixel data sent
to the server, a single Gigabit uplink from the switch was connected
to the master machine that otherwise was identical to the clients.

In the following some example scenes are provided to show the
performance, quality, and scalability of the proposed algorithm and
its current implementation.

5.1 Example Scenes

Unfortunately it is difficult to visualize the temporal behavior of
the approach in a printed publication. Therefore the accompany-
ing video shows the examples captured in realtime from the screen
of the master machine. The still images in this paper have been
grabbed from the screen during interaction. The converged images
are accumulated results of successive frames after interaction has
stopped. This process usually takes about 1 or 2 seconds.

All scenes are rendered at video resolution of 640×480 pixels
unless stated otherwise. A maximum path length of 4 is used for
generating the point light sources. For all of the following examples
3× 3 interleaved sampling has been used in combination with a
3×3 discontinuity buffer.

5.1.1 Simple Scenes with Caustics

The left image in Figure 4 shows a simple room lit by a single area
light source located underneath the ceiling above the table, where
a glass sphere casts a caustic. Global illumination is computed at
3.3 fps on 8 clients, while for each pixel 22 shadow rays are cast
and 500 caustic photons are generated each frame. 4 of the 22 point

light sources are located directly on the light source itself, while 18
are spread all over the scene.

The scene in the right image of Figure 4 contains two light
sources with 5 samples each in addition to 20 indirect light samples.
Roughly 1,500 photons per light source were used to represent the
two caustics.

Temporal flickering is minimal in both scenes due to low com-
plexity of the illumination, and shadows are smooth and clearly vis-
ible with all detail already in the dynamic scene. The dynamic and
converged images only can be distinguished by the slightly better
caustics and anti-aliasing due to accumulation.

Figure 4: Two simple test scenes with a glass ball and a glass egg
consisting of 800 and 4,000 triangles. These scenes render at 3.3
and 2.5 fps on 8 clients.

5.1.2 Invisible Date

The “Invisible Date” scene as shown in Figure 5 contains 9,000
triangles. It is lit mostly indirectly from the two lamps pointing
towards the ceiling. No direct illumination reaches the furniture
and the reflective floor. A glass sphere is floating below the ceiling
casting caustics on the wall.

This scene nicely demonstrates the combination of specular illu-
mination effects due to ray-tracing reflections and indirect illumi-
nation computed with the new algorithm. It uses 4 direct samples,
9 indirect samples, and 500 photons per light source. The scene
renders at 2.6 fps on 8 clients.

Smooth penumbras are produced by the shelf and other objects.
Some flickering is visible due to the low number of indirect sam-
ples. This could be avoided by taking more samples at the cost of
lower frame rate.

Although the eye path is split once at the first point of interac-
tion, subsequent path segments randomly select a component of the
bidirectional scattering distribution function. This is the reason for
some small flickering artifacts visible for the teapot and the cups on
the table during interaction.

Figure 5: The Invisible Date scene containing mostly indirect illu-
mination from two lights pointing towards the ceiling. It shows a
combination of ray-traced reflections and smooth indirect illumina-
tion. Little differences can be observed between the dynamic and
the converged image on the left and right, respectively.
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5.1.3 Office

The office scene in Figure 6 contains 34,000 triangles. The light-
ing conditions are quite difficult due to significant occlusion. The
complex indirect illumination is particularly visible in the bottom
row of Figure 6, where the strongly illuminated book acts as a sec-
ondary area light source causing additional smooth shadows on the
wall. In addition color bleeding is clearly visible on the wall in the
upper row of images.

Global illumination is computed with 4 direct, 18 indirect, and
1,000 photons per light source, which results in a frame rate of 2.2
fps on 8 clients for both views. The sharp shadow boundaries from
the point light sources visible in the non-converged images on the
left already indicate noticeable flickering. While this is disturbing
during movements it helps in locating important lighting effects.
The illumination, however, quickly converges as soon as the move-
ment stops and results in a highly detailed and smooth illumination
pattern.

The effects of insufficient filtering of interleaved sampling are
clearly visible at curved surfaces. They are resolved in the con-
verged solution on the right.

Figure 6: Two views of the office environment. The scene is illu-
minated by two area lights at the ceiling and a desk lamp. The im-
ages in the bottom row show a close-up of the detailed illumination
patterns caused by the book under the desk lamp. While there is
significant flickering during movements, the solution quickly con-
verges to the smooth images on the right. Both views render at 2.2
frames per second on 8 clients.

5.1.4 Conference Room

The conference room test scene from Figure 7 contains illumination
from 104 area light sources and consists of 290,000 triangles. Due
to its material and geometrical complexity the scene renders only at
1.7 fps using 12 clients.

Subsampling is used to limit the number of shadow rays cast
for each pixel. In this case, a total of 5 light sources are determined
and sampled once. For the indirect illumination 20 indirect samples
were used. Due to the well distributed location of the lights and the
filtering by the discontinuity buffer, almost no flickering is visible.
However, the limitations of the discontinuity buffer again become
visible on curved surfaces. Here an improvement of the filtering is
necessary. Finally the accumulated solution again is free from any
artifacts.

Figure 7: Conference room scene with 104 light sources and de-
tailed shadows cast by the chairs. The scene renders at 1.7 fps on
12 clients and hardly shows any flickering.

5.1.5 Dynamic Environments

Interactive changes to the scenes (see Figure 1) are trivially han-
dled by the global illumination algorithm, because the underlying
ray-tracing engine handles changing geometry transparently to the
application.

5.2 Simulation Quality

The combination of the idea of instant radiosity, interleaved sam-
pling, the discontinuity buffer, and correlated sampling by random-
ized quasi-Monte Carlo integration allows our system to achieve
relatively smooth image quality with very few samples.

The algorithm can be controlled by a small set of intuitive pa-
rameters: the number of point light sources, the number of caustic
photons, and the filter size of the discontinuity buffer that auto-
matically determines an interleaved sampling pattern of same size.
The user can easily trade off rendering speed for image quality by
adjusting these parameters and gets immediate feedback by the in-
teractive system.

Flickering due to discontinuous changes in the illumination can
become particularly apparent when successive frames are illumi-
nated by different point light sources. As shown in Section 5.1, ac-
cumulating successive frames efficiently smooths out these discon-
tinuities. As a consequence flickering can be reduced drastically by
including moderate oversampling during interaction, however, at a
reduced frame rate.

5.3 Scalability

The client/server concept of our global illumination algorithm relies
on non-blocking clients. Thus the scalability of the system depends
on the ratio of the overhead and work done by the clients, on the
ability of the server to schedule tasks and to process their results,
and on the bandwidth of the network.

The number of rays traced for a preprocess is mainly determined
by the number of caustic photons and is usually small compared to
the total number of shadow rays. If possible, tiles with the same
identificationk are scheduled to the same client. Due to different
loads on the clients and in order to hide latencies, the ideal distri-
bution cannot always be maintained. Our experiments show that on
the average the clients have to preprocess data for roughly two dif-
ferent identifications. Consequently the ratio of the overhead and
work is small and hardly influences scalability.

The main workload of the server consists of handling large
amounts of pixel data and performing the filtering by the discon-
tinuity buffer. Since these computations require information from
adjacent pixels computed by different clients, they have to be per-
formed on the server. Consequently frame rate and resolution are
restricted by the performance of the server.
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In a similar way the limited network bandwidth restricts the
frame rate and resolution.

As expected, Table 1 shows that the algorithm scales almost per-
fectly up to 16 clients. The maximum performance of our server
is restricted to process around 1.5 million pixels per second. This
corresponds to roughly 5 frames per second at 640× 480. Other
than waiting for faster hardware this bottleneck can be avoided by
distributing the server computations. This can be done easily, but
introduces additional latency. Reducing the image resolution allows
to easily scale this maximum performance, reaching more than 10
frames per second at 400×300 pixels.

Nevertheless there are no restrictions imposed on the scalability
with respect to image quality: Increasing the number of rays obvi-
ously improves image quality. If the number of clients is increased
by the same factor, still the same number of tasks is scheduled and
the same amount of pixel data is transferred and processed. Only
little overhead is introduced resulting in almost identical frame rates
at unchanged resolution.

Number of clients 1 2 4 8 16
Room with table 0.4 0.8 1.6 3.2 5.3
Room with egg 0.3 0.7 1.4 2.7 5.4
Office 0.2 0.3 0.6 1.2 2.4

Table 1: The algorithm almost perfectly scales over the range of
available clients. For frame rates above 5 fps the server workload
limits performance.

6 Conclusion

We have shown that - contrary to general opinion - interactive
global illumination is indeed feasible, and can even be realized on
a low cost cluster of consumer PC hardware. Running on 8 to 16
cluster nodes, our system delivers interactive global illumination of
up to 5 frames per second at a resolution of 640×480 for scenes
ranging from simple environments to complex geometry contain-
ing dozens of light sources. All lighting is completely recomputed
every frame, allowing one to interactively change rendering param-
eters, material properties, lighting and even geometry. High quality
global illumination is obtained in only seconds.

All this has been achieved by analyzing the drawbacks of previ-
ous approaches and by designing our system specifically to match
the underlying framework of a fast, scalable ray-tracing engine.
There is no communication or synchronization between different
tasks distributed among the clients and only little overhead calcula-
tions. These are important reasons for its good scalability.

Besides including arbitrary physical surface properties and vol-
umetric effects, future work will concentrate on even more exploit-
ing temporal coherence. Since most of the dynamic changes are
continuous, information can be used for predictions for unbiased
importance sampling. Furthermore the majority of rays shot are
shadow rays towards point light sources, which offer a high degree
of coherence. For this special problem, tracing the shadow rays can
be made much more efficient by tracing bundles of rays benefitting
from spatial coherence [Lukaszewski 2001]. Such speed improve-
ments directly affect the rendering speed of our system.
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